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Chapter

The Role of Vision on Spatial 
Competence
Giulia Cappagli and Monica Gori

Abstract

Several pieces of evidence indicate that visual experience during development 
is fundamental to acquire long-term spatial capabilities. For instance, reaching 
abilities tend to emerge at 5 months of age in sighted infants, while only later at 
10 months of age in blind infants. Moreover, other spatial skills such as auditory 
localization and haptic orientation discrimination tend to be delayed or impaired in 
visually impaired children, with a huge impact on the development of sighted-like 
perceptual and cognitive asset. Here, we report an overview of studies showing that 
the lack of vision can interfere with the development of coherent multisensory spa-
tial representations and highlight the contribution of current research in designing 
new tools to support the acquisition of spatial capabilities during childhood.

Keywords: blindness, visual impairment, child development, rehabilitation, 
innovation

1. Introduction

Spatial competence is essential in everyday life for numerous human activi-
ties, as it entails the ability to understand and internalize the representation of the 
structure, entities, and relations of space with respect to one’s own body [1, 2]. 
Despite the fact that spatial competence encompasses a diverse set of skills, research 
in the field has generally focused on identifying the developmental steps that are 
necessary to acquire from an early age the ability to reason about spatial properties 
of the environment.

There is a general consensus on the crucial role of visual experience in guid-
ing the maturation of spatial competence [3]. Vision takes advantages respect to 
other senses in encoding spatial information because it ensures the simultaneous 
perception of multiple stimuli in the environment despite the apparent motion of 
the array on the retina during locomotion enabling us to extract more invariant 
spatial properties from the surrounding layout [4, 5]. Indeed psychophysical data 
indicate that when sensorial conflict occurs, audition and touch are strongly biased 
by simultaneously presented visuospatial information, suggesting that sighted 
people tend to organize spatial information according to a visual frame of reference 
[6–12]. Neurophysiological data further confirm the view by suggesting that the 
visual feedback is fundamental for spatial learning [13–18], i.e., visual experience 
allows the alignment and thus the integration of auditory and visuospatial cortical 
maps [19–22]. Thus, research on sighted individuals suggests that vision typically 
provides the most accurate and reliable information about the spatial properties 
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of the external world, therefore it dominates spatial perception. Consequently, 
if visual experience is necessary to adequately represent spatial information, we 
would expect blind people to perform worse than sighted people in spatial tasks. 
This would be especially true if the visual impairment emerges at birth, when 
multisensory communication is fundamental for the sensorimotor feedback loop 
that contributes to the development of spatial representations [23, 24].

Despite valuable insights into the important guiding role of vision on spatial 
development, contrasting results indicate that visually impaired people can mani-
fest or enhanced either impaired skills depending on the spatial aspects investi-
gated, leading to the hypothesis that vision could have an essential or facilitating 
role depending on the nature of the spatial task that individuals carry out [14]. 
A clearer definition of the underlying processes involved in spatial competence 
enhancements and deficits caused by visual loss is important not only to quantify 
to what extent the perceptual consequences of early blindness translate to real-
world settings but also to develop effective rehabilitation tools and technologies to 
improve their spatial skills [25]. Indeed, scientific findings related to spatial compe-
tence development in the absence of visual experience have important implications 
for clinical outcomes and for the design of new rehabilitation activities meant to 
activate compensatory strategies since an early age.

2. Development of spatial competence with vision

The first developmental theory of spatial competence was proposed by Jean 
Piaget and his colleagues [26–28], who hypothesized that spatial understanding 
gradually improves with age thanks to a progressively more conscious interaction 
with the external world that permits to accumulate sensorimotor experiences 
such as reaching. Nonetheless, the identification of the starting points for spatial 
development remains one of the most debated topics within the literature of spatial 
competence.

While some researchers argue for innate knowledge of spatial understanding in 
humans [29] by reporting impressive spatial abilities in infants, other researchers 
advocate for a gradual acquisition of spatial competence during childhood [30] by 
reporting significant limitation of early spatial skills during infancy. For instance, 
several studies have demonstrated that already at 3 months infants are able to 
represent categorical spatial information by distinguishing between above vs. below 
and left vs. right [31, 32] and that by 5 months of age babies are sensitive to metric 
properties of space being able to code spatial object dimensions such as height 
[33–35], distance location [36], and angles [37]. Conversely, other studies indicate 
that while sensitivity to spatial properties appears in early infancy, further refine-
ment of spatial accuracy emerges later during development. For instance, coding 
of categorical and metrical information improves through the primary school years 
[38–40] as well as capabilities of estimating and reproducing object size and loca-
tion [41, 42].

The question of whether spatial capabilities are innate or acquired is of central 
importance to understand if an early sensory deprivation can negatively impact on 
the acquisition of adult-like competences. In the case of blindness, a key develop-
mental acquisition is the ability to code auditory and tactile spatial properties of the 
environment in order to independently orient and navigate in space. Research on 
auditory spatial perception has shown that sighted infants already possess the abil-
ity to differentiate acoustic information and perform adequate actions in different 
dimensions [43]. Indeed they can turn their heads toward a sound from the moment 
they are born [44, 45] and at the age of 4–5 months, head-orientation movements 
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become even faster and more precise than in the neonatal period. Further improve-
ments in the ability to code the location of sonorous objects in space manifest at 
6 months of age, when infants are sensitive to changes in the location of sounds as 
small as 13–19 degrees [46, 47]. Nonetheless, this reflexive orientation to sound 
sources is present at birth but disappears during the first month if large movements 
of the head are required [48] to appear again at 4–5 months of age: for this reason, 
it has been hypothesized that the early orientation reflex represents the activity of 
lower brain stem and provides an initial stage to acquire spatial competence [49] 
that is later consolidated through concrete experience.

In the spatial cognition domain, two main distinctions can be made about 
spatial representations of the environment [50]. The first distinction is between the 
egocentric and allocentric frame of reference which indicates the strategy to code 
location of objects, respectively, in a viewer-dependent or a viewer-independent 
manner. While the egocentric representation is tied to the observer and can be used 
either when the observer remains stationary or when the observer moves keeping 
track of the movement (dead reckoning or path integration), the allocentric repre-
sentation does not depend on the viewer’s current position but on external land-
marks that can be adjacent (cue learning) or distal (place learning). Although early 
spatial representations were originally described as purely egocentric [51], several 
studies indicated that infants can make use of both intrinsic and external features of 
the environment to locate objects. There is evidence that infants can update ego-
centric representations by keeping track of their movement and thus locate objects 
from novel positions within the first year of life: indeed by 9 months, infants can 
compensate for simple changes in their position, such as translation along a straight 
line [52] or rotational movements [53]. Nonetheless, for more complex displace-
ments, infants manifest a general difficulty in keeping track of their changing rela-
tion to target location. For example, at 12 months of age, they start to solve complex 
problems involving both translation and rotation but they perform better when they 
can make use of adjacent landmarks embedded in the environment [54], and this 
ability seems to show little improvement between 16 and 36 months [55]. Moreover, 
previous research has shown that sighted infants reach for sounding objects in the 
absence of visual clues [47, 56–59], implying that a sense of auditory space is well 
consolidated at this stage since sounding objects are localized in relation to one’s 
body. The allocentric strategy seems to emerge quite early in the development 
together with the egocentric strategy, but with different maturational rates for cue 
learning and place learning types of coding. Indeed, studies employing paradigms 
where the direction of looking from a novel position indicate where infants expect 
to see an engaging stimulus demonstrate that by 8.5 months of age, infants use 
an adjacent salient landmark to locate the stimulus, whereas only at 12 months of 
age, they consistently use relational information of distal landmarks [54]. Several 
studies confirm the idea that egocentric and allocentric strategies continue to refine 
during childhood by showing that at 18–24 months of age, toddlers become able 
to use geometrical cues such as shape to orient themselves [60, 61]. Nonetheless, 
an important milestone such as the ability to integrate different reference frames 
within a common system of spatial representation in order to increase accuracy and 
reduce the variability of spatial judgments emerge only later during the develop-
ment. Indeed, children aged between 4 and 8 years old are not able to use both 
self-motion and external landmarks as egocentric and allocentric information, 
respectively, to reproduce object location because they alternated both strategies 
instead of combining them as adults usually do [62].

The second distinction in the spatial cognition domain is between categorical 
and metric spatial representations, which, respectively, represent the coding of 
spatial information in a relative manner by means of comparisons among entities 



Visual Impairment and Blindness - What We Know and What We Have to Know

4

in space and the coding of spatial information in external coordinates by means of 
metric cues such as distance or length. It has been shown that at 7 months of age, 
infants spontaneously show categorical dichotomous discrimination of auditory 
space by differentiating objects within and beyond reach [57, 58] and by distin-
guishing spatial categories such as above vs. below and left vs. right [32, 63]. Early 
sensitivity to metric cues has been observed in 4.5–6.5 months old infants for the 
dimension of objects [64] and distance [36]. Nonetheless, methodological issues 
have been raised for the interpretation of such results since experimental paradigms 
typically used with infants employ observational measures of the infant’s behavior 
that may reveal more low-level perceptual rather than conceptual representation. 
Indeed, it has been shown that at the age of 2 years, children are able to match 
objects by height when these objects are presented in containers of a fixed height, 
but not when they are presented without containers, indicating that toddlers make 
use of distance cues only when they can rely on relative cues [65]. A considerable 
improvement in the ability to code object size and location can be observed between 
the ages of 4 and 12 [40–42, 66], for example, in tasks that require to use a con-
figuration of distal landmarks to infer object location [67]. This could be due to the 
development of a hierarchical coding system, which integrates metrics and cat-
egorical information [68]. Given the time course of spatial cognition development 
and the discrepancy between early and later acquisition of spatial skills, an inter-
actionist approach has been proposed that acknowledges strong potentiality and 
tries to identify underlying mechanisms implicated in the transformation of early 
abilities into mature competence [69]. The underlying mechanisms responsible for 
the refinement of spontaneous spatial orientation skills might be found both in the 
biological and environmental experiences. Within the biological context, many 
improvements in spatial functioning have been associated with the maturation of 
specific brain regions such as the hippocampus. For instance, the maturation of 
the hippocampus-mediated ability to encode relations among multiple objects may 
determine an increase in the number of stimuli that children rely on during reori-
entation and navigation tasks [70]. Within the environmental context, experience 
involves interactions with objects in the physical world and learning conventional 
information about symbolic spatial representations, such as maps and models. 
Spatial competence is strictly dependent on experiential factors such as exploratory 
activities which are in turn related to the development of locomotor activities. For 
example, it has been suggested that the emergence of allocentric coding in the form 
of cue learning might derive from the onset of crawling around 8–9 months, while 
further locomotor experiences may facilitate place learning by stimulating children 
to observe and approach object arrays from different directions. Indeed, locomo-
tion is not simply a maturational precursor to psychological changes, but it plays 
a crucial role in their genesis [71]. For example, crawling provides the infant with 
concrete experiences that may change his coding strategy, for example, permitting 
the infant to abandon an egocentric body-oriented localization of objects to one 
based on the use of environmental landmarks. Recent findings suggest that sighted 
children acquire spatial capabilities thanks to the reciprocal influence between 
visual perception and execution of movements [72]: children monitor the success 
of action through a sensory-motor feedback by matching expected and observed 
changes of visual information. Indeed, self-generated movements commonly help 
to perceive the space acoustically because they convey the proprioceptive sensa-
tion corresponding to the movement of the ears toward sound sources [73]. In 
other words, using the dichotomy between the body and its exterior, an individual 
acquires spatial competence through observation of the body’s actions and the 
resulting sensory consequences: through self-generated movements, the nervous 
system learns sensorimotor contingencies [74], which reveal the spatial properties 
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of the auditory space. Moreover, acting successfully entails affordances for action: 
since affordances change according to action capabilities and bodily characteristics, 
experiential factors are necessary especially during infancy when new skills are 
constantly appearing and bodily dimensions are changing rapidly [75].

These results suggest that early interaction between the visual input and other 
sensory and motor signals provides a powerful background to shape the develop-
ment of spatial cognition in sighted children. But if vision is so important, how 
spatial development changes when the visual input is missing?

3. Development of spatial competence in the absence of vision

While the development of spatial cognition has been extensively studied in 
sighted individuals [50], less effort has been spent in understanding how the 
sense of space changes during development in children with visual impairment. 
Specifically, scientific research on the development of auditory localization skills 
in visually impaired children has provided contrasting results. For example, it has 
been shown that children with visual disabilities have an excellent spatial hear-
ing, measured as the ability to discriminate differences in sound localization in 
the horizontal and vertical plane as well as the ability to reach or walk toward the 
sound source position [76]. On the contrary, several studies suggested that infants 
and children with severe congenital blindness have a developmental delay in 
sound localization abilities [23, 77–79] and motor responses to sound [80, 81]. For 
example, blind children do not reach for objects that produced sounds until the end 
of the first year, while sighted children start around 5 months [82]. Similarly, blind 
children show worse performances than sighted children in auditory bisection, 
minimum audible angle tasks [23], and audio depth tasks [78]. Other studies show 
mixed results, indicating that children with congenital visual disabilities show an 
initial neuromotor developmental delay but compensate for the lack of vision devel-
oping good manipulatory and walking skills thanks to the exploration of sounding 
objects in the environment [83]. Studies of proprioceptive localization of immediate 
and memorized targets have been used to compare the proprioceptive performance 
of sighted and blind individuals. For instance, it has been shown that early visual 
deprivation does not necessarily prevent the development of spatial representations 
in both early blind children [84] and adults [85]. Considering that spatial compe-
tence emerges gradually thanks to the reciprocal influence between visual percep-
tion and execution of movements [72], it is evident that visually impaired children 
not only lack the visual input necessary to establish the sensorimotor feedback that 
typically promotes spatial development, but also manifests a general delay in the 
acquisition of important locomotor and proprioceptive skills, which may cause 
them to accumulate much less spatial experience compared to their sighted peers 
[79, 86, 87]. It has long been known that the development of blind infants is delayed 
in self-initiated postures and locomotion [79, 88, 89]. While sighted children 
typically start to perform first individual actions and navigation from the first 
year of age, blind children without cognitive and motor impairments start to walk 
at about 30–32 months of age [90]. Moreover, from the first month of life, blind 
infants show delays in the vestibular and proprioceptive functions due to the lack of 
integration with the visual inputs typically provided during the development [91]. 
Finally, since visual feedback represents the most important incentive for actions 
and thus for the development of locomotion and mobility skills, the onset of several 
motor milestones (e.g., rolling, crawling, standing, and balancing) can be delayed in 
visually impaired infants [92, 93], suggesting that the visual feedback of the body is 
fundamental for the development of self-concept.
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To perceive space, visually impaired children typically use hearing and touch. 
Despite the haptic sense provides essential information about the spatial layout 
of peripersonal space, such as the size, shape, position, and orientation of objects 
within reach, it typically conveys information only within the scope of the body. 
The case of hearing is particularly interesting because the auditory sense is not only 
the main channel for providing distal information but also it might be superior to all 
other sensory alternatives because it provides spatial information in both active and 
passive conditions and it does not necessarily involve direct contact with objects [94, 
95]. At the same time, the use of hearing to perceive distal information might be par-
ticularly difficult for visually impaired children because in this case, they do not have 
any sensory feedback about sonorous objects in the far space. On the contrary, the 
haptic-proprioceptive system can provide accurate spatial data only within the scope 
of the body itself [96], and therefore a blind person must actively move in the envi-
ronment to sequentially touch all the stimuli embedded in space. Several factors may 
contribute to increasing the difficulty in interpreting such contrasting results. For 
example, many studies on spatial hearing have been conducted within the framework 
of broader research on cognitive and motor skills development [87, 97] and reach-
ing mixing the motor and the perceptual component of the observed behavior [83, 
98]. In addition, different methodological approaches and stimuli have been used to 
assess similar aspects of auditory spatial perception: for instance, studies performed 
on visually impaired children under 3 years of age do not employ psychophysical 
procedures but they frequently use the sound of familiar voices or toys to gather 
information about auditory localization abilities in blind children [97]. In addition, 
in some cases, sighted and blind groups of children are not perfectly matched for 
age range and sometimes use also adults as comparison [76]. Finally, the difference 
between early and later loss of vision has not been often considered: many studies 
mix data from children with no visual experience with those of children with partial 
visual experience in the first period of life [76]. Instead, it has been demonstrated 
that the onset of blindness has a strong impact on spatial performance in adulthood: 
for example, late blind individuals who lost vision later in life after a normal visual 
experience during the first year of life perform equally or even better than sighted 
participants in several auditory spatial tasks (1, 50, 83, and 300). To summarize, 
although compensatory mechanisms for spatial perception have been demonstrated 
in blind adults, it is not clear whether an early visual impairment might delay the 
development of special auditory spatial skills. The development of spatial cognition 
is strictly related to the development of social cognition: the ability to independently 
navigate and orient ourselves in space facilitates engagement in social interactions. 
Indeed, a delay in the acquisition of language, motor or cognitive skills can have a 
direct impact on a child’s social competence (106, 109, and 246). More recent works 
highlighted that preschool-age children with visual impairments often have difficul-
ties engaging in positive social interactions, making their assimilation into preschool 
programs difficult. In fact, many do not display a full range of play behaviors 
[99–103] and spend more time engaging in solitary play interacting more with adults 
than with their sighted peers [81, 87, 89, 102–107]. Considering that the interaction 
among peers is essential for the development of cognitive, linguistic, social, and 
playing skills [108], the aforementioned delay in the acquisition of social competence 
in visually impaired children gives rise to feelings of frustration, rather than self-effi-
cacy and independence which characterize the social experience of typical children. 
Indeed, the lack of visual information during early infancy often constitutes a risk 
for the development of the personality and emotional competence [89]. Nonetheless, 
when assessing social competence in visually impaired people, some other factors 
resulting from the loss of vision should be taken into account. For example, it has 
been shown that parenting style influences the socio-emotional development of 
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sighted children [109–113] because parents represent the first influential setting 
that can produce appreciable differences in developmental outcomes in terms of 
psychological functions [114, 115]. Inconsistent, hostile and nonsensitive parenting 
behaviors have been associated with adjustment problems and social adversity during 
childhood [116, 117] and also with anxiety, depression, and other stress-related ill-
nesses during adolescence [118, 119] and adulthood [120]. We speculate that a similar 
influence of parenting style holds also for blind children, especially because families 
of children with visual disabilities are more prone to experience various stressors 
such as concerns about the social acceptance of the child [121] and to face difficulties 
in initiating and sustaining social interactions [122], thus they might easily develop 
an overprotective behavior that negatively influences the social development of 
the visually impaired child. The negative effects of blindness on socio-emotional 
competence can be observed also in adulthood, with the impoverishment of the 
ability to perform everyday activities both in private settings like home and in public 
settings like workplace. Importantly, the decrease of functional abilities has been 
linked to the emergence of serious psychological problems in the blind population 
[123]. Indeed adults with visual impairments tend to feel more socially isolated and 
not properly supported compared to sighted individuals [123–126] and are at higher 
risk of developing depressive symptoms [105, 125, 127–131], principally because 
social competence depends on the ability to utilize visual cues [132]. Overall, several 
scientific findings suggest that visual impairments, especially if acquired later in life, 
can have profound consequences for the physical functioning, psychological well-
being, and health service needs of older adults [133]. Consequently, early therapeutic 
interventions specifically focused on activities fostering the development of per-
ceptual and motor abilities would improve the quality of life of children and adults 
with visual impairments. In the next section, we will present some tools developed to 
improve perceptual skills of visually impaired individuals and propose a new solution 
we recently developed for early intervention in visually impaired children.

4. Spatial tools for visually impaired children

The acquisition of spatial competence is typically a good indicator of the future 
ability to independently navigate in the environment and engage in positive social 
interaction with peers. While for sighted individuals, the visual feedback represents 
the most important incentive for actions and thus for the development of mobility and 
social skills, visually impaired individuals strongly rely on auditory and tactile land-
marks to encode spatial and social information. Thus, the creation of technological 
devices to support visually impaired children in their spatial and social development 
would be a need. Nonetheless, despite the huge recent advancements in technological 
industry, most of the devices developed so far to address visually impaired population’s 
needs are not widely accepted by adults and not easily adaptable to children [134].

As reported in the previous sections, visual impairments can determine spatial 
and social impairments during development. Technological support for the blind 
should fulfill two different but complementary tasks: the first is to substitute the 
absent sensory information (vision) with other sensory signals (audition and touch) 
for daily activities, and the second is to support the rehabilitation of impaired func-
tions following sensory loss. This latter aspect is particularly important when the 
visual impairment occurs during the first year of life, because technological devices 
might represent an opportunity for children to develop perceptual and cognitive 
abilities by compensating for the sensory deprivation. Most of the technological 
supports developed to date have fulfilled mainly the first task, namely the substitu-
tion of vision with other modalities for everyday tasks such as object recognition.
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Sensory substitution devices (SSDs) convert the stimuli, normally accessed 
through one sensory modality, into stimuli accessible to another sensory modality. 
Specifically, sensory substitution devices for visually impaired individuals aim at 
supplying the missing visual information with visual-to-tactile or visual-to-audi-
tory conversion systems [135]. Typically, substitution systems based on visual-to-
tactile conversion transforms images captured by a camera into tactile stimulations 
directed to users. From the first device developed in the mid-1960s by Bach-y-Rita 
(Tactile-Visual Sensory Substitution device or TVSS), that converts signals from 
a video camera into tactile stimulation applied to the back of the subject allowing 
for the recognition of lines and shapes [136], recent technological progress allowed 
the development of much smaller, portable, and wearable devices. For instance, 
wristbands, vests, belts, and shoes which allow hands-free interactions [137] and 
devices that can be placed on various body surfaces (e.g., fingers, wrist, head, 
abdomen, and feet) [138, 139]. Conversely, systems based on visual-to-auditory 
conversion transform the images captured by a camera into sounds transmitted 
to users via headphones. One of the most famous visual-to-auditory devices is the 
vOICe developed by Meijer [140] that associates height with pitch and brightness 
with loudness in a left-to-right scan of the visual image.

In our recent review, we listed the SSDs designed for visually impaired individu-
als by highlighting their main features and limitations for daily use [134]. In par-
ticular, we identified six main limitations that might determine low acceptance rate 
in adults and low adaptability in children:

• Invasiveness: SSDs can be physically invasive in the sense that in order to be 
used, they must be positioned on crucial body parts (e.g., ears or mouth), thus 
limiting perceptual functions in users or they must be transported (e.g., in 
backpacks), thus limiting users’ navigation for weight and size;

• Extensive training: SSDs typically require long periods of training in order to 
be used because users need to learn how to interpret the output of the device, 
which is typically not immediate (e.g., sound loudness corresponds to pixel 
brightness in the vOICe [141]);

• High cognitive load: SSDs usually require high attentional resources, which 
makes it difficult for the user to focus on the main task they are performing 
when using the device;

• No clinical validation: SSDs frequently remain prototypes and do not reach the 
blind users market, principally because they are not validated on large sample 
patients through standardized clinical trials;

• Artificiality: SSDs are generally based on the idea that users can understand 
the properties of visual stimulus by listening (in the case of visual-to-auditory 
SSDs) or feeling (in the case of visual-to-tactile SSDs) a stimulus resulting 
from an artificial transformation code, missing an important aspect of the 
learning process, which is the association of action and perception.

Therefore, while sensory substitution devices have been shown to provide 
support for specific perceptual tasks in adults [142], they have never been tested 
in children principally because their use might too overwhelming for children. 
Nonetheless, technological development should be addressed especially to visually 
impaired children needs because cortical plasticity is maximal during the first year 
of life, therefore the benefit deriving from early interventions should be higher. 
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Moreover, technological development should lead to multimodal stimulation 
whose benefits have been repeatedly reported compared to unimodal stimulation 
[143–145], while most of the SSDs developed so far substitute the visual function 
with either the auditory or the tactile modality alone.

With this in mind, we developed a new device for visually impaired children 
(Audio Bracelet for Blind Interaction, ABBI, [146]), which is an audio bracelet that 
produces an auditory feedback of body movements when positioned on a main 
effector such as the wrist in order to provide a sensorimotor signal similar to that 
used by sighted children to construct a sense of space. Indeed, several reports indi-
cate that sighted children typically acquire spatial competence by experiencing 
visuomotor correspondences [72]. In this sense, our device could be used to align 
the spatial understanding between one’s own body and the external space through 
coupling auditory feedback with intentional motor actions. The audio movement 
created by the bracelet conveys spatial information and allows the blind user to 
build a representation of the movement in space in an intuitive and direct manner.

We validated the ABBI device with a clinical trial on an Italian sample of 44 
visually impaired children aged 6–17 years old assigned to an experimental (ABBI 
training) or a control (classical training) rehabilitation condition. The experimental 
training group followed an intensive but entertaining rehabilitation for 12 weeks 
during which children performed ad-hoc developed audio-spatial exercises with 
the Audio Bracelet for Blind Interaction (ABBI). The clinical trial consisted of three 
sessions: pre-evaluation, training, and post-evaluation. Pre- and post-evaluation 
sessions lasted 60 min during which a battery of spatial and motor tests were 
performed [147]. The BSP (Blind Spatial Perception) battery comprised six tests: 
(1) auditory localization: the child listens to the sound produced by a set of loud-
speakers positioned horizontally in front of him/her and localizes the sound source 
by pointing to it with a white cane; (2) auditory bisection: the child listens to a 
sequence of three sounds presented successively by a set of loudspeakers positioned 
horizontally in front of him/her and verbally reports whether the second sound is 
closer in space to the first or to the third one presented; (3) auditory distance: the 
child listens to two consecutive sounds produced by a set of loudspeakers posi-
tioned vertically in front of him/her in depth and verbally reports which of the two 
stimuli presented is closer in space to his/her own body; (4) auditory reaching: the 
child listens to a static sound positioned in far space and reaches the position of the 
sound by walking toward it; (5) proprioceptive reaching: the child repeats a move-
ment trajectory after being presented with it by an external operator; (6) general 
mobility: the child walks straight on for three meters and then back to the starting 
position at his/her own pace. The training session lasted 12 weeks and children 
were assigned to the experimental training condition based on activities with the 
use of ABBI or to the classical training condition based on psychomotor lessons not 
necessarily involving sound localization activities. All children enrolled in the ABBI 
training group performed weekly training exercises with a trained rehabilitator for 
45 min (9 h over 12 weeks) and weekly training sessions with a relative at home for 
5 h (60 h over 12 weeks) for a total training period of 69 h. All training exercises 
were developed to train children’ ability to recognize and localize sounds in space 
according to different levels of difficulty: (a) recognize and localize simple sound 
movements, such as a straight motion flow performed along the horizontal or sagit-
tal planes in the front peri-personal space (first level); (b) recognize and localize 
complex sound movements, such as a motion flow performed randomly in space 
in the front peri-personal space, e.g., composite geometrical and nongeometrical 
figures (second level); (c) recognize and localize simple and complex sound 
movements in the back peri-personal space (third level); (d) recognize and localize 
simple and complex sound movements in the front and back in the extra-personal 
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space (fourth level). The comparison of overall spatial performance before and after 
the training with a dedicated assessment battery indicated that the ABBI device is 
effective in improving spatial skills in an intuitive manner (see Table 1 for a sum-
mary of results), confirming that in the case of blindness perceptual development 
can be enhanced with naturally associated auditory feedbacks to body movements 
[148]. Moreover, the validation of the ABBI device demonstrated that the early 
introduction of a tailored audio-motor training could potentially prevent spatial 
developmental delays in visually impaired children [149].

5. Conclusions

Visual experience is deemed to be fundamental for the acquisition of spatial com-
petence; indeed, visually impaired children tend to manifest impairments in spatial 
and locomotor skills, causing a general developmental delay. The hearing sense can 
be boosted since an early age to foster compensatory mechanisms for the develop-
ment of spatial perception, principally because compared to touch it can provide 
distal information [150]. There is evidence that multisensory training based on the 
action-perception link can improve spatial abilities in visually impaired children and 
prevent the risk of developmental delays and social exclusion [148, 149, 151].
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