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Chapter

Nanoparticle Synthesis, 
Applications, and Toxicity
Hamid-Reza Rahimi and Mohsen Doostmohammadi

Abstract

Nowadays production of different nanoparticles (NPs) with plausible biomedical 
benefits is tremendously increasing. NPs are of great interest in drug delivery systems, 
drug formulation, medical diagnostic, and biosensor production. Aside from the 
importance of NPs in medicine, their negative side effects including potential 
cytotoxicity, inflammatory response induction, and drug interruption should be 
carefully considered. Several molecular and physicochemical mechanisms are 
involved in toxicity induction of NPs. Finding the negative effects of NPs on human 
tissues and investigation of their mechanism of action are a way for preventing the 
happening of unpleasant event. Here in this work, we would describe the main way 
of NP production with special attention to green NP production, and then their 
application in medical diagnosis and disease treatment would be explored. Also the 
main toxicity effects of NPs on different tissues would be explored, and the param-
eters affecting the quality of NPs and their corresponding biological properties 
would be highlighted.

Keywords: nanoparticle, biomedical, drug delivery, cytotoxicity, medical diagnostic

1. Introduction

Nanotechnology is referring to the technology of production, characterization, 
and application of materials in nanoscale [1]. After the definition of this term by 
Norio [2], nanoparticle (NP) production and application in several different fields 
gain much attention. The small size and high surface area of NPs are the causes of 
their tunable physicochemical properties such as improved thermal conductivity, 
light absorbance, significant chemical stability, and high catalytic activity [3]. 
Furthermore the surface layer of NPs can be functionalized using chemical and bio-
logical agents like small molecules, surfactants, and polymers for enhancing their 
activity and specificity [4]. It is revealed that each NP, regarding its size, surface 
charge, shape, surface groups, and type of ions, shows unique biological and physi-
cochemical properties [5, 6]. Owing to such diversity, these materials got immense 
biomedical applications such as drug delivery, radionuclide therapy, biosensors, 
cancer therapy, diagnostics, magnetic resonance imaging (MRI), and biological 
molecules purification [7, 8]. Although a wide variety of NPs with diverse ions and 
surface modifications are produced and preclinically tested, only a limited number 
of them gain approval for clinical uses. The long-term stability, general cytotoxicity 
and inflammatory response induction, and lack of guideline for relevant biological 
testing are the main reasons for low-approved NPs [6]. Due to the fast development 
of NPs, it is necessary to identify correlation between the physical and chemical 
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attributes of NPs and their corresponding biological effects. For instance, it is 
shown that although the positive charge of NPs enhances the efficacy of gene 
delivery, and imaging, it also enhances the cytotoxicity of corresponding constructs 
[9]. In this chapter we briefly introduce the main way of NP production and their 
applications in biological and medical studies. Also the mechanism of cytotoxicity 
induction and the main ways of detecting this toxicity are explained.

2. NP production methods

2.1 Physicochemical methods

NPs can be produced through two main approaches including top-down 
approach which is the production of NPs by making smaller and smaller structures 
by etching the bulk agents and bottom-up approaches which is the building up 
of NPs from atoms [6]. Physical, chemical, biological, and in some cases hybrid 
technique are the main ways of NP production. The physical methods of NP 
production include methods like laser ablation, high-energy irradiation, spray 
pyrolysis, and ion implantation, and the chemical one includes chemical reduction 
technique, sonochemical method, solgel process, microemulsion method, and 
electrochemistry. The biological method which is also called green NP biosynthesis 
involves application of plants extracts, microorganisms, enzymes, and even some 
agricultural wastes for NP production. Although the physical and chemical meth-
ods resulted in bulk amount of NPs a few times, application of chemical agents 
during the NP production in coordination with production of environmentally 
dangerous compounds simultaneously with NP production limited their applica-
tions [10]. For instance, thermolysis which is a chemical method for dissociation of 
organometallic precursors is performed at high temperatures by using organic sol-
vents. Also in some cases, surfactant is added to the reaction medium for reducing 
coalescence of particles [11]. Chemical reduction technique is an adopted chemical 
method which used a wide range of reducing agents such as sodium borohydride, 
hydroxylamine, and N,N-dimethylformamide for production of zerovalent ions. 
Wave-assisted chemical method used ultrasonic waves in coordination with sur-
factant or reducing agent for production of NPs. The formation of micro cavities 
with high temperatures upon ultrasonic induction can start chemical reduction of 
substrates. The physical NP production methods are mainly energy intensive and 
need special devices. For instance, milling process is a way by which metallic mic-
roparticles are crush using high-energy ball mills. The gas-phase process or aerosol 
process which is divided into four main types (including flame reactor, plasma 
reactor, laser reactor and hot wall reactor, and chemical gas-phase deposition) is a 
particular way for the production of NPs like fullerenes and carbon nanotubes. All 
types of these methods need special devices and are mainly high energy consum-
ing. NP production by wet chemical synthesis takes place at low temperature and 
is one of the most employed methods for NP production. Limitations in increasing 
batch reactor because of limited mixing and low heat transfer are mentioned as the 
main disadvantage of wet chemical synthesis method. The main advantages and 
disadvantages of NP production by physicochemical methods are summarized in 
Table 1.

2.2 Green NP production methods

Green technology using biological systems like plants, microorganisms, and 
enzymes is rising fast as an alternative method for conventional chemical and 
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physical. In contrast to physiochemical methods which mainly lead to environ-
mental toxicity, the biological NP production methods are known as eco-friendly 
and nontoxic protocols [16]. The biologically produced NPs’ special features 
including high catalytic activity, low toxicity contaminations, high stability, and 
plausible biocompatibility and biodegradability make them distinctive from 
NPs produced from other methods. The microorganism’s related NP produc-
tions are classified into intracellular and extracellular synthesis methods [17]. 
In an intracellular way, ions of interest are transported into the microbial cell 
and then reduced in the presence of enzymatic processes, while the metal ions 
are entrapped and reduced at microorganism’s surface in an extracellular way 
[18]. Microbial NP production regarding the ability of the majority of bacteria 
and fungi in tolerating ambient conditions of varying temperatures, pH, salt 
concentrations, and pressures makes this approach a safe, cost-effective, and 
environmental method. Several microbial species have been isolated from differ-
ent environments and used for production of various NPs. Compared to microbial 
production method, plant NP production is more desirable because it does not 
need any special and multistep processes, it has faster production rate, and it has 
easy scaling up procedure and because of its cost-effectiveness [19]. Investigations 
have revealed that metals bioaccumulated in plants which sometimes are called 
phytomining are mainly in the form of NPs. For instance, high level of silver NP 
accumulation in Brassica juncea and Medicago sativa [20], gold NP production in M. 
sativa [21], and copper NP accumulation in Iris pseudacorus [22] has been reported. 
This type of NP production has several disadvantages including heterologous size 
and morphology of NPs, difficult extraction and isolation procedure, and low 
production yield [21]. The alternative approach is in vitro production method 
which is based on reduction of ions using plant extracts. This method is more 
controllable through making change in plant extract and ion concentration, time 
of reaction, temperature, and pH of reaction medium. The production rate of this 
method is much faster and easier than in vivo method [23, 24]. For example, the 

Method Advantages Disadvantages Ref.

Chemical vapor deposition and 

chemical vapor condensation 

(CVD and CVC)

• High pure NPs production • High temperature of 

procedure (above 300°C)

• Uses of chemical agents

[12]

Gas condensation • Production of ultrafine 

nanocrystalline metals and 

alloys

• Need for special devices

• Extremely slow

[13]

Laser ablation • High-purity NP 

production

• Need special devices

• Difficult to control size, 

agglomeration, and 

crystal structures

[14]

Solgel • Simple method

• Production of large range 

of materials

• Uses low temperature

• Using chemical agents

• Undesirable agents 

production

• The cost of materials may 

be high

[15]

Chemical reduction • Cost-effective

• Good production rate

• Application of toxic 

agents

• Hazardous by product 

formation

[11]

Table 1. 
The main physicochemical methods of NP production and their corresponding advantages and disadvantages.
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extract of Tectona grandis seeds was used for reduction of AgNO3 to 10–30 nm Ag 
NPs with significant antibacterial properties [25], whereas Au NPs with an average 
size of about 3 nm have been synthesized using leaf extract of Ziziphus zizyphus 
[26]. Various plant extracts have been used for production of NPs from different 
ions with diverse sizes and shapes [27]. Table 2 summarizes some examples of NP 
production through a biological way.

Biological entity Type 

of 

NPs

Size (nm) and 

shape

Special characteristics Ref.

Bacteria and fungi

Delftia sp. SFG Bi Sphere/40–120 Antibiofilm activity against P. aeruginosa [28]

Escherichia coli CdS Spherical/2–5 [29]

Botryococcus braunii Cu, 

Ag

Sphere/10–100 Antibacterial and antifungal effects 

against Pseudomonas aeruginosa (MTCC 

441), Escherichia coli (MTCC 442), 

Klebsiella pneumoniae (MTCC 109) 

and Staphylococcus aureus (MTCC 96), 

Fusarium oxysporum

[30]

Yeast strain MKY3 Ag Hexagonal/2–5 [31]

Fusarium oxysporum Ag 25–50 [32]

Bacillus mojavensis Ag 105 High antibacterial activity against 

multidrug resistant pathogens

[33]

Aspergillus fumigatus 

BTCB10

Ag 41 Antibacterial and cytotoxic effects [34]

Plants

Apple extract Ag 22–30 Great antibacterial effects against 

Geobacillus stearothermophilus, 

Staphylococcus aureus, Pseudomonas 

aeruginosa, and Klebsiella pneumoniae

[35]

Lavandula vera Zn 60–80 Valuable antibacterial and anti-biofilm 

activity

[36, 

37]

Psidium guajava Se Spherical/8–20 Antibacterial effects [38]

Cassia alata ZnO 60–80 Antibacterial effect against Escherichia 

coli

[39]

Gnidia glauca 

and Plumbago 

zeylanica

Cu Spherical/1–5 Good antibacterial effects [40]

Andrographis 

paniculata

Ag 54 Good antifungal activity [41]

Cassia fistula Au 55–98 Hypoglycemia treatment [42]

Enzyme and other biological agents

Melanin Cu Spherical/66 Good antibacterial activity against E. 

coli and L. monocytogenes

[43]

Horseradish 

peroxidase

Au 10 Detection of low concentrations of 

phenylhydrazine

[44]

Macerating enzymes Ag Hexagonal/38 High antibacterial effects [45]

Table 2. 
Some examples of biologically produced NPs and their corresponding special characteristics.
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3. NP biomedical applications

With respect to special properties of NPs discussed before, they have various 
applications. Here we investigate some of these applications with special look at 
their uses in biomedical fields.

3.1 Drug delivery

NPs are of great interest for being used as a device for site-specific drug delivery 
with optimum dosage drug release. Current NP-based drug delivery approaches 
focused mainly on enhancing drug shelf life though improving drug uptake effi-
ciency [46]. NP-based drug carriers are able to cross the blood-brain barrier and 
tight junctions of the skin epithelial tissue [47]. Also they improve hydrophobic 
molecule solubility and increase stability of biological therapeutic agents.

NPs enabled us to deliver drugs by various routes including nasal mucosa and 
oral administration, aerosol method, and topical vaccination. The aerosol technol-
ogy is used for respiratory disorder drug delivery. Target drug delivery approaches 
using magnetic NPs are widely being used for cancer therapy, gene therapy, MRI, 
and cell sorting [48, 49]. For instance, Fe3O4, γ-Fe2O3, and super magnetic iron 
oxide NPs (SPIONs) are the main NPs used for site-specific drug delivery. The sur-
face properties and particular shape of fullerenes and carbon nanotubes make them 
attractive for drug delivery. These particles are such small that can pass through cell 
membrane and deliver agents like DNA and protein into the cells [50, 51].

3.2 Antibacterial agent

The prevalence of antibiotic-resistant bacteria species becomes a threat for 
human health. NPs with significant antibacterial properties and no bacterial 
resistance are the best alternative for common antibiotics [52]. Ag NPs are the 
leading NP-based antibacterial agents with significant bactericidal effects on both 
Gram-negative and Gram-positive bacteria [53]. Every day various NPs with dif-
ferent physicochemical properties and bactericidal activities have been developed, 
and their mechanism of action and potential side effects are under investigations. 
Also application of common antibiotics such as ampicillin, chloramphenicol, and 
kanamycin in the presence of NPs demonstrated the positive effects of this com-
bination. Previous studies showed that NPs can be used as a vehicle for antibiotic 
delivery. The attachment of NPs to the bacterial surface and induction of damages 
are reported as the main mechanism bacterial death with NPs [54, 55]. Interaction 
of NPs with bacterial cell membrane and disruption of its normal function are the 
most common way of NP bacterial killing. NPs are also able to hindrance bacterial 
biofilm formation. Furthermore, NPs are able to produce different types of ROS 
species. For example, Mg NPs are able to produce O2−, and ZnO NPs produce H2O2 
and OH. These ROS species interact with bacterial cells and cause acute stress reac-
tions and finally lead to acute microbial death [56, 57].

3.3 Biosensor

The optical and electronic properties of NPs make them suitable for biosensor 
application. The size, type of ion, and shape of NPs are critical parameters affect-
ing SPR peaks and line widths of sensor. The noble metals like Au, Ag, and Pt 
NPs showed special physicochemical features which make them the most popular 
components of NP-based biosensors [58]. NPs have different roles in any types 
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of biosensors. For instance, electrochemical biosensor is performed by fixing the 
potential at a suitable value and determining the current changes versus time. The 
role of NPs in this type of biosensor is to improve sensitivity and signal detection 
[59]. In optical biosensors, the free electron oscillation in conduction bands of some 
metals (Ag, Au, Cu) interacts with light photons and produces a polariton. Size 
tuning of plasmonic metals is a way for enhancing surface plasmon resonance and 
making the device suitable for biomedical applications. Using NPs leads to reach-
ing to highest detection sensitivity. Au NPs because of their easy functionalization 
and showing different colors based on their size and shape are good choices for 
colorimetric biosensor, plasmonic sensing, immune sensors, and electrochemistry 
[60]. The Au NPs showed unique stability compared to other metals when used 
for bio-conjugation production and have valuable sensitive plasmon change which 
lead to their wide use in classic immunoassays. The stronger Raman and fluores-
cence enhancement of Ag NPs than Au NPs resulted to their broad uses in optical 
applications [61]. Also they can easily be oxidized and be used in electrochemical 
sensors. Ag NPs with ability to detect proteins have been used for cancer detection. 
Furthermore they were also used for detecting glucose, DNA, dopamine, ascorbic 
acid, and several other biological molecules. Magnetic NPs are used in sensors 
through three main approaches including pre-concentration of analyte, magnetic 
tags, and integration into transducer materials [62, 63].

3.4 Diagnostic agent

The special features of NPs such as fluorescence properties, optical scattering 
and electromagnetic field enhancement, and even transferring light energy to 
heat resulted in a wide application of these compounds in medical diagnostic field. 
Furthermore, NPs are excellent carriers for delivery of active biomedical agents. 
Biomedical imaging is one of the useful tools for human disease diagnosis. The NPs 
with special optical, magnetic, and radioactive properties can enhance the quality 
of imaging. It is possible to functionalize NPs with multiple modals and by this 
way minimize the interface between each modality and provide multimodal agent 
for better imaging [64]. The optical nano-probes can be designed for being used 
in linear optical imaging with high-emission quantum energy yield and expanded 
optical capacity. In the case of fluorescent imaging, the degradation of organic dyes 
(photo bleaching) and metal complexes under light exposure is alleviated with 
fluorophore-doped silica NPS. These NPs have been used for untargeted imaging of 
human epithelial cells of the cervix and targeted imaging of cells A549, HeLa, and 
HepG2 [65, 66]. Phosphorescence imaging using NPs produced images with lower 
background autofluorescence and scattered excitation light in the spectral range. 
Magnetic resonance imaging (MRI) used contrast agents for detection of small 
tumor and lesions in a normal tissue. The NPs with magnetic functionality are used 
in MRI, and the ones with larger magnetic moment are preferred [67].

3.5 Catalytic agent

NPs have been developed for various catalytic applications. The NP catalytic 
reactions have several advantages including low reaction temperature, light trans-
parency, and easily immobilization on solid supports, for instance, the catalytic 
activity of Au NPs in degrading methylene blue demonstrated by Khan et al. [68]. 
Also the effect of geometrical parameters of supported Au NPs on its carbon 
monoxide oxidation has been evaluated. The NPs with an average diameter of 
2 nm and height of six atomic monolayers showed optimum catalytic activity [69]. 
The Au NPs on amorphous silica support produced by Mukherjee et al. were able 
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to catalyze hydrogenation of cyclohexene [70]. The Ag NPs produced by lychee 
(L. chinensis) extract showed significant photocatalytic activity even after three 
times of reusing [71].

3.6 Wound healing activity

NPs are a suitable wound dressing agent because of their valuable antibacterial, 
anti-inflammatory effects and ability to accelerate skin reepithelialization. Reports 
of healing effects of Ag NPs indicated that these nanoscale materials decrease local 
matrix metalloproteinase and neutrophil apoptosis. Also they showed inhibitory 
effects on pro-inflammatory cytokines interferon gamma and tumor necrosis factor 
alpha [72]. The combination of Ag NPs and collagen results in the formation of 
component with suitable antibacterial activity. Au NPs do not have any antibacte-
rial effects alone, but their combination with biological agents like collagen and 
gelatin improve their biocompatibility and biodegradability and make them suitable 
for wound dressing. Au NP antibacterial properties resulted from their interac-
tion with cell membrane and inhibiting ATP synthase which consequently lead to 
ROS-independent cell death. The reports indicated that the combination of Au NPs, 
gallate, and epigallocatechin has positive effects in healing of mouse skin wounds 
through regulation of angiogenesis and anti-inflammatory effects [73]. Pd, Pt, Se, 
and ZnO are other promising NPs for regenerative medicine and wound healing. 
The PAPLAL® solution (Toyokose Pharmaceuticals, Japan) (Shibuya et al. 2014) 
which is a mixture of Pd NPs and Pt NPs showed protective effects against aging-
related skin pathologies and normalized the gene expression levels of Mmp2, Has2, 
TNF-α, and IL-6 in the skin [74].

Zn NPs have valuable antibacterial effects, and its topical application leads to 
reduction of inflammation and improvement of skin reepithelialization. TiO2 NP 
wound treatment enhances body fluid coagulation by making interaction with 
blood proteins. The formation of adherent crust of a nanocomposite improved heal-
ing of wound and inhibited infection and inflammation [75].

Also nanotechnology can be used for delivery of active agents with antimi-
crobial, anti-inflammatory, and healing effects. Curcumin treatment of diabetic 
wounds leads to significant enhancement in reepithelialization and an increase 
in fibroblast proliferation of injured tissue. Curcumin NPs not only have higher 
lifetime than curcumin but also showed valuable antibacterial effects against 
methicillin-resistant Staphylococcus aureus [76]. With respect to molecular chem-
istry and self-assembly approaches, it is possible to develop peptide NPs with a 
variety of medical applications.

Polymeric NPs using both biological and synthetic polymers are of great inter-
est for the development of wound dressing compound. Polymeric NPs are able to 
stimulate cell proliferation through enhancing angiogenesis and reepithelialization. 
They are able to stimulate the infiltration of inflammatory cells in the initial phase 
of healing. Furthermore, they are suitable carriers for therapeutic agents including 
cytokines, growth factors, and antibiotics which make them suitable for being used 
in treatment of both normal and delayed infectious wounds [77, 78].

4. NP toxicological consideration

Regarding the extensive uses of NPs in foods, paper, drug delivery, biosensor, 
cancer therapy, and imaging, looking for possible toxicity and long-term exposure 
side effects and finding the mechanism underlying the adverse effects of NPs seem 
necessary.
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Any toxicity induction of NPs is strongly related to NP base material, shape, 
size, and functional groups coated at their surface. The smaller NPs have a larger 
specific surface area which in turn leads to higher interaction cell components 
including nucleic acid, proteins, and carbohydrates. Also the smaller NPs can 
penetrate better into cells and interact higher with cells. Surface charge of NPs has 
strong correlation with their interaction with cells and absorbance. It is showed that 
the NPs with higher positive charge have higher cytotoxicity effects. Also NPs with 
positive charge are more toxic than negatively charged NPs [79]. The shape of NPs 
is the other critical parameter which largely affects their cytotoxicity and antipro-
liferative effects. For instance, the amorphous TiO2 NPs produced higher levels of 
oxidative stress and cell surface defects than anatase TiO2 NPs. Also the spherical 
Fe2O3 NPs had lower cytotoxic effects than rod-shaped ones. Also cytotoxicity is 
strongly dependent on the type of cells. For instance, although citrate-capped gold 
NPs were nontoxic to human liver carcinoma and hamster kidney cells, they were 
severely toxic to human carcinoma lung cells [80].

NPs can easily penetrate into the cells and interact with cells’ normal functions. 
ROS formation and consequently oxidative stress induction are the common side 
effects of metal NPs. The produced ROS disrupt normal cell function through 
attacking essential biological molecules including DNA, enzymes, and lipids. 
Peroxidation of membrane lipids; enhancing calcium entrance; release of calcium 
from intracellular stores, protein kinase C, and mitogen-activated protein kinase 
activation; and DNA damages are some of the main changes that lead to cell death 
after interaction with NPs [81, 82]. Furthermore the risk of early apoptosis upon 
exposure to some NPs such as ZnO and TiO2 has been demonstrated. Also CuO, 
NiO, TiO2, Fe3O4, ZnO, and Al2O3 NPs can arrest cell cycle and induce apoptosis. It 
is demonstrated that the phase of cell arrest depends on the type of cell and NPs. 
G2/M phase arrest is the most common type of cell arrest induced by metallic NPs. 
The induction of P53 pathway in NCM460 cells and cyclin-dependent kinase 1 
downregulation in HaCaT cells after exposure to ZnO and cyclin B1 downregulation 
in A549 cells by TiO2 have been reported as the main causes of cell proliferation 
disruption [83, 84]. Many researches have been done on different cell lines and 
animal models for finding the mechanism of NP toxicity and physiological changes. 
The high absorption of gold NPs and their aggregation inside cells are probably the 
main cause of gold NP toxicity.

Argyria is a condition of the skin and other organs’ blue-gray discoloration as 
a result of long-time exposure to high levels of Ag NPs. Irritation, stomach pain, 
allergic reactions, and inflammation are reported as the main side effects of body 
exposure to high levels of Ag NPs [85]. TiO2 and ZnO NPs are widely being used in 
cream and lotions as sunscreen or materials for water- or stain-repellent proper-
ties. The cytotoxicity induction of TiO2 NPs through increasing reactive oxygen 
species and lactate dehydrogenase has been demonstrated [86]. It revealed that UV 
and visible light irradiation enhanced ZnO NP cytotoxicity power [87]. Also the 
Zn NPs were produced by microwave-assisted method, and its in vivo cytotoxicity 
and levels of distribution in different tissues have been evaluated. According to the 
obtained results, the produced Zn NPs were classified as nontoxic agents with high-
est distribution in the testis, liver, and brain [37].

Several assays have been developed for the determination of NP toxicity both 
in vitro and in vivo. Proliferation assay which measures the active cell metabolism 
is the most popular method for determining the antiproliferative potency of NPs. 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), XTT, 
thymidine incorporation, alamar blue, and clonogenic assay are the most popular 
methods for determining cell proliferation rate [88, 89]. DNA damage and apop-
tosis induction of NPs which are mainly due to generation of free radicals can be 
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determined by methods like annexin V, comet assay, DNA laddering, and TdT-
mediated dUTP-biotin nick end labeling (TUNEL) [90, 91]. NPs are able to interact 
with cell membrane and lead to cell integrity destruction and cell death. This 
phenomenon which is known as cell necrosis is mainly measured by neutral red and 
trypan blue exclusion assays [92, 93]. The in vivo assays including biochemical tests, 
histopathological analysis, hematology, and NP bio-distribution are also used for 
finding the effect of NPs on normal function of cells and tissues [94].

5. Conclusion

NPs are becoming the spreadable part of medicine, and their uses are increas-
ing every day. They exhibited promising biomedical uses regarding their special 
redox potentials, small sizes, high surface area, optical scattering, and fluorescence. 
Due to special biological effects of these compounds including significantly high 
antibacterial and antiproliferative effects against a wide range cells, their production 
and surface modification are increasing for reaching more effective agents. Besides 
they are able to be used as delivery devices for dispensing drugs and biological 
agents to specific sites. Owing to the advances in generation of multifunctional NPs, 
application of NP-based platforms is significantly increasing. While all NPs showed 
some degree of success in laboratory tests and some of them are now on the market, 
considering their potent environmental and biological side effects is necessary. 
Although several researches demonstrated the toxicity of different NPs, the cause 
of toxicity is mainly unknown. Any NP has its special toxicological characteristics, 
and there is not a comprehensive method for calculation or grading different NP 
toxicity. Production of NPs through methods with lowest dangerous side products, 
optimizing the NP production protocols, and doing both in vitro and in vivo tests of 
toxicity are the main steps toward production of NPs with lowest negative effects on 
the environment and human health. Short- and long-term toxicities of NPs and their 
pharmacokinetic and pharmacodynamic tests should be evaluated for FDA approval.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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