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Abstract

The fungal phytopathogen in Fusarium species can cause Fusarium head blight of 
wheat, barley, oats, and other small cereal grain crops worldwide. Most importantly, 
these fungi can produce different kinds of mycoxins, and they are harmful to humans 
and animal health. FAO reported that approximately 25% of the world’s grains were 
contaminated by mycotoxins annually. This chapter will focus on several topics as 
below: (1) composition of Fusarium graminearum species complex; (2) genotype 
determination of Fusarium graminearum species complex strains from different hosts 
and their population structure changes; (3) genetic approaches to genotype determi-
nation in type B-trichothecene producing Fusaria fungi; and (4) some newly identi-
fied trichothecene mycotoxins, their toxicity, and distribution of the producers.

Keywords: Fusarium graminearum species complex, trichothecene, Fusarium 
mycotoxin, trichothecene genotype

1. Introduction

The fungal phytopathogen in Fusarium graminearum species complex 
(FGSC) are the primary etiological agent of Fusarium head blight (FHB) of 
wheat, barley, oats, and other small cereal grain crops worldwide. Besides, the 
Gibberella ear rot (GER) caused by FGSC and the related species F. verticillioides 
is one of the most devastating diseases on maize. FHB and GER are economically 
devastating plant disease that greatly limits grain yield and quality. Warm and 
humid weather conditions at the flowering stage are conducive to disease devel-
opment. During the 1990s, economic losses in cereals (wheat and barley) caused 
by Fusarium were estimated at close to US $3 billion (US $2.5 billion in wheat and 
US $400 million in barley) and US $520 million (US $220 million in wheat and 
US $300 million in barley) in the United States and Canada, respectively [1]. It 
was reported that due to the changes in climatic conditions and in agricultural 
practices, outbreaks of FHB have occurred more frequent and serious in China. 
From 2008 to 2015, serious yield loss of wheat caused by FHB was occurred in 
more than 5 million ha each year.

In addition, infested grain is often contaminated with Fusarium toxins which 
are harmful to human and animal health and pose a serious threat to food or feed 
safety. FHB and GER are among the most destructive and economically important 
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diseases through the world. A survey made by the journal Molecular Plant Pathology 
from the international community, and resulted in the generation of a top 10 fungal 
plant pathogen list with FGSC in fourth place [2].

Up to now, more than 70 Fusarium species have been identified within the 
Fusaria genus. FGSC, F. verticillioides, F. culmorum, F. oxysporum, F. solani,  
F. proliferatum, F. poae, F. equiseti, and F. fujikuroi are the most commonly isolated 
species worldwide on wheat, maize and other plants. The most important thing is 
that, many different kinds of mycotoxins can be produced by these molds, such as 
deoxynivalenol (DON, Figure 1), zearalenone (ZEN, Figure 2), and fumonisin B1 
(FB1, Figure 3) are the most prevalent Fusarium mycotoxins in cereal grains and 
they are very important in food and feed safety. It is clear now that one mold species 
may produce many different kinds of mycotoxins, and the same mycotoxin may be 
produced by several species. For example, FGSC can produce trichothecene and 
zearalenone, while trichothecene can be produced by FGSC, F. culmorum,  
F. poae, and F. equiseti. This chapter mainly focused on the FGSC and summarized 
the genetic methods used for trichothecene genotype determination of the strains.

2. Composition and identification of FGSC strains

Prior to 2000, due to the failure of morphological species recognition to accurately 
assess species limits for the FGSC, the species complex were considered a single 

Figure 2. 
Chemical structure of Zearalenone (ZEN).

Figure 3. 
Chemical structure of Fumonisin B1 (FB1).

Figure 1. 
Chemical structure of Deoxynivalenol (DON).
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cosmopolitan species. Applying the genealogical concordance phylogenetic species 
recognition (GCPSR), FGSC was first divided into seven phylogenetic lineages in 2000 
[3]. Phylogenetic analyses of multilocus genotyping (MLGT) of DNA sequences from 
portions of 13 housing keeping genes, combined with GCPSR and molecular marker 
technologies, it revealed that this morphospecies comprises at least 16 biogeographi-
cally structured, phylogenetically distinct species. After that the species designation 
Fusarium graminearum have been sensu stricto in some conditions. Up to now, 15 of the 
16 species have been formally described, including F. acaciae-mearnsii, F. aethiopicum, 
F. asiaticum, F. austroamericanum, F. boothii, F. brasilicum, F. cortaderiae, F. gerlachii,  
F. graminearum sensu stricto, F. louisianense, F. meridionale, F. mesoamericanum, F.  
nepalense, F. ussurianum, F. vorosii, and one additional species was informally recog-
nized based on genealogical exclusivity and conidial morphology on SNA [4].

Proper species identification is critical to research aimed at improving disease 
and mycoxins control programs. However, it is difficult to discriminate the FGSC 
strains accurately by morphological characters. A partial region of the translation 
elongation factor 1 alpha gene (TEF-1α) was widely used for molecular identifica-
tion of Fusarium genus. Some specific databases were created for Fusarium DNA 
sequence alignment analysis. For example, similarity searches of the obtained 
sequences can be performed with the Pairwise DNA alignments network service of 
the Fusarium MLST database (http://www.westerdijkinstitute.nl/fusarium/), Basic 
Local Alignment Search Tool (BLAST) network service of the Fusarium ID data-
base (http://www.fusariumdb.org/index.php), and NCBI nucleotide database.

3. Mycotoxins produced by FGSC

In addition to yield reduction, the FGSC fungi are also of concern because they 
can produce different kinds of mycotoxins, e.g. zearalenone (Figure 2) and trichot-
hecenes (Figures 4 and 5) in infested grains. Mycotoxin contamination can occur in 
both unprocessed and processed grains, representing a risk for human and animal 
health. Deleterious health effects caused by different mycotoxins include nephropa-
thy, infertility, cancer or death [5].

Up to now, more than 200 trichothecenes have been identified [6]. Due to the 
chemical structure diverse, trichothecenes are divided into four types, namely type 
A (have a single bond at carbon atom 8, C-8), e.g. T-2 toxin (Figure 4), type B (have 
a keto at C-8), type C (have an epoxide at C-7, 8), and type D (have a macrocyclic 
ring between C-4 and C-15). All trichothecenes share a common tricyclic 12, 
13-epoxytrichothec-9-ene, and they are derived from the isoprenoid intermediate 
farnesyl pyrophosphate via a series of biochemical reactions in Fusarium.

Among these mycotoxins, type B trichothecenes (Figure 5) are the most com-
mon detected in cereal grains and their related products. They are distinguished 
from type A by the presence of a keto function at C-8, and include deoxynivalenol 
(DON) and its acetylated forms 3-acetyldeoxynivalenol (3-ADON) and 15-acetyl-
deoxynivalenol (15-ADON), as well as nivalenol (NIV) and its acetylated form 
4-acetylnivalenol (4-ANIV). DON is characterized by the absence of a hydroxyl 

Figure 4. 
Chemical structure of T-2 toxin.
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function at C-4, whereas NIV is characterized by the presence of a hydroxyl func-
tion at C-4. 3-ADON and 15-ADON are the acetylated forms of DON at C-3 and 
C-15, respectively. Meanwhile, NIV and 4-ANIV can be differed by the absence 
(NIV) and presence (4-ANIV) of an acetyl function at C-4 (Figure 5).

Type B trichothecenes are of the greatest concern in wheat and barley-growing 
regions worldwide, because they can represent a major threat to food and feed 
safety. These toxins are potent inhibitors of protein synthesis and are responsible 
for neurologic, gastrointestinal, immune function and other disorders. Although 
type B trichothecenes differ only slightly from each other in terms of the pattern 
and position of acetylation or hydroxylation, these changes can greatly affect the 
toxicity and the activity of these chemical compounds [7]. For example, DON is 
associated with feed refusal, vomiting and suppressed immune functions, and 
NIV is more toxic to humans and domestic animals than is DON. Determination 
of these trichothecene variations are important because the toxicity of DON and 
NIV may vary according to the eukaryotic organism affected. Minervini et al. [8] 
found that NIV was approximately four times more toxic than DON to human cells. 
Conversely, DON is 10 to 24 times more toxic to plant cells than NIV [9].

Type B trichothecenes are mainly produced by FGSC. Due to the ability of 
FGSC strains that producing different kinds of trichothecenes, three strain-specific 
trichothecene genotypes (chemotypes) were identified in FGSC: the 3-ADON 
genotype produces DON and 3-ADON, the 15-ADON genotype produces DON 
and 15-ADON, and the NIV genotype produces NIV and its acetylated derivatives 
4-ANIV [10].

4. Mycotoxins act as virulence on certain hosts

Evidence is presented to show that trichothecene toxins act as virulence factors 
on certain hosts. Strains carrying a disrupted trichodiene synthase gene Tri5 do not 
produce trichothecenes or their biosynthetic intermediates [11]. Disruption of the 
trichodiene synthase which catalyzes the first step in trichothecene biosynthesis in 
a 15-ADON producer GZ3639 exhibited reduced virulence on seedlings and heads 
of wheat, but wild-type virulence on seedlings of maize. The results indicated that 
trichothecene production contributes to the virulence of FGSC on wheat [12]. Eudes 
et al. [13] confirmed earlier findings that trichothecenes are a principal determinant 

Figure 5. 
Chemical structures of deoxynivalenol (DON), 3-acetyl deoxynivalenol (3-ADON), 15-acetyl deoxynivalenol 
(15-ADON), nivalenol (NIV), and 4-acetyl nivalenol (4-ANIV).
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of F. graminearum aggressiveness on wheat cultivars. More recently, Maier et al. [14] 
investigated the involvement of trichothecenes in the virulence of the pathogen by 
disrupting the Tri5 gene encoding the first committed enzyme trichodiene synthase 
in FGSC strains with 3-ADON, 15-ADON, and NIV genotype, respectively. The 
results demonstrated that disruption mutants can cause disease symptoms on the 
inoculated spikelet but the symptoms cannot spread into other spikelets on wheat. 
And on maize, mutants derived from the NIV genotype strain caused less disease than 
their progenitor strain, while no significant difference compared to the wild-type 
strains were observed on barley [14]. Trichothecenes are therefore also potent phyto-
toxins and act as virulence factors of pathogenic fungi thus facilitate tissue coloniza-
tion on sensitive host plants, e.g. of DON produced by F. graminearum in wheat [15].

Host preference was identified among the FGSC on wheat, maize, barley, and 
rice in certain regions. Several studies suggested that maize played a significant role 
for the presence of the NIV genotype for FGSC. NIV producers were found to be 
more aggressive toward maize compared to DON producers [16]. This can be due to 
the fact that NIV is a virulence factor useful for maize colonization [14], and there-
fore the plant probably represents an ecological niche for hosting the NIV genotype 
strains. A high proportion of NIV producers of FGSC on maize were observed in 
China by our group based on a collection from 59 districts in 19 provinces through-
out China, and NIV producers preferentially to maize [17].

5. Distribution and population changes of FGSC

The species composition and genotype prevalence of FGSC vary widely in 
different regions, which reflecting the level of risk factors in feed/food safety. 
Investigations on Fusarium species isolated from wheat, barley, and maize crops 
have been reported in the last two decades. Dynamic changes of species composi-
tion and chemotype proportion have been found in different agricultural ecosys-
tems worldwide. Prior to 2000, strains from the United States and Canada were 
almost exclusively 15-ADON producers, while they have been increasingly replaced 
by the 3-ADON producers in some major wheat-growing regions, e.g. the frequency 
of the 3-ADON genotype in western Canada increased more than 14-fold between 
1998 and 2004 [18]. Also Schmale et al. [19] analyzed the trichothecene genotypes 
of Gibberella zeae collected from winter wheat fields in the eastern parts of the 
US. They revealed an increasing gradient in 3-ADON distribution from south to 
north and closer to Canada. In some regions, the  
F. graminearum 15-ADON chemotype is being replaced by the 3-ADON chemotype. 
The epidemiology data indicated that 3-ADON chemotype dominates in northern 
Europe, while 15-ADON chemotype dominates in North America, central Europe 
and southern Russia and some parts of Asia.

The composition of FGSC population appears to be host and location dependent. 
The results by Zhang et al. [20] and Shen et al. [21] indicated that F. asiaticum was the 
predominated in wheat. Among the 97 FGSC assayed from rice (30 strains), maize  
(33 strains), and wheat (34 strains) by Qiu and Shi [22], 73 strains were identified as 
 F. asiaticum and 63 of them were collected from rice or wheat. The remaining 24 
strains belonged to F. graminearum sensu stricto and 23 of them were isolated from 
maize, only 1 strain was collected from wheat. Similarly, FGSC strains were isolated 
from GER samples in South Korea with F. graminearum sensu stricto to be the dominant 
species which account for 75% of the FGSC [23], while F. asiaticum was the dominant 
species (78.5%) on Korean rice and followed by F. graminearum sensu stricto [24].

The distribution of FGSC may correlate with annual temperature. Qu et al. [25] 
reported that temperature affected the geographic distribution of F. graminearum 
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sensu stricto and F. asiaticum on wheat spikes in China. A comprehensive study on 
FGSC from wheat was conducted by Zhang et al. [20]. They found that the geo-
graphic distribution of FGSC associated with the annual average temperature. The 
cooler temperatures (annual average temperature ≤15°C) appear to favor  
F. graminearum sensu stricto, while the warmer regions (annual average temperature 
≥15°C) appear to favor F. asiaticum. A hypothesis was made that the distribution of 
FGSC members are climate dependent [20].

F. graminearum sensu stricto with the 15-ADON genotype and F. asiaticum with 
either the NIV or the 3-ADON genotype were the dominant causal agents on wheat, 
and the two species dominated the northern and southern regions of China, respec-
tively, which is consistent with earlier studies [20, 26, 27].

However, more recently the study by Zhang et al. [28] indicated that tempera-
ture may not be the only factor in the distribution of FGSC and that other, yet 
unknown factors affected their distribution. To explain genotype distribution in 
different geographic areas, hypotheses based on grain seed shipment, international 
trade, long-distance spore transportation, and environmental favorable conditions 
were proposed.

6. FGSC fitness vary

Phylogenetic analyses of trichothecene gene cluster demonstrated that genotype 
polymorphism is trans-specific and have been maintained by balancing selection on 
the ancestral pathogens, and genotype differences may have a significant impact on 
pathogen fitness [29].

The FGSC strains with different genotype showed different fitness to the eco-
logical environment, such as the hosts, temperature, rotation, and so on. 3-ADON 
producer was more aggressive than 15-ADON population in susceptible wheat, 
and also the 3-ADON isolates exhibit a higher DON production than the 15-ADON 
isolates. Similar conclusions were made by Zhang et al. [28] that F. asiaticum strains 
with 3-ADON chemotype revealed significant advantages over the strains that 
produce NIV in pathogenicity, growth rate, trichothecene accumulation, etc. Their 
data also indicated that the growth of rice may be a key factor for the presence of 
F. asiaticum [28]. Liu et al. [30] compared the fitness of three chemotype Fusarium 
strains, and found that 15ADON producers had the advantage in perithecia forma-
tion and ascospore release, whereas more DON were produced by the 3-ADON 
chemotypes. Qiu and Shi [22] estimated the effect of rice or maize as former crops 
on mycotoxin accumulation in wheat grains, and they concluded that rice-wheat 
rotation favors DON accumulation.

Changes in DON chemotypes distribution were reported for FGSC from 
Canada, USA, and Northern Europe. Recently, Nicolli et al. [31] assessed a range of 
fitness-related traits (perithecia formation, mycelial growth, sporulation and ger-
mination, pathogenicity, and sensitivity to tebuconazole) with 30 strains represen-
tatives of 3ADON-, 15ADON-, and NIV-producers. The pathogenicity assay results 
indicated that strains with the DON chemotypes were generally more aggressive 
than the NIV ones [31].

Phenotypic analyses indicated that F. asiaticum with a 3-ADON genotype 
revealed significant advantages over F. asiaticum that produce NIV in pathogenic-
ity, growth rate, and trichothecene mycotoxin accumulation. It shall be noted that 
a biased gene flow from 3-ADON to NIV producers was identified in F. asiaticum 
from wheat in China [28].

FGSC from wheat-maize rotation regions on wheat spikes and maize stalks 
in Henan province, China, was determined by Hao et al. [32], and significant 
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differences were found in the frequencies of F. graminearum sensu stricto and F. asi-
aticum species within the hosts with F. graminearum sensu stricto to be the dominant. 
Genotype analysis revealed that 15-ADON producers represented 92.7 and 98.5% of 
isolates from wheat and maize, respectively. The three genotypes may affect species 
distribution or population ecology because these mycotoxins are differing in toxic-
ity and bioactivity [7, 29, 33].

7. Genetic genotype determination of FGSC

Traditionally, chemotyping of FGSC strains has been carried out using gas 
chromatography/mass spectroscopy. This method can be time-consuming and 
expensive. The genome sequences of several FGSC strains have been published. The 
trichothecene core gene cluster nucleotide sequences of many strains representatives 
3-ADON, 15-ADON, and NIV genotypes have also been deposited in the GenBank. 
The availability of this information makes it possible to reveal the structural features 
and allowed selection of several primer sets used successfully in PCR experiments for 
the molecular characterization of the various chemotypes. Molecular genetic assays 
allow for high throughput screening of large numbers of field isolates.

Lee et al. [34] sequenced the gene cluster for trichothecene biosynthesis from a 
15-ADON producer (strain H-11) and a NIV producer (strain 88-1), and sequence 
polymorphisms within the Tri7 open reading frame was found between the two 
strains. Alignment analysis suggesting that the Tri7 gene of H-11 carried several 
mutations and an insertion compared to the Tri7 gene from 88-1, and based on the 
sequence difference a PCR-based diagnostic method for differentiating DON and 
NIV producers by polyacrylamide gel electrophoresis was developed.

Lee et al. [35] subsequently sequenced the Tri13 homolog from DON (strain 
H-11) and NIV producers (strain 88-1) and found that the gene differs drastically 
between the two producers, suggesting that the Tri13 gene could be used for genetic 
genotype distinction for DON and NIV producers [35, 36]. They further confirmed 
the roles of the Tri7 and Tri13 genes in trichothecene production, and the results sug-
gested that both the Tri7 and Tri13 genes are nonfunctional in DON producers [35].

The PCR assays to Tri7 and Tri13 genes developed by Lee et al. [34, 35] allowed 
clear differentiation between DON and NIV genotypes. However, they could not be 
used to further classify the DON-producing isolates to 3-ADON or 15-ADON pro-
ducer. Ward et al. [29] examined a 19-kb region of the trichothecene gene cluster 
that sequenced in 39 strains representing 3-ADON, 15-ADON, and NIV genotypes. 
They found that Tri-cluster haplotypes group according to genotype rather than by 
species indicated that 3-ADON, 15-ADON, and NIV genotypes each have a single 
evolutionary origin. Reciprocally monophyletic groups, corresponding to each of 
3-ADON, 15-ADON, and NIV genotypes, were strongly supported in Tri3, Tri11, 
and Tri12 genes trees. Two sets of primers specific to the individual genotypes were 
designed from Tri3 and Tri12 genes. The genotype-specific PCR tests developed 
by Ward et al. [29] provide a rapid and direct genetic method for distinguishing 
among 3-ADON, 15-ADON, and NIV producer, this is the first report differentiated 
these three genotype strains by a PCR method.

The work by Lee et al. [34, 35] and Brown et al. [37] indicated that the genes 
Tri13 and Tri7 from trichothecene biosynthetic cluster are responsible for conver-
sion of DON to NIV (Tri13 gene) and the Tri7 gene product modifies NIV by 
acetylation of C-4 atom hydroxyl to produce 4-ANIV. Based on these results sets of 
positive-negative PCR assays to Tri7 and Tri13 genes for trichothecene determina-
tion of FGSC were developed by Chandler et al. [38], and the assays can accurately 
indicate a DON or NIV genotype in FGSC, F. culmorum and F. cerealis. The assays 
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were successfully used to screen isolates from different countries and the genotype-
specific assays were able to detect and characterize a wider range of species and 
haplotypes than previous methods.

By comparing the published sequences for Tri13 gene from known DON- and 
NIV- producers, Waalwijk et al. [39] designed a primer pair to discriminate the two 
genotypes which generated a 234 bp fragment in DON-producers and a fragment of 
415 bp in NIV-producers. The Tri13 primer pair was capable and robust to deter-
mine the genotype of strains from F. culmorum.

Based on information reported and deposited by Ward et al. [29], three primer 
sets were designed to the Tri3 gene by Jennings et al. [40] to allow further dif-
ferentiation of the DON genotype into either 3-ADON or 15-ADON. Each isolate 
produces a PCR product with only one of these primer sets but not the other two 
from F. culmorum and FGSC strains [40, 41].

Li et al. [42] found that the intergenic sequences between Tri5 and Tri6 genes 
appear to be mycotoxin genotype-specific, and based on the sequence length 
polymorphism a generic PCR assay was developed to detect a 300 bp fragment of 
DON-genotype strains and a 360 bp fragment of NIV-genotypes from FGSC.

Based on the sequences of FGSC described by Lee et al. [34] and Ward et al. 
[29], a series of PCR assays have been designed to Tri3 and Tri7 by Quarta et al. [43], 
in order to permit specific detection of 3-ADON, 15-ADON, and NIV genotypes, 
respectively. These primers were subjected to a multiplex PCR assay for the identifi-
cation of the different genotypes of Fusarium strains combined with the primer pair 
derived from the Tri5 gene by Bakan et al. [44]. The multiplex PCR was validated on 
FGSC, F. cerealis, F. culmorum strains from different European countries, and suc-
cessfully used to identify the genotype of the Fusarium strain contaminating wheat 
kernels [43, 45].

The possibility to distinguish by a singleplex PCR 3-ADON, 15-ADON, and NIV 
genotypes was not yet resolved until very recently. Wang et al. [46] developed a 
Tri13 based PCR assay and successfully identified the 3-ADON, 15-ADON, and NIV 
genotypes in FGSC from Asia, Europe, and America. Using the primer pair, specific 
amplification products of 644, 583, and 859 bp were obtained from isolates produc-
ing 3-ADON, 15-ADON, and NIV, respectively. All three types of PCR fragments had 
different molecular sizes with a smallest difference of 61 bp can be directly differen-
tiated on an agarose gel. The method should be more reliable than other PCR-based 
assays that show the absence or presence of a PCR fragment since these assays may 
generate false-negative results. This is a rapid, reliable and cost-effective method for 
the determination of 3-ADON, 15-ADON, and NIV genotype strains in FGSC.

Recently Suzuki et al. [47] reported a multiplex PCR assay for simultaneous 
identification of the species and trichothecene genotypes for F. graminearum sensu 
stricto and F. asiaticum based on Tri3 and Tri6 genes. This approach proved success-
ful for Japanese strains [47].

An alternative method based on Tri11 polymorphism was developed by Zhang 
et al. [48] to differentiate 3-ADON, 15-ADON, and NIV genotypes of FGSC strains. 
Similarly, we presented another multiplex assay based on the single nucleotide 
polymorphism of Tri11 gene between strains of different genotype [49]. The assay 
was also validated on plant material.

Recent work by Kulik [50] and Nielsen et al. [51] to detect and quantify FGSC 
genotypes in plants/grains were developed based on TaqMan probe set and SYBR 
green method with Tri12 gene, respectively.

Due to the toxicological differences between DON and NIV, it is important 
to monitor the population and determine the chemotypes of strains present 
in any given geographic region. Mycotoxin producing capability of a certain 
strain could be established both through biochemical and molecular techniques. 
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Target gene Primers Sequences (5′ to 3′) Fragment size (bp) Chemotypes References

Tri3 3CON TGGCAAAGACTGGTTCAC 243 3-ADON Ward et al. [29]

3D3A CGCATTGGCTAACACATG

3CON TGGCAAAGACTGGTTCAC 610 15-ADON

3D15A ACTGACCCAAGCTGCCATC

3CON TGGCAAAGACTGGTTCAC 840 NIV

3NA GTGCACAGAATATACGAGC

Tri303F GATGGCCGCAAGTGGA 586 3-ADON Jennings et al. [40, 41]

Tri303R GCCGGACTGCCCTATTG

Tri315F CTCGCTGAAGTTGGAC
GTAA

864 15-ADON

Tri315R GTCTATGCTCTCAACG
GACAAC

Tri3NivF GGACGTGA(CG)TACT
CTTGGCAA

549 NIV

Tri3NivR CCCAG(AG)GCCTCTA
AGAA(AG)GGB

Tri3F971 CATCATACTCGC
TCTGCTG

708 15-ADON Quarta et al. [43]

Tri3R1679 TT(AG)TAGTTTGCATC
ATT(AG)TAG

Tri3F1325 GCATTGGCTAACACATGA 354 3-ADON

Tri3R1679 TT(AG)TAGTTTGCA
TCATT(AG)TAG

3D15AF AACTGACCCAAGCTG
CCATC

420 15-ADON (F. asiaticum and F. 

graminearum ss)
Suzuki et al. [47]



M
ycotox

in
s an

d
 Food

 S
afety

10

Target gene Primers Sequences (5′ to 3′) Fragment size (bp) Chemotypes References

3D15AR CTTCTGTCCCTTCG
AACGGA

Tri5- Tri6 intergenic ToxP1 GCCGTGGGG(AG)TAA
AAGTCAAA

300 DON Li et al. [42]

region ToxP2 TGACAAGTCCGGTC
GCACTAGCA

360 NIV

Tri6 6A3AF CCAAGACTT(GT)GTT
(AC)CCCGAA

1100 DON (F. asiaticum) Suzuki et al. [47]

6A3AR GCAATCTTTAGAGTG
CCGAC

6G3AF T(AG)TCCCATCCCAT
CAAGGCT

330 DON (F. graminearum ss)

6G3AR AACAAGTGGTTCTT
CGGAGT

6CNF CAAGCAAATGCCC
GTATCCC

660 NIV (F. asiaticum)

6ANR CGCAACAATATCA
ATGGCTGTGCTA

Tri7 GzTri7/f1 GGCTTTACGACTC
CTCAACAATGG

173–327 15-ADON Lee et al. [34]

GzTri7/r1 AGAGCCCTGCGAA
AG(CT)ACTGGTGC

161 NIV

Tri7F TGCGTGGCAATATC
TTCTTCTA

458–535 DON Chandler et al. [38]

Tri7R TGTGGAAGCCGCAGA 436 NIV

Tri7F TGCGTGGCAATAT
CTTCTTCTA

381–445 DON
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Target gene Primers Sequences (5′ to 3′) Fragment size (bp) Chemotypes References

Tri7DON GTGCTAATATTGT
GCTAATATTGTGC

Tri7F TGCGTGGCAATAT
CTTCTTCTA

465 NIV

Tri7NIV GGTTCAAGTAAC
GTTCGACAATAG

MinusTri7F TGGATGAATGAC
TTGAGTTGACA

483 3-ADON

MinusTri7R AAAGCCTTCATT
CACAGCC

Tri7F340 ATCGTGTACAAG
GTTTAC G

625 NIV Quarta et al. [43]

Tri7R965 TTCAAGTAACGT
TCGACAAT

Tri11 3D11 GCAAGTCTGGC
GAGGCC

342 3-ADON Zhang et al. [48]

11R TCAAAGGCCAG
AGCAACCC

15D11 AAGTATGGTCC
AGTTGTCCGTATT

424 15-ADON

11R TCAAAGGCCAG
AGCAACCC

N11 CTTGTCAGGCGG
CACAGTAG

643 NIV

11R TCAAAGGCCAGA
GCAACCC
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Target gene Primers Sequences (5′ to 3′) Fragment size (bp) Chemotypes References

Tri11-CON GACTGCTCATGG
AGACGCTG

334 3-ADON Wang et al. [49]

Tri11-
3AcDON

TCCTCATGCTCG
GTGGACTCG

Tri11-
CON

GACTGCTCATGG
AGACGCTG

279 15-ADON

Tri11-
15AcDON

TGGTCCAGTTG
TCCGTATT

Tri11-
CON

GACTGCTCATG
GAGACGCTG

497 NIV

Tri11-
NIV

GTAGGTTCCAT
TGCTTGTTC

Tri12 12CON CATGAGCATGG
TGATGTC

410 3-ADON Ward et al. [29]

12-3F CTTTGGCAAGC
CCGTGCA

12CON CATGAGCATGG
TGATGTC

670 15-ADON

12-15F TACAGCGGTCG
CAACTTC

12CON CATGAGCATGG
TGATGTC

840 NIV

12NF TCTCCTCGTTG
TATCTGG

Tri13 GzTri13/p1 AATACTA(CA)AAG(CT)
CTAG(GT)ACGACGC

470 DON Kim et al. [36]
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Target gene Primers Sequences (5′ to 3′) Fragment size (bp) Chemotypes References

GzTri13/p2 GTG(AG)T(AG)TCCCA
GGATCTGCGTGTC

760 NIV

Tri13F TACGTGAAACAT
TGTTGGC

234 DON Waalwijk et al. [39]

Tri13R GGTGTCCCAGGA
TCTGCG

415 NIV

Tri13F CATCATGAGACTTGT
(GT)C(AG)AGTTTGGG

282 DON Chandler et al. [38]

Tri13DONR GCTAGATCGATT
GTTGCATTGAG

Tri13NIVF CCAAATCCGAA
AACCGCAG

312 NIV

Tri13R TTGAAAGCTCC
AATGTCGTG

Tri13F CATCATGAGACTTGT
(GT)C(AG)AGTTTGGG

799 DON

Tri13R TTGAAAGCTCC
AATGTCGTG

1075 NIV

Tri13P1 CTC(CG)ACCGCATC
GAAGA(CG)TCTC

583 15-ADON Wang et al. [46]

Tri13P2 GAA(CG)GTCGCA
(AG)GACCTTGTTTC

644 3-ADON

859 NIV

Table 1. 
Primers designed for genetic genotyping of FGSC so far.
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The biochemical approach involves the incubation and extraction of mycotoxins, 
the methods being complicated and time consuming. The molecular techniques are 
based on detection of specific gene by using specific primers. All these molecular 
methods developed for genotype analysis are based on nucleotide diversity of 
trichothecene synthesis genes. Chemotype characterization has been extensively 
used to characterize FGSC for their toxigenic potential [52]. The information about 
the genetic genotyping methods developed so far, such as targeted gene, primer 
name, primer sequence, and amplification fragment sizes are summarized in 
Table 1.

More effective and accuracy genetic methods are needed. We are doing genomic 
sequencing of FGSC strains with different trichothecene genotypes, and we believe 
some new molecular genetic methods will be developed based on the genomic data.

8. Newly identified trichothecene mycotoxins

In addition to the well characterized fungal mycotoxins, plant-derived 
mycotoxin metabolites, masked mycotoxins, have emerged as important co-con-
taminants in cereals [53, 54]. The most commonly detected masked mycotoxin con-
jugates are β-linked glucose-conjugates of trichothecenes, such as DON-3-glucoside 
(Figure 6). The possible hydrolysis of masked mycotoxins back to their toxic 
parents during mammalian digestion raises great concerns. Recently, a new series of 
type-A trichothecene, NX-toxins (Figure 7), produced by FGSC were characterized 
[5]. In vitro translation assays indicated that NX-3 can inhibit protein biosynthesis 
to almost the same extent as DON [5]. Comprehensive work on intestinal hydroly-
sis, absorption, metabolism, and toxicity of newly characterized mycotoxins need 
to be determined (Figure 7).

9. Conclusion

The knowledge about the mycotoxins chemotypes could contribute to a better 
management of fungal infections and breeding of resistance, in order to obtain 
grains of better quality. The results will also contribute to improve our understand-
ing of the ecology and epidemiology of FGSC members, which may be of value for 

Figure 6. 
Chemical structure of deoxynivalenol-3-glucoside (D3G).

Figure 7. 
Chemical structures of NX-2, NX-3, and NX-4.
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improving models for assessing the risk or epidemics and mycotoxin production. 
Genetic genotyping has been proved to be a useful tool for predicting trichothecene 
type produced by FGSC, and future work on the more effective tools for genotype 
determination is needed. The discovery of novel toxic metabolites belonging to 
trichothecenes, such as NX-toxins is also suggesting that the prevalence, distri-
bution, and genetic diversity of FGSC require continuous monitoring. Further 
research on the biosynthesis molecular mechanism of trichothecene, especially the 
novel mycotoxins is needed.
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