
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Antimicrobial Resistance with 
Special Emphasis on Pathogens in 
Agriculture
Nitya Meenakshi Raman, Murugesh Easwaran, Rashmi Kaul, 

Jyotsna Bharti, Khaled Fathy Abdel Motelb and Tanushri Kaul

Abstract

Antibiotics have been used globally to manage the bacterial plant diseases 
irrespective of the expense involved. Although plant pathogenesis by bacteria is 
far lower than fungal counterparts, disrupted monitoring and surveillance for 
drug resistance with respect to human health raise serious concerns. The resistance 
derived by the plant as the host by the antibiotics used for many generations has 
now posed as a problem in phyto-systems. Although we currently lack the molecu-
lar understanding of the pathogens rendering antibiotic resistance to plants, robust 
resistance management strategies are critical to ensure management of critically 
important diseases that specifically target crops of high value and/or global agrarian 
importance. This chapter discusses evolution of plant-pathogenic bacteria, applica-
tion of antibiotics and its repercussions on the microbiome of plant agricultural 
systems, and sustainable crop disease management by genetic engineering.

Keywords: agriculture, bacteria, fruit, genetic engineering, host, molecular biology

1. Introduction

Antibiotic resistance most commonly evolves in bacteria either through muta-
tion of a target site protein, through the acquisition of an antibiotic-resistant gene 
that confers resistance through efflux or inactivation of the antibiotic, or through 
synthesis of a new target protein that is insensitive to the antibiotic [1]. An exten-
sive body of knowledge has been gained from studies of antibiotic resistance in 
human pathogens and in animal agriculture. The ability of bacterial pathogens to 
acquire antibiotic-resistant genes and to assemble them into blocks of transfer-
able DNA encoding multiple antibiotic-resistant genes has resulted in significant 
issues that affect successful treatment interventions targeting some specific human 
infections. The current global antibiotic resistance crisis in bacterial populations 
has been fuelled by basic processes in microbial ecology and population dynamics, 
engendering a rapid evolutionary response to the global deployment of antibiotics 
by humans in the millions of kilograms per year. What was not anticipated when 
antibiotics were discovered and introduced into clinical medicine is that antibiotic-
resistant genes pre-existed in bacterial populations [2–4]. Furthermore, the extent 
to which antibiotic-resistant genes could be transferred between bacteria, and 
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even between phylogenetically distinct bacteria, was not understood 70 years ago 
but is becoming more apparent through a number of elegant studies identifying 
the microbial antibiotic resistome. The collection of all known antibiotic-resistant 
genes in the full-microbial pan-genome is defined as the antibiotic resistome [5].

2. Use of antibiotics in agriculture

Effective management of bacterial plant diseases is difficult and is exacerbated 
by factors such as the large size of bacterial pathogen populations on susceptible 
plant hosts and the few available bactericides. In the absence of durable and robust 
host disease resistance, antibiotics have represented the best option for bacte-
rial disease control in many pathosystems because these materials provide the 
most efficacious means of reducing bacterial population size and limiting disease 
outbreaks. Although many new types of antibiotics were rapidly tested and then 
deployed in animal agriculture starting in the 1950s, antibiotic use for plant disease 
control was tempered by several factors, including lack of efficacy at lower doses, 
phytotoxicity problems at higher doses, and expense compared to other existing 
methods of disease control. Thus, although penicillin, streptomycin, aureomycin, 
chloramphenicol, and oxytetracycline were tested for plant disease control in the 
late 1940s [6, 7], only streptomycin and oxytetracycline were ultimately deployed 
in plant agriculture and only in specific disease pathosystems. Streptomycin is the 
main antibiotic currently in use for plant disease control around the world, target-
ing pathogens such as Erwinia amylovora, which causes fire blight of apple and pear; 
Pseudomonas syringae, which causes flower and fruit infection of apple and pear 
trees; and Xanthomonas campestris, which causes bacterial spot of tomato and pep-
per [8]. Oxytetracycline has been used as the primary antibiotic in specific disease 
control situations, including the control of Xanthomonas arboricola pv. pruni, the 
causal agent of bacterial spot of peach and nectarine [8]. In addition, oxytetra-
cycline has been used as a secondary antibiotic for fire blight management in the 
United States, most prominently in situations in which streptomycin resistance has 
become a problem [9, 10].

The problem of antibiotic resistance is not limited to the Indian subcontinent 
only, but is a global problem. To date, no known method is available to reverse 
antibiotic resistance in bacteria. The discovery and development of the antibiotic 
penicillin during the 1900s gave a certain hope to medical science, but this antibi-
otic soon became ineffective against most of the susceptible bacteria. The antibiotic 
resistance in bacteria is generally a natural phenomenon for adaptation to antimi-
crobial agents. Once bacteria become resistant to some antibiotic, they pass on this 
characteristic to their progeny through horizontal or vertical transfer. The indis-
criminate and irrational use of antibiotics these days has led to the evolution of new 
resistant strains of bacteria that are somewhat more lethal than the parent strain. 
More recently, in 2016, a Section 18 emergency exemption was granted by the US 
Environmental Protection Agency for the use of streptomycin and oxytetracycline 
on citrus trees in Florida for management of citrus Huanglongbing (HLB) disease 
[11–13]. Regarding other antibiotics, gentamicin has been used in Mexico for fire 
blight control and in Chile, Mexico, and Central American countries for vegetable 
disease control, while oxolinic acid (OA) has been used only in Israel for fire blight 
management [14, 15]. Lastly, kasugamycin is used in Japan and other Asian coun-
tries to control the fungal disease rice blast and bacterial seedling diseases of rice 
[16] and has recently been registered for use in the United States and Canada for 
managing fire blight [17]. Concerns regarding the use of antibiotics in plant disease 
control and potential impacts on human health have led to the banning of antibiotic 
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use by the European Union. However, streptomycin is still utilized for fire blight 
management in Austria, Germany, and Switzerland under strict control parameters.

3. Evolution of plant-pathogenic bacteria

3.1 Resistance to streptomycin

The lack of effective bactericide alternatives in several plant disease systems 
has resulted in a decade-long dependence or overdependence on streptomycin. As 
streptomycin has been used the longest, over the largest geographic area, and for 
treatment of the largest variety of crops, streptomycin resistance is relatively wide-
spread among plant-pathogenic bacteria. Although the first streptomycin-resistant 
(SmR) plant-pathogenic bacteria detected were strains of E. amylovora harboring 
a chromosomal resistance mutation, the majority of SmR plant pathogens encode 
the transmissible SmR transposon Tn5393 [8]. Tn5393 is a Tn3-type transposon 
originally isolated from E. amylovora that harbors strAB, a tandem resistance gene 
pair that confers streptomycin resistance through covalent modification of the 
streptomycin molecule [18]. The Tn5393 transposon is composed of genes required 
for the transposition process (tnpA and tnpR), a central site that contains outwardly 
directed promoters for expression of both tnpA and tnpR as well as the strAB SmR 
genes. Expression of the strAB genes from Tn5393 in E. amylovora is driven by a pro-
moter present in the 3 prime end of the insertion sequence IS1133 that is inserted 
directly upstream of the strA gene [19]. Two closely related variants of Tn5393 
have also been found in plant pathogens: Tn5393a, an element that does not contain 
IS1133, has been detected in P. syringae and in a group of E. amylovora strains from 
California exhibiting a moderate level of resistance, and Tn5393b, an element that 
does not contain IS1133 but instead contains an insertion of IS6100 within the tnpR 
gene, has been characterized in X. campestris [19, 20].

There are two other reports of additional genetic mechanisms of streptomycin 
resistance in plant pathogens; these include the occurrence of the small, noncon-
jugative but mobilizable broad-host-range plasmid RSF1010 in some strains of E. 
amylovora isolated in California [21]. This observation carries further significance 
because RSF1010 has been distributed globally among a number of bacterial genera 
and also occurs in some human-pathogenic bacteria [22]. A recent report detailing 
an analysis of streptomycin-resistant X. oryzae subsp. oryzae from China indicated 
that four strains harbored the aadA1 gene associated with class 1 integron sequences 
[23]. This observation is significant because of the importance of integrons in 
both the transfer of antibiotic resistance in human and animal pathogens and the 
accumulation of antibiotic resistance genes within one multiresistance element. To 
date, streptomycin resistance mediated by Tn5393 or the closely related variants has 
been reported in E. amylovora, P. syringae, and X. campestris isolated from North and 
South America and Asia [19, 20, 24–30]. The location of essentially the same genetic 
element in different genera of plant pathogens isolated from distinct crop hosts and 
from different continents is confirmatory evidence of the role of horizontal gene 
transfer (HGT) in the dissemination of antibiotic resistance in these pathosystems.

The source of Tn5393 to the plant pathogens was likely not from the antibiotic 
preparations themselves as a study of 18 available agricultural streptomycin for-
mulations revealed no contamination with the strA SmR gene [31]. Instead, the 
acquisition of Tn5393 by bacterial plant pathogens was likely from commensal 
co-occurring epiphytic bacteria via HGT. For example, Tn5393 was thought to have 
been acquired by E. amylovora on the plasmid pEa34 from Pantoea agglomerans, 
a common orchard epiphyte [18]. The transfer event most likely occurred on the 
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apple flower stigma, a surface where E. amylovora grows to high population densi-
ties and where Pantoea agglomerans can also grow. Pseudomonas syringae and X. 
campestris pv. vesicatoria both have epiphytic phases where the pathogens grow on 
leaf surfaces, providing opportunities for HGT with other epiphytes. It should be 
noted that high-level streptomycin resistance, conferred by a spontaneous mutation 
within the rpsL gene that encodes the ribosomal target protein for streptomycin, 
does occur in some populations of E. amylovora, particularly within populations 
from the western United States as well as in a small number of strains isolated 
in Michigan and New Zealand [32, 33]. The minimal inhibitory concentration 
(MIC) of streptomycin in these highly resistant spontaneous mutants is greater 
than 4096 μg/mL [32]. In contrast, SmR strains of E. amylovora harboring Tn5393 
exhibit MICs of streptomycin ranging from 512 to 1024 μg/mL [32]. Streptomycin 
solutions used for fire blight management are typically applied at 100 μg/mL; thus, 
it is unclear whether the increased level of resistance exhibited by the spontaneous 
mutants provides a survival advantage in streptomycin-treated orchards.

3.2 Resistance to tetracyclin

Tetracycline resistance has been reported in a few plant-pathogenic bacteria, 
including P. syringae [34, 35] and Agrobacterium tumefaciens [36]. Other studies have 
reported on sensitivity; for example, in one study, 138 strains of E. amylovora from 
the Pacific Northwest, USA, were all determined to be sensitive to oxytetracycline 
[37]. Although there are few reports of resistance, multiple tetracycline resistance 
genes homologous to tetA and tetM are present within the genomes of many differ-
ent plant-pathogenic bacteria. Efflux pump proteins that belong to the same protein 
family as TetA have been identified in Ralstonia solanacearum; Erwinia piriflorini-
grans; multiple Xanthomonas species, including Xanthomonas citri, Xanthomonas 
phaseoli, Xanthomonas perforans, and X. campestris; multiple Pseudomonas species, 
including P. syringae, Pseudomonas aeruginosa, and nonpathogenic Pseudomonas 
putida and Pseudomonas fluorescens. However, even though putative tetracycline-
resistant proteins have been annotated in the NCBI database for plant-pathogenic 
bacteria such as Erwinia, Pseudomonas, Xanthomonas, Agrobacterium, and Ralstonia, 
their function in tetracycline resistance remains to be characterized.

3.3 Resistance to oxolinic acid and kasugamycin

There are a few reports documenting resistance to other antibiotics used in plant 
disease management. OA was introduced in 1997 for fire blight management in 
Israel as a replacement for streptomycin, and OA resistance in E. amylovora was first 
detected in 1999 [38] and expanded in range by 2001 [39]. However, populations of 
OA-resistant E. amylovora fluctuated, with OA-resistant strains becoming undetect-
able in orchards where they previously occurred. Laboratory analyses of OA-resistant 
strains suggested that these strains were reduced in fitness compared to OA-sensitive 
strains [40]. Analysis of OA-resistant strains of Burkholderia glumae also showed that 
the strains were reduced in fitness, as these strains could not survive in rice paddy 
fields [41]. Kasugamycin was discovered in Japan and has been used since the 1960s 
in Asia for the control of rice blast caused by the fungus Magnaporthe grisea and for 
the control of bacterial grain and seedling rots of rice. This antibiotic has also been 
used to control diseases of sugar beet, kiwi, and Japanese apricot in at least 30 coun-
tries [42]. More recently, kasugamycin has been utilized for management of the blos-
som blight phase of fire blight disease in Canada and the United States. Resistance 
to kasugamycin was reported for two bacterial rice pathogens in Japan, Acidovorax 
avenae subsp. avenae and Burkholderia glumae [43, 44]. Kasugamycin resistance in A. 
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avenae subsp. avenae and B. glumae was conferred by a novel aac(2)-IIa acetyltrans-
ferase gene located within an IncP genomic island and likely acquired by HGT [45]. 
A promoter mutation that resulted in a fourfold increase in expression of the aac(2)-
IIa gene was found to confer an increased level of kasugamycin resistance in strain 
83 of A. avenae subsp. avenae [46]. Kasugamycin resistance has not been reported in 
E. amylovora; one study assessing the potential for spontaneous resistance revealed 
that a two-step mutational process was required and that spontaneous kasugamycin 
resistant mutants were substantially reduced in fitness [17].

4.  Application of antibiotics and its repercussions on the microbiome of 
plant agricultural systems

All of the antibiotics applied to trees in orchard systems using conventional 
air blast spraying systems does not reach the desired target; thus, the effects 
of antibiotic usage are potentially more complex than simply studying effects 
on the target pathogen and commensals co-located in the target plant habitat. 
Antibiotics reaching the target sites in the tree canopy impact the phyllosphere 
microbiome and flower microbiomes if applied during the bloom phase. Insects 
feeding within the tree canopy could also ingest the antibiotic, which could 
impact the insect gut microbiota. A portion of the antibiotic spray applied to 
trees will not reach the target because of spray drift or could be lost by runoff 
during spraying or runoff owing to rain events. It has been estimated that as 
much as 44–71% of spray solutions applied by air blast sprayers is lost into the 
environment [47]. Whether it hits the target or not, once the antibiotic solution 
has been released into the environment, the material is negatively affected by 
environmental parameters, including rainfall, sunlight (visible and ultraviolet 
radiation), and temperature, and other specific aspects of the plant leaf environ-
ment that may affect adsorption. For example, oxytetracycline residues are lost 
relatively rapidly from peach leaf surfaces because of weather parameters [48]. 
Any antibiotic lost from the tree target by spray drift may land on other plant 
surfaces, such as the leaves of grasses or weeds, and thus impact the microbes 
inhabiting the phyllosphere of those plants. There is also the possibility of drift 
offsite to nontarget plants, and insect or animal may feed on the nontarget 
plants and potentially consume the antibiotic, which could impact the gut 
microflora of these animals. We are aware of one study in which the percentage 
of streptomycin-resistant E. coli isolates from feces of sheep feeding in a pasture 
that was sprayed with streptomycin was shown to increase (from 14.7 to 39.9% 
compared to 15.8 to 22.3% in a control group) [49]. However, this study did not 
simulate actual conditions in commercial orchards as the streptomycin solution 
was sprayed directly onto the pasture grass and sheep were grazed in the pasture 
for 12 h immediately following application. Neither of these situations occurs in 
commercial orchards.

Two studies have been published examining the effect of antibiotic application 
in apple orchards on phyllosphere bacteria. In one study using both culture-based 
and culture-independent approaches, Yashiro and McManus [50] examined 
phyllosphere bacteria from apple orchards that either had received streptomycin 
applications in spring for fire blight management for up to 10 previous years or had 
not been sprayed. The percentage of culturable isolate resistant to streptomycin 
was actually larger from the non-sprayed orchards. An examination of community 
structure using 16S rRNA clone libraries indicated that streptomycin treatment 
did not have long-term effects on the diversity or phylogenetic composition of the 
phyllosphere bacterial community in the examined apple orchards [50]. A separate 
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cultural study evaluated the effect of weekly applications of streptomycin (for 0, 
3, 5, and 10 weeks) beginning at 80% bloom on specific components of the phyl-
losphere community. Testing of orchard epiphytes for streptomycin resistance 
indicated that 76.2, 94.5, 95.5, and 98.5% of the bacterial isolates were resistant 
to streptomycin on trees receiving 0, 3, 5, and 10 applications within one season, 
respectively [51]. Further microbiome studies have also been conducted examining 
the effect of antibiotic usage on soil microbiomes in apple orchards. For example, 
Shade et al. [52] determined that streptomycin application to apple trees did not 
result in any observable difference in soil bacterial communities (soil collected 
beneath trees 8–9 days after streptomycin application). The authors concluded that 
application of the antibiotic had minimal impact on nontarget bacterial communi-
ties [52]. A second microbiome study of apple orchard soil collected 14 days after 
streptomycin application also failed to detect any influence of the antibiotic on the 
soil bacterial community [53].

The microbiome studies detailed above have provided information that show 
limited impacts of antibiotics on the selection of antibiotic resistance at a period 
of time after application. However, there are no published studies to date assess-
ing the resistome of crop plants and in particular the resistome of crop plants 
that have been treated with antibiotics. Interestingly, the application of struvite 
(MgNH4PO4·6H2O), which has been used as a plant fertilizer, alters the antibiotic 
resistome in the soil, rhizosphere, and phyllosphere [54]. This might have resulted 
from the fact that struvite usually contains ARGs, antibiotic-resistant bacteria, and 
antibiotic residues [50]. The need for knowledge of the antibiotic resistome in plant 
agricultural systems and especially in plant agricultural systems in which antibiotics 
are applied is critically important because we need to understand whether the use 
of antibiotics in plant agriculture has the potential to select ARGs that could impact 
human health. This issue regarding potential impacts to human health is highly 
significant, with current implications for the use of antibiotics in animal agriculture 
[55, 56]. Identification of particular ARGs, and the organisms harboring these 
genes, is important for risk assessments of pathogen acquisition of resistance based 
on close phylogenetic relationships with coinhabiting antibiotic-resistant com-
mensals. If ARGs of importance in clinical medicine are identified in the resistome 
of plants sprayed with antibiotics, it is critical to determine whether their frequency 
and/or bacterial host range changes based on antibiotic exposure.

5. Knowledge gaps in plant-pathogen system

One of the gaps involved in the understanding of the host-plant-environment 
interaction is the attributes involved with respect to the change in climatic 
conditions. Changes brought about by the pathogen populations to the host are 
influenced by cultural practices, control methods, introduction of new cultivars 
or varieties, and climatic variability in equal measure. A majority of these studies 
are often hindered due to the difficulty in obtaining the information or evidence 
with respect to the presence of the pathogen throughout the said period, genetic 
composition and its associated changes before and after interaction with the 
host, climatic requirements for the host and pathogen during the said period and 
arrive at a convincing trend without background noise with respect to the disease 
pattern.

Similar to the pathogen-human interaction, the challenge and attack by 
pathogenic organisms are halted by the defense mechanisms of the plants. This 
mechanism is often trespassed by the evolution and emergence of newly faced 
pathogens that have evolved in response to evolution or agricultural practices and 
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colonization strategies in native communities with no prior evolutionary history 
[57–59]. It is well-known that the ecosystem, frequency, and evolution of both host 
and pathogens are largely dependent on catastrophic outbreaks that have a direct 
involvement of the human population. Added to this is the development of a new 
species, migration of humans, speciation, susceptibility of the plants, divergence, 
and climate change [58]. With a positive association between the emergence of new 
pathogens and extinction of crop production being rendered by many researchers, 
understanding and identification of emerging pathogens is a necessary strategy to 
counter them [60, 61].

Understanding the emergence of new pathogens has largely been a challenge for 
scientists as the host-pathogen interaction is a complex process. Global distribu-
tion and diversity of plant pathogens is also dependent on trade, human migration, 
plant ecosystem, and distribution of plant-based products. An additional indirect 
way to gauge pathogens and their associated effects is the elucidation of migration 
pathways [62]. The ever-increasing investment by the researchers in analyzing 
genome sequences has revealed another world of improvement in understanding 
the adaptability of pathogens to plant disease [63–65], and any changes in pattern of 
pathogenicity may thus arise. Horizontal gene transfer and interspecific hybridiza-
tion have been the two mechanisms that have been comprehensively reviewed [58, 
63, 66–69]. Along with strategies such as population genomics study for develop-
ment of improved disease management, awareness of agricultural heterogeneity 
and management or restriction of movement of plant materials aids have also 
been integrated. Further a cumulative effort by plant epidemiologists, ecologists, 
pathologists, and academic researchers facilitates successful management of emerg-
ing phytopathogens.

6. Sustainable crop disease management by genetic engineering (GE)

In addition to a plethora of published GE strategies, ongoing research, and 
the wide expansion of genetic resources, conceivable applications are gaining 
momentum [70] that invests prospective for future generations. The dynamics of 
the adaptation of pathogen toward the host can be invested by GE strategies due to 
its selective efficacy against a group or particular target pathogens. Such a targeted 
advantage minimizes health concerns at the consumers’ end with no risk of nontar-
get biota in an agrarian ecosystem. Some of the processes that occur naturally have 
also been undertaken in GE processes (Table 1). Although the futuristic potential of 
GE strategies with controlled disease conditions in the subsequent host generations 
is questionable in the present day, it is demonstrated that GE strategies that were 
initiated as a proof of concept are now well-established and have been marketed as 
commercially viable varieties.

6.1 Boosting plant recognition of infection

Similar to a human system, plants also trigger defense molecules on recognizing 
particular molecules of invading pathogens generally referred to as pathogen-asso-
ciated molecular patterns (PAMPs; [71–73]) that illicit a PAMP-triggered immunity. 
Although PAMP receptor molecules differ among plant species, genes that encode 
PAMP receptor can be transformed into other crops for triggering immunity [73]. 
Such a method of transformation does not introduce a novel defense mechanism 
but rather introduces a receptor that helps the transformed plant recognize infec-
tion making it independently counter the infection by its natural immune system 
[74–77].
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Plant 

species

Disease Pathogen species Pathogen class Gene product Reference

Arabidopsis Crown gall 

disease

Agrobacterium 

tumefaciens

Bacteria Arabinogalactan 

protein

[78, 79]

Crown gall 

disease

Agrobacterium 

tumefaciens

Bacteria Mannan synthase

Root-knot 

nematode

Meloidogyne 

incognita

Nematode Kelch repeat 

protein

[80, 81]

Powdery 

mildew

Erysiphe orontii Fungus Receptor-like 

kinase

[82]

Root-cyst 

nematode

Heterodera schachtii Nematode Ethylene response [83, 84]

Bacterial 

speck

Pseudomonas 

syringae

Biotrophic 

bacteria

Lectin receptor 

kinase

[22]

Gray 

mold/rot; 

leaf spot

Alternaria 

brassicicola; Botrytis 

cinerea

Necrotropic 

fungus

Expansin [85]

Powdery 

mildew

Golovinomyces 

orontii

Biotrophic 

fungus

Membrane-

attached protein

[86]

Downy 

Mildew

Hyaloperonospora 

arabidopsidis

Biotrophic 

oomycete

ADP ribosylation 

factor—GTPase 

activating factor

[87]

Bacterial 

wilt

Ralstonia 

solanacearum

Biotrophic 

bacteria

MAPkinase 

phosphatase

[88]

Aphid Myzus persicae Insects Fatty acid 

desaturase

[89]

Maize Southern 

corn leaf 

blight

Bipolaris 

maydis/Cochliobolus 

heterostrophus

Necrotrophic 

fungus

Mitochondrial 

transmembrane 

protein

[90]

Powdery 

mildew

Blumeria graminis Biotrophic 

fungus

Long-chain 

aldehyde synthesis

[91]

Tomato Gray 

mold/rot

Botrytis cinerea Necrotrophic 

fungus

Polygalacturonase 

and expansin

[92]

Soft rot, 

gray mold/

rot

Botrytis cinerea, 

Erwinia 

chrysanthemi

Fungus, bacteria ABA aldehyde 

oxidase

[93]

Powdery 

mildew

Leveillula taurica Biotrophic 

fungus

Membrane-

anchored protein

[94]

Aphid Macrosiphum 

euphorbiae

Insects Fatty acid 

desaturase

[95, 96]

Fusarium 

wilt

Fusarium oxysporum Hemibiotrophic 

fungus

Lipid transfer 

protein

[97]

Rice Bacterial 

blight

Xanthomonas oryzae Bacteria MAPKKK [98]

Blight rot Burkholderia glumae Bacteria MAP kinase [99]

Rice blast Magnaporthe oryzae Hemibiotrophic 

fungus

Transcription 

factor WRKY

[100, 101]

Leaf blight Xanthomonas oryzae Bacteria Stearoyl-ACP 

desaturase

[102]

Table 1. 
Genes and their contributions to the plant-pathogen interaction studies.
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6.2 Mining R genes

An intracellular receptor protein (R-protein) is produced as a mechanism of 
effector-triggered susceptibility which is banked on by a model of disease resistance 
[72, 103]. This protein is specifically detected in the presence or when an activity 
of a pathogen effectors is triggered resulting in effector-triggered defense [103]. 
However, these effectors may modify or change the defense response in the host 
in response to a new effector produced by the pathogen. With this production of 
specific R genes with respect to the pathogen effector, pools of resistance genes 
evolved can be made useful in breeding crops for disease resistance by produc-
ing cisgenics [104]. Exceptional efforts by conventional introgression of cisgenes 
undertaken in crops such as apple, banana, grape, and potato have established it 
to be labor intensive and time consuming [73, 104]. GE strategies offer a major 
advantage not only by making it easier and faster but also evading linkage drag [50, 
74]. Further introgression of R genes can be made feasible between unrelated plant 
species among monocots and dicots [77, 105–108]. The tendency of the pathogen 
to overcome the resistance rendered by R genes can be circumvented by mining R 
genes from unrelated species by integrating GE strategies and breeding [109, 110].

6.3 Upregulating defense pathways

The activity of defense can be boosted by targeting molecules such as reactive 
oxygen species, pathogenesis-related genes involved in defense regulation, signal-
ing, and associated processes activating acquired resistance. Such measures were 
profited to a great extent in enhancing resistance to diseases such as citrus green-
ing and pathogens such as Rhizoctonia solani and Magnaporthe oryzae that utilizes 
the plant’s own natural immune system without the introduction of new or novel 
metabolic pathways [111, 112].

6.4 Disarming host susceptibility genes

Some important genes that facilitate normal physiology in plants have been 
observed to be involved in facilitating pathogen colonization and infection. 
Changes induced in such susceptibility genes is an efficient strategy for disease 
resistance [113]. Disarming susceptibility genes may alter the pathosystems and 
many host factors that contribute to compatibility between the pathogen and host. 
Gaining a new function to replace the lost host factor is not a likely by the pathogen 
to overcome the activity of a disarmed susceptibility gene; therefore, this strategy 
does not leave any exogenous DNA [113].

6.5 Silencing essential pathogen genes

RNA interference is elicited in plants to silence genes that render pathogenic-
ity by using genetic constructs with identical sequence of dsRNA. Such efforts 
directly trigger posttranscriptional gene silencing of the natural disease process. 
Such a process of silencing does not generate a biochemical pathway or produce a 
novel protein. Integrating the need of the hour with the potential of the strategy of 
RNA silencing proved profitable for the papaya industry in Hawaii [114, 115]. Such 
applications are observed in cases where severe strains of the virus can be reduced 
in case of an infection by a mild strain. Implementing a natural phenomenon for 
cross-protection as a means to manage disease conditions has practical drawbacks. 
These drawbacks were controlled by feeding insects with dsRNA constructs that 
can trigger RNAi [116, 117].
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7. Engineering CRISPR/Cas immune system

Clustered regularly interspaced short palindromic repeats has been identified 
to be a prokaryotic defense system that combines with its associated proteins (Cas) 
to render an endonuclease activity that cuts the invading DNA at a particular target 
of interest. This specificity is determined by the sequence of DNA that matches the 
sequence of the RNA guide strand associated with the Cas protein. Some studies 
have engineered a Cas9/gRNA that targets the replicating DNA of Gemini virus that 
leads to agrarian crisis in tropical and subtropical climates [118–120]. Significant 
resistance to host can be achieved against a DNA virus by a targeted sequence-
specific engineered complex of Cas9/gRNA, although the results are meant to 
be reproducible [121]. Long-term utilization of this strategy against a variety of 
genetic elements that hamper the host such as viruses can be successfully targeted 
[122–126].

Genome editing, brought about by Agrobacterium-mediated transformation or 
biolistic methods, gives way to a wide range of possibilities for genetic changes. 
Targeted modifications, specific mutagenesis, and /or modest changes can be 
brought about by targeting existing genes in live cells. By using CRISPR/Cas9, it is 
possible to create a non-transgenic gene edit that can be introgressed by conven-
tional breeding and can yield a change that cannot be distinguished from a muta-
tion [127]. Another application of CRISPR is that the genome editing is HDR-based 
that allows editing a gene from the crop’s natural pool giving rise to cisgenic lines 
that can achieve outcomes stabilized by conventional breeding. HDR-based genome 
editing strategies also helps add a specific gene from an evolutionary distant organ-
ism therefore making the regulatory scrutiny mandatory similar to that of transgen-
ics [128, 129]. Various research groups have validated CRISPR/Cas9 techniques to be 
straightforward, low cost, and efficient, but the accessibility of the applications of 
genome editing is largely dependant on democratizing genome editing, nonprofit 
organizations, and governmental regulations.

8. Conclusion

While recognizing the important benefits GE technologies offer, larger consid-
erations merit attention, especially questions of public acceptability and of whether 
there are any long-term ecological risks different from those posed by conventional 
breeding. In considering such issues, it is important to remember that, not only 
do diverse GE strategies exist, but diverse GE manipulations are possible, ranging 
from very modest, targeted mutagenesis, through cisgenics and intragenics, to 
insertion of transgenes from other crops, from other (non-crop) plants, and from 
evolutionarily distant organisms. Thus, in considering socioeconomic and cultural 
perspectives of GE, it is important to bear in mind this diversity of strategies and 
applications: GE crops can differ markedly from one another. A useful GE construct 
may target one or a few pathogens of particular importance, but other breeding 
techniques still is important for tackling disease problems not targeted by available 
GE traits. Thus, GE should be understood, not as the best approach to addressing 
sustainability challenges, but as a suite of tools that capitalizes on the knowledge 
that biologists gain through our ongoing study of Nature. GE simply expands 
the breeding “toolbox,” providing options to consider on a case-by-case basis for 
enhancing the sustainability of crop disease management.
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