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Abstract

Principal component analysis (PCA) is a linear data analysis technique widely
used for fault detection and isolation, data modeling, and noise filtration. PCA may be
combined with statistical hypothesis testing methods, such as the generalized likeli-
hood ratio (GLR) technique in order to detect faults. GLR functions by using the
concept of maximum likelihood estimation (MLE) in order to maximize the detection
rate for a fixed false alarm rate. The benchmark Tennessee Eastman Process (TEP) is
used to examine the performance of the different techniques, and the results show
that for processes that experience both shifts in the mean and/or variance, the best
performance is achieved by independently monitoring the mean and variance using
two separate GLR charts, rather than simultaneously monitoring them using a single
chart. Moreover, single-valued data can be aggregated into interval form in order to
provide a more robust model with improved fault detection performance using PCA
and GLR. The TEP example is used once more in order to demonstrate the effective-
ness of using of interval-valued data over single-valued data.

Keywords: principal component analysis, generalized likelihood ratio,
hypothesis testing, fault detection, Tennessee Eastman Process, interval data

1. Introduction

Current technological advancements allow data to be collected from a number of
different sources. The availability of abundant data collected from different sensors
is beneficial, as they can be utilized in order to observe trends between and within
different measured process variables. This allows process models to be developed in
order to help identify if different processes or applications are behaving as expected
[1]. Additionally, with industrial growth present in many developing countries,
efficient process monitoring is essential for newer and more complex processes.
Monitoring of these processes is required in order to ensure process safety, maintain
product quality, increase economic benefits, and also to ensure that the process
adheres to strict environmental regulation standards [2].
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Statistical process monitoring methods can be classified into three broad catego-
ries: quantitative model based methods, qualitative model based methods, and
process history based methods [3-5]. Quantitative model based methods require
detailed knowledge of a process in order to construct a model that can be used for
monitoring, for example, Kalman filters [3], while qualitative model based methods
require the presence of process engineering experts in order to develop monitoring
procedures or tasks, for example, fault trees [4]. In the absence of these two
requirements, and due to the complexity of many processes that require monitor-
ing, data-based techniques are often commonly used by the industry for various
applications from drug design, to drinking water treatment [5-7].

Principal component analysis (PCA) is a powerful, linear data analysis technique
widely used in research and industrial applications [8], for fault detection and
isolation, data modeling and reconstruction, feature extraction, and noise filtration.
PCA is useful for the extraction of dominant underlying information from a dataset,
without any previous knowledge of the model. An example of the practical appli-
cation of PCA has been discussed in [8], where data gathered from parallel sensors
are used to quantify the quality of a given food sample. PCA is used to reduce the
dimensionality of a dataset, whilst filtering out variability caused by noise [9]. The
PCA model has been utilized in order to monitor a wide variety of processes, and
has seen many extensions [10-13]. Two main fault detection statistics are typically
utilized with a PCA model: Hotelling’s T? statistic, and the Q statistic [10]. Varia-
tions captured by the principal component space are monitored using the T? statis-
tic, while variations in the residual space are monitored using the Q statistic [14].

On the other hand, statistical hypothesis testing methods function by using
statistical techniques in order to determine if observations collected from a given
process follow the null hypothesis, that is, operating under normal operating con-
ditions, or alternate hypothesis, that is, operating under abhorrent or faulty operat-
ing conditions [15]. These faults can be of different types, such as shifts in the mean,
variance, or both. The generalized likelihood ratio (GLR) technique has received a
lot of attention in process monitoring literature [10, 11, 13, 16]. The GLR method
aims to maximize the detection rate for a fixed false alarm rate [15]. Therefore, an
objective of this work is to provide a comparative review of the different GLR
charts by utilizing examples such as the benchmark Tennessee Eastman Process
(TEP) [17].

Data utilized in the construction of a PCA model may be of two types depending
on the application being monitored: single-valued, and interval-valued. Single-
valued data can be directly obtained from sensors measuring particular variables in
a process, while interval-valued data is aggregated or artificially generated from
batch single-valued measurements, thereby resulting in a range of possible mea-
surement values for a given process variable at one time instant. The use of interval
data in fault detection was originally introduced in order to reduce large datasets
to a more manageable size [18], without compromising the integrity of the dataset.
In addition, the use of interval data is beneficial because of its inherent ability to
deal with missing values in samples, which may happen due to malfunctioning
sensors or varying sampling frequencies between variables [19].

However, in cases where reducing the dataset may not be a viable option, due to
a relatively limited sample size or sampling frequency, the use of interval data can
be applied using a moving window aggregation method. This is also true of
applications where batch process monitoring is not a viable option, thereby
necessitating the need for real-time online monitoring of samples. The benchmark
TEP example will be used once more in order to analyze the benefit of using
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moving window interval aggregation on the fault detection performance of
PCA and GLR.

The rest of this chapter will be organized as follows. In Section 2, a more detailed
introduction to PCA is provided along with a quick overview of the fault detection
statistics used to examine the fault detection performance of the methods discussed
in this paper. Section 3 will introduce hypothesis testing methods and the different
GLR charts. In Section 4, the moving window interval aggregation method is
explained, as well as its integration with PCA and GLR for the purposes of fault
detection. Section 5 then presents illustrative examples using simulated synthetic
data and TEP using a PCA-based GLR technique, used to demonstrate the effect
that using GLR and interval data has on the fault detection performance.
Conclusions are then presented in Section 6.

2. Principal component analysis (PCA)

Principal component analysis (PCA) is a linear dimensionality reduction tool
used to reduce the number of variables in a dataset, whilst retaining most of
the data’s variability. PCA finds a new set of variables, called principal components,
using a linear combination of the dataset’s original cross-correlated variables [9].
The algorithm for PCA is summarized below.

2.1 PCA algorithm

Given an X p classical training dataset X, where 7 is the number of sample rows
and p is the number of variable columns, the PCA model is found as follows:

1. Find the correlation matrix R of X.

2. Find the column eigenvectors matrix P and the diagonal eigenvalues matrix A
of R. Each eigenvector defines the linear combination coefficients used to find
the principal components from the original variables, and each eigenvalue
represents the amount of variance that its respective principal component
covers in the dataset.

3.Retain [ principal components that cover the minimum desired variability in
the dataset, denoted as P.

A A A

4.Find the predictive transformation matrix, C = PP”.

~ A

5. Find the residual transformation matrix, C =1 — C.

C is used to find the projection of the dataset onto the PCA model, and C is used
to find the amount of deviation of the dataset from its projection onto the PCA
model, also known as the matrix of residuals. For more comprehensive details,
please refer to [9, 19, 20].

The training dataset X defines the system under normal or optimal operating
conditions, where there are no faults and the noise is minimal. Consequently, X is

used to find the PCA model, defined using C and C transformation matrices. The
testing dataset S defines the system under unknown operating conditions, and it
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is monitored for faults using its respective residuals S = S - C, as will be
discussed later.

2.2 Fault detection statistics

Knowing the optimal number of eigenvectors or principal components to retain,
fault detection is then carried out by evaluating the PCA model’s residuals using any
detection statistic. This section will focus on briefly introducing the two most well-
known statistics in literature: The Q and T statistics.

The Q-statistics of an x p classical residual matrix X is defined as [11]:

4

Q=Y (%) M

Jj=1

Q, is used to find the Q-threshold value y, which defines the maximum possible
value for a testing data’s Q-statistic, denoted as Q,, beyond which the sample will be
declared as a fault [14, 19, 21]. The threshold is calculated using the empirical
cumulative distribution function (CDF) of Q,, which is an estimate of the true CDF
of its discrete values.

The fault detection performance is tabulated by comparing Q, with y. If Q,[i]>y,
then the ith sample is declared as faulty, otherwise it is normal. There are two metrics
used for benchmarking each method: false alarm rate (FAR) and detection rate (DR).

FAR is the average percentage of samples that were wrongfully declared as
faults. The detection rate is the average percentage of samples that were rightfully
declared as faults. It is desirable to maximize DR, for a fixed FAR, in order to have a
better fault detector.

Alternatively, the Hotelling T statistic, which measures variations in the prin-
cipal component space can be used, is computed as follows [22]:

T? = xTIADIA\fllA)Tx, (2)

where, A = diag(41, 42, ..., 41), is a diagonal matrix that contains the eigenvalues
that are associated with the [ retained principal components The threshold for the
T statistic can be computed either computational or empirically [22]. The Q statis-
tic is often utilized by authors instead of the T” statistic as it better able to detect
smaller faults [10, 11].

3. Hypothesis testing methods

Hypothesis testing methods such as the generalized likelihood ratio (GLR), have
received a lot of attention in recent literature [10, 13, 23]. Hypothesis testing
methods utilize fundamental statistical theory in order to determine if given data
conforms to a targeted distribution, that is, a null hypothesis, or deviates from this
distribution, and follows an alternative distribution, that is, an alternate hypothesis
[15]. In process monitoring terms, the parameters of the null and alternate hypoth-
eses are defined using data from normal and abhorrent operating conditions,
respectively [1].

3.1 Generalized likelihood ratio

The generalized likelihood ratio (GLR) technique defines the alternate hypothe-
ses by parameters that can assume an infinite number of values, and is therefore

4
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called a composite hypothesis. An efficient point estimation method that utilizes the
concept of maximum likelihood estimates (MLEs) is employed in order to estimate
the required parameters.

The univariate GLR chart uses the concept of maximum likelihood estimates in
order to maximize the detection rate for a fixed false alarm rate. The GLR process is
accomplished through the following steps [15]:

1. The null and alternate hypotheses are defined, and their respective likelihood
functions are derived.

2. Any unknown parameters in the alternate hypothesis are computed from
the testing data using their MLEs, for example, the mean and/or variance.

3. The log likelihood ratio of the alternate to null hypotheses is then computed,
and its maximum value is calculated, which maximizes the detection rate.

Univariate GLR charts can be designed based on the type of the fault that needs
to be detected. Most processes experience shifts in the mean, and/or shifts in the
variance, and three of these GLR charts will be explained next.

For the case when residuals are collected from processes under normal operating
conditions, the likelihood function derived from a random normal distribution can
be defined as follows [24]:

1 k
L (6900, 03,2 e t) — (2) () exp (-———7 ) )

601

where u, and 6} mean and variance of the process variable measured under
normal operating conditions respectively.

3.1.1 Univariate GLR chart for a shift in the mean

If a shift in the mean has occurred at time 7, from y to y;, the likelihood
function of the alternate hypothesis is defined as follows [24]:

L (., B, 2,
-2 —k/2( 2\ —k/2 1 1 . 2 k ‘ 2 (4)
= (2x) (00) exp _H Z(xz —po)" + Z (i — pq)

Since the magnitude of the new mean is unknown, its MLE can be computed
using testing data as follow [24]:

D

The GLR statistic designed to specifically monitor a shift in the mean can now be
computed by taking the log-likelihood ratio of (Egs. (3) and (4)) [24]:

(k—1) . 2
R, = -~ — . 6
s (4,0 — Ho) (6)

The authors in [24] state that it is not necessary to store the entire length of
previous historical data in order to compute the MLEs, but a window length

5
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of about 400 is sufficient to provide reliable results. Therefore, a window length of
400 was utilized throughout this work for all GLR charts.

3.1.2 Univariate GLR chart for a shift in the variance

If only a shift in the variance has occurred from at time 7, from o3 to 62, the
alternate hypothesis for this case is defined as follows [25]:

L(Ta/’t07 6%|xf+17x27 ...,Xk)

2 k 2 (7)
= (zﬂ.)—k/Z(a%)*k/ exp (_2_]6'% (Z (xi — /,[0) ))

i=t+1

From a quality control standpoint we are only concerned with increases in
variance, as larger variations imply that product is being manufactured with quality
further away from the targeted amount, and since the magnitude of the new
variance is unknown, its MLE can be computed using testing data as follows [25]:

k
. 1 2
A=l 3 ) ®

The GLR statistic designed to specifically monitor a shift in the variance can now
be computed by taking the log-likelihood ratio of (Egs. (3) and (7)) [25]:

b — 1 [62 ~2
R, = max ‘ [61’21’]6 —1—In (61’;’k>] 9)

o<t<k 2 oy o

3.1.3 Univariate GLR chart for a shift in the mean and/or variance

Since it is possible for most processes to experience both shifts in the mean and
variance, a GLR statistic that is capable of detecting either type of shift can be
designed. The likelihood function of the alternate hypothesis for this case is defined
as follows [26]:

L(T, Hy, 03 |%1, 22, ...,xk)

2 2
_ - (ks 1 [ 1 (&
= (27) k/Z(G%) /2(6%) (k=7)/2 exp (262 <sz —/,10> 552 <le —,u1> ) .
0 =1 1

i=t+1
(10)
The MLE of the mean can be computed from the testing data using (Eq. (5)).

However, the variance now has to be computed utilizing the MLE for the mean as
well [26]:

1 & X
Sor = . Z €7 —ﬂ1,f,k)2- (11)
i=7+1

As previously stated, from a quality control standpoint only an increase in the
variance is of concern, and the MLE for the variance can be computed as follows [26]:
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&zl,f,k = max{cfé,Sik}. (12)

If there are no shifts in the mean for testing data, the variance is computed as
follows [26]:

1 k
ook =5 D (X —po)” (13)

i=7+1

In this case, the GLR statistic designed to simultaneously monitor both shifts in
the mean and variance, and can be computed by taking the log-likelihood ratio of
(Egs. (3) and (10)) resulting in the following equation [26]:

2 2 2 ~2
R, — k—1 SO,T,k Sr,k 61,‘[,/6
, = max 5= —In|—— (14)
0<t<k 2 o5 O 1.k o

It is important to note that for this particular GLR method, two parameters, that
is, the mean and the variance have to be estimated using their MLE, since the type
of shift is unknown.

3.1.4 Multivariate GLR chart for a shift in the mean

Since using a univariate GLR chart may not always be practical, Wang and
Reynolds [27] introduce the multivariate GLR chart, designed to specifically moni-
tor shifts in the process mean for multivariate applications. In this case, the GLR
statistic is defined as follows:

max k—t,. g,
maX(O,k—m)5t<k( 2 (A0 = 10) - D g '(ﬂl,t,k—uo)) (15)

Where y is the multivariate mean vector of the process under normal operating
conditions, ji , ; is the MLE of a sustained process mean shift y; at time index k
over sample window of maximum length m, and ), is the process covariance
matrix under normal conditions [27].

3.2 Fault detection using PCA-based GLR

The PCA method introduced in Section 2 is commonly utilized by many indus-
tries. Therefore, it is necessary to integrate the simplicity of the PCA method with
the advantages brought forward by the GLR charts, so that it can be easily applied to

Faulty Operating
Vi /-’ Conditions

x 1 PCA[

Is the
threshold
violated?

“E1GLR

\, Normal Operating
Conditions

Figure 1.
PCA-based GLR fault detection algorithm.
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monitor processes online. Figure 1 illustrates the fault detection algorithm utilized
in this work.

PCA is utilized in order to model available data. The different GLR charts can
then be applied on the residuals produced by the PCA model in order to determine
if the process is operating under normal or faulty conditions. The fault detection
threshold limits are obtained from an empirical distribution of the GLR statistic
computed under normal operating conditions. The residual space is typically better
able at detecting faults of smaller magnitude [10].

4. Moving window interval data aggregation

Data utilized in the construction of a PCA model may be of two types depending
on the application being monitored: single-valued, and interval-valued. Single-
valued data can be directly obtained from sensors measuring particular variables in
a process, while interval-valued data is aggregated or artificially generated from
batch single-valued measurements, thereby resulting in a range of possible
measurement values for a given process variable at one time instant [18].

An interval is defined using a lower and upper bound, such as [, b], where
a <b. In this work, interval data is generated by aggregating the single-valued
samples in a dataset, such that the mean of each block of aggregated samples is
defined as the interval center (¢), and the standard deviation of each block of
aggregated samples is defined as the interval radii (). Consequently, the intervals
can now be defined as [¢c — 7, ¢ + ]. Unlike the lower and upper bounds, the centers
and radii are of particular importance because they can be used to represent unique
characteristics of the classical samples from which they are generated [19].

Initially, the use of interval data is motivated by the need to quickly and effi-
ciently monitor large datasets [28], in addition to its ability to deal with missing
values without the need to remove entire samples. Generating intervals by aggre-
gation is a form of batch processing, which may not always be ideal. The ability to
monitor faults in real-time is typically much more desirable from a quality and
safety standpoint. It also becomes impractical to use batch aggregation when
discussing processes with a low sample size or low sampling frequency.

As a result, interval data aggregation must be adapted for real-time monitoring
purposes. One way to do that would be to use a moving window aggregation
technique, such that any observed sample is aggregated with previously gathered
samples, if any, in the defined window size. This allows for the generation and
processing of interval data in real-time, without the need to wait for multiple
samples to be observed before processing.

As expected, however, this method suffers from some drawbacks relative to its
batch aggregation counterpart. The moving window approach may cause smearing
along the detection statistic, leading to higher false alarms and lower detection rates.
This is especially true for large window sizes, as is the case for most methods which
apply that approach. The problem can be mitigated by limiting the window size to
reasonable limits, whilst also adjusting the threshold in order to meet the desired
false alarm rates of the process.

4.1 Integration with PCA-based GLR

Interval principal component analysis (IPCA) methods are an extension to the
classical PCA method, and they have been explored in literature for fault detection
and isolation examples [29, 30]. In this work, three IPCA methods will be briefly
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introduced, before discussing our proposed method of integrating the moving win-
dow interval approach to the PCA-based GLR technique.

Centers IPCA (CIPCA) was introduced by Cazes et al. [31], where the idea was
to only apply PCA to the matrix of interval centers. This method focuses on the
variation between the intervals of a dataset, rather than the variations within them
[18, 32]. Midpoint-Radii IPCA (MRIPCA) was developed by Lauro et al. [33-36],
where PCA models are separately generated for the centers and radii matrices of the
interval training dataset. Finally, the Symbolic Covariance IPCA (SCIPCA) method
was introduced by Le-Rademacher et al. [18, 32] as a way to better represent the
range and variability found in interval data.

In this paper, the integration of the moving window aggregation to PCA-based
GLR will be as follows. After generating an interval sample for each single-valued
sample, the single-valued matrices of interval centers and radii are extracted. The
matrices are then concatenated along the variables dimension, so as to maintain the
number of samples, but double the number of variables. This is similar to the
MRIPCA method, except it avoids the need to apply PCA twice, eliminating any
additional processing complexity.

5. Illustrative examples

This section evaluates the performance of the three PCA-based GLR charts
described in Section 3, and the moving window aggregation method discussed in
Section 4. The PCA-based GLR charts are evaluated under different fault scenarios,
and this is done through two illustrative examples: a simulated synthetic data set,
and the benchmark Tennessee Eastman Process (TEP). Three fault detection met-
rics are used to evaluate the performance of each univariate chart: missed DR
(which is equal to 100-DR), FAR, and average out-of-control run length (ARL1).
Finally, the moving window interval aggregation method, in tandem with the PCA-
based multivariate GLR chart, are analyzed using the benchmark TEP process, and
the results are tabulated and compared to the single-valued multivariate GLR chart.

5.1 Simulated synthetic data example

The purpose of this example is to utilize a simple linear model to compare and
evaluate the performance of the difference PCA-based univariate GLR charts. The
linear data set can be generated using the following model [37]:

"x1]  [—0.3441 04815  0.6637 T
X 02313 0593 03545 |
X3 ~0.5060 02495 0.0739 || ' ,
— t, | + noise (16)
X4 05552 02405 01123 | |
Xs ~03371 0382 —06115|"°
x6] [ —03877 —0.3868 —0.2045]

where, t1, t5, and t3, are uniformly distributed random variables with ranges,
[0,2],[0,1.6], and [0, 1.2], respectively, while the noise follows a normal distribution
with zero-mean and standard deviation of 0.2 [37].

The linear model is used to generate 6000 observations, split into training and
testing data sets of 3000 observations each. The training data are used to train the
PCA model, while the testing data are used to evaluate the performance of all
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techniques using three cases of faults: a shift in the mean, a shift in the variance, and

a simultaneous shift in both.

Five charts are evaluated and compared: the PCA-based T? and Q charts, and the
three different PCA-based univariate GLR charts. The faulty region is highlighted in

light blue for all figures, and the fault detection threshold limits for all charts are

represented by the red dotted line. For each case a Monte-Carlo simulation of 1000
realizations is carried out in order to obtain meaningful results, so that conclusions

can be drawn.

5.1.1 Case 1: a shift in the mean

For this case, a shift in the mean of 16 was introduced between observations
1501 and 3000 in x; in the testing data set. This fault size was chosen as most
conventional techniques are unable to detect a fault of this magnitude. Faults of
higher magnitude would likely provide misleading results and exaggerate the
robustness of the method in question, leading to a biased comparison.

As can be seen through Figure 2, the T and Q charts are unable to detect the
entirety of the fault. In contrast, two GLR charts (Figure 3a and c), are able to
detect most of the fault, while the GLR chart designed to monitor a shift in the
variance (Figure 3b) could not detect that a shift in the mean was present.

Examining the summary of the fault detection results (Table 1), it can be
observed that the GLR chart designed to monitor shifts in the mean (Figure 3a)
provided the lowest missed DR and ARL, values, compared to all other charts.

2
2 ; . PCA-based T’ " ; . PCA-based Q

Q statistic

= = Q Threshold

o
T

=2 L
2 2
2 2
@ &
8 [«]

S
T

M T

0 500 1000 1500 2000 2500 3000
Observation Number Observation Number

(a) (b)

Figure 2.
PCA-based T? and Q charts (case 1).

PCA-based GLR (to monitor mean) PCA-based GLR (to monitor variance) PCAbased GLR (to monitor mean and/or variance]

— — GLRa Threshold — — GLRa Theshold

ms.zt.
=
=
>
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GLR Statisti

0 E o
2000 2500 3000 0 500 1000 1500 2000 2500 3000 [} 500 1000
Observation Number

Figure 3.
PCA-based GLR charts (case 1).
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The relatively high missed DR of the GLR chart designed to simultaneously
monitor shifts in both the mean and variance (Figure 3c) can be attributed to the
fact that two parameters need to be estimated from available data while maximizing
the GLR statistic, thereby making it difficult to predict a shift in a single parameter
as efficiently.

5.1.2 Case 2: a shift in the variance

For this case, an increase in the variance (double that of the training data) was
introduced between observations 1501:3000 in x; in the testing data set. This shift
in the variance is too small for detection by most conventional techniques.

As can be seen through Figure 4, the T? and Q charts are unable to detect the
entirety of the fault. In contrast, two GLR charts (Figure 5b and c¢) were able to
detect most of the fault, while the GLR chart designed to monitor a shift in the mean
(Figure 5a) could not detect it as well. Examining the summary of the results
(Table 2), it can be observed that the GLR chart designed to monitor a shift in the
variance (Figure 5b) provided the lowest missed DR and ARL; values, compared to
other charts.

5.1.3 Case 3: a shift in the mean and/or variance

For this case, a simultaneous shift in the mean of 16 and an increase in the
variance (double that of the training data) was introduced between observations
1501:3000 in x4 in the testing data set.

PCA- PCA- PCA-based GLR PCA-based GLR PCA-based GLR (to
based based (to monitor mean) (to monitor monitor mean and/or
T2 Q variance) variance)

Missed 95.3 94.5 00.4 85.1 315

DR (%)

FAR 05.2 05.5 05.3 05.8 04.6

(%)

ARL, 20.1 16.6 04.8 81.8 05.0

Table 1.

Summary of fault detection vesults (case 1).
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Figure 4.
PCA-based T? and Q charts (case 2).
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As can be seen through Figure 6, the T* and Q charts are unable to detect the
entirety of the fault once more. Although it might seem that all three GLR charts
(Figure 7) are able to detect most of the fault, upon closer inspection of the results
summarized in Table 3, it can be observed that the GLR charts designed to inde-
pendently detect a shift in the mean (Figure 7a), and variance (Figure 7b), are able
to provide significantly lower missed DR and ARL; values compared to the chart
designed to monitors shifts in both (Figure 7c).

The main conclusion from this example is that if a process is expected to expe-
rience shifts in both the mean and/or variance, it is more beneficial to run the PCA-
based GLR charts designed to independently monitor shifts in the mean and vari-
ance as two parallel charts, rather than utilizing the GLR chart designed to simulta-
neously monitor both. Based on this conclusion, only the former two GLR charts
will be utilized for the next example.

PCA-based GLR (to monitor mean) PCA-based GLR (to monitor PCA-based GLR (to monitor ance)

150 150

GLR Statistic
GLR Statistic

Figure 5.
PCA-based GLR charts (case 2).

PCA- PCA- PCA-based GLR PCA-based GLR PCA-based GLR (to

based T> based Q (to monitor mean) (to monitor monitor mean and/or
variance) variance)

Missed 90.2 88.6 47.5 00.7 33.0

DR (%)

FAR 05.3 05.4 05.0 04.8 04.8

(%)

ARL, 10.1 8.3 07.9 04.5 05.6

Table 2.

Summary of fault detection vesults (case 2).

PCA-based T? PCA-based Q

72 statistic
= = T2 Threshold

S
T
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Q Statistic

I il |
- J R i i

| o T

O T WSV LYY 1 () [T APy oM PTY Y
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(a) (b)

Figure 6.
PCA-based T? and Q charts (case 3).
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Figure 7.
PCA-based GLR charts (case 3).
PCA- PCA- PCA-based GLR PCA-based GLR PCA-based GLR (to
based T?> based Q (to monitor mean) (to monitor monitor mean and/or
variance) variance)
Missed 86.7 84.5 00.4 00.4 24.2
DR (%)
FAR 05.2 05.2 04.9 05.3 05.5
(%)
ARL, 07.5 06.0 03.2 03.9 04.9
Table 3.

Summary of fault detection vesults (case 3).

5.2 Tennessee Eastman Process (TEP)

In order to assess the feasibility of using two separate GLR charts to monitor
shifts in the process mean and variance, their performance has to be evaluated using
real data. Many authors utilize the Tennessee Eastman Process (TEP) in order to
evaluate the performance of their techniques [17, 38, 39]. The Tennessee Eastman
Process is a realistic simulation of an actual chemical process that consists of a
reactor, condenser, stripper, compressor, and separator, and is widely accepted as a
benchmark for fault detection [17].

The Tennessee Eastman Process contains a bank of pre-defined faults that can be
utilized by authors in order to assess the performance of their developed fault detec-
tion algorithms. More information on the Tennessee Eastman Process, the process
description, and the available bank of faults is available in literature [10, 17, 21, 38, 39].

Two fault scenarios will be examined in this work: IDV 3 and IDV 11 [39]. IDV 3
is a shift in the mean of the temperature of Feed D, while IDV 11 is random
variation in the reactor cooling water inlet temperature [39]. These two fault sce-
narios were selected because the conventional techniques are unable to provide the
best possible detection. For both scenarios, the fault is introduced after 800 obser-
vations of normal operation. The performance of four charts are evaluated: PCA-
based T? and Q charts, and the PCA-based univariate GLR charts designed to
independently monitor shifts in the mean and variance. The faulty region is
highlighted in light blue in all figures.

5.2.11DV 3: a step fault in the mean of the temperature of feed D

For the case where there is a shift in the mean of the temperature of Feed D, the
PCA-based T? and Q charts, and the PCA-based univariate GLR charts are

13
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illustrated in Figures 8 and 9 respectively, and the fault detection results are
summarized in Table 4.
From Figure 8 it can be observed that the T? and Q charts are unable to detect
the entirety of the fault, while the GLR chart designed to monitor shifts in the mean
(Figure 9a) is able to detect the most of the fault, and provides the lowest missed
DR (Table 4). Although, the T? chart returns a low ARL; value, it does not detect
the fault efficiently, and the low ARL; value can be attributed to random noise.

2000

PCA-based T? ; . ; PCA-based Q
100 T T
T Q statistic
T statistic 1of — — QThreshold
9 - — = T Threshold
80
sl
70
60 - °
2 B 6L
2 s [~1°r~~~°° ‘ i (| ]
50 m = - - - - 7}
2 | g |
L il
40 4l
30
20 2
10 I
0 . A L
0 . L
o 400 600 800 1000 1200 1400 1600 1800 2000 0 20 400 600 B 000, RN ae00: debor et
% Observation Number
Observation Number
Figure 8.
PCA-based T? and Q charts (IDV 3).
200 PCA-based GLR (to monitor mean) 200 PCA-based GLR (to menitor variance)
T T
180
160
140
i o120
k] 2
@ & 100
= i
[} @ ]
60

Figure 9.

800 1000
Observation Number

(a)

PCA-based GLR charts (IDV 3).

600 800

1200

1000
Observation Number

(b)

PCA- PCA- PCA-based GLR (to PCA-based GLR (to monitor
based T? based Q monitor mean) variance)
Missed DR 97.6 92.8 07.9 70.9
(%)
FAR (%) 04.8 04.5 05.0 05.4
ARL; 02.0 86.0 84.0 84.00
Table 4.

Summary of fault detection vesults (IDV 3).
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5.2.2 IDV 11: random variation in the reactor cooling water inlet temperature

For the case where there is random variation in the reactor cooling water inlet
temperature, the T? and Q charts, and the GLR charts are illustrated in Figures 10
and 11 respectively, and the fault detection results are summarized in Table 5.

Although it might seem like the T* and Q charts (Figure 10) are able to detect
most of the fault, they still have higher missed DR than both GLR charts
(Figure 11). The GLR chart designed to monitor shifts in the variance provides the
lowest missed DR from the charts that were compared.

From this example we can conclude that the PCA-based GLR charts are able
to provide improved fault detection results over the conventional PCA-based

PCA-based T* PCA-based Q@
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Figure 10.
PCA-based T? and Q charts (IDV 11).
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Figure 11.
PCA-based GLR charts (IDV 11).

PCA- PCA- PCA-based GLR (to PCA-based GLR (to monitor
based T> based Q monitor mean) variance)
Missed DR (%) 09.9 22.3 02.3 01.9
FAR (%) 05.1 05.0 05.0 05.4
ARL, 20.0 24.0 28.0 24.0

Table 5.
Summary of fault detection vesults (IDV 11).
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T? and Q charts. The improved results can be attributed to the use of MLEs to
estimate the values of the unknown parameters used to maximize the GLR statistic,
allowing for the best possible DR to be achieved for a fixed FAR. This example also
demonstrates that the GLR charts can be easily designed and utilized to monitor
chemical processes, such as the TEP.

5.2.3IDV 3 and IDV 11: single-valued vs. interval-valued multivariate GLR chart

For the final case study, the moving window interval aggregation method is
tested for the same fault scenarios tested previously for the TEP: IDV 3 and IDV 11.
A smaller sample window size of 10 samples is used for the multivariate GLR chart

PCA-based ivariate GLR (Single-Valued) 2000 PCA-based Multivariate GLR (Interval-Valued)
T T T T
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Figure 12.
PCA-based multivariate GLR charts (IDV 3).
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Figure 13.

PCA-based multivariate GLR charvts (IDV 11).
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IDV 3 Single- IDV 3 Interval- IDV 11 Single- IDV 11 Interval-
valued valued multivariate valued multivariate valued multivariate
multivariate GLR GLR GLR GLR
Missed 151 00.0 02.0 00.0
DR (%)
FAR (%) 05.0 05.0 05.0 05.0
Table 6.

Summary of fault detection results (single vs. interval data) for a = 5%.

in order to highlight the difference between using single and interval-valued data
more clearly.

The interval aggregation window size was set at 10 samples. The IDV 3 and IDV
11 scenarios for both data types are shown in Figures 12 and 13, and the metrics for
each method are tabulated in Table 6.

There are two major observations to be made from the results. First, the use of
the multivariate GLR chart allowed for a more stable FAR for all cases due to the
presence of a single statistic to monitor for all variables, as opposed to the one for
each variable when using the univariate GLR charts. Second, the missed DR when
using interval data was significantly lower than that for single-valued data, reaching
perfect performance levels of zero missed DR for both scenarios.

The latter observation is attributed to interval data, especially the method of
generation, where the centers and radii are used as independent variables in the
same dataset. This method of aggregation helps the PCA model account for
shifts in the mean and variance respectively, similar to the univariate GLR chart
outline in Section 3.1.3. However, it does so without the need to tune any extra
parameters, due to the fact that a fault in the centers is likely to be caused by a
shift in the mean, while a fault in the radii is likely to be caused by a shift in
the variance.

6. Conclusions

In this chapter, the performance of GLR charts were compared to conventional
fault detection statistics, specifically the Q and T* statistics, and the integration of
interval-valued data into real-time process monitoring was explored. The perfor-
mance of different PCA-based univariate GLR charts were examined using single-
valued data through two illustrative examples: simulated synthetic data, and the
Tennessee Eastman Process. The performance of the moving window interval
aggregation method was evaluated alongside that of single-valued data for the
multivariate GLR chart as well.

The results demonstrate that in order to monitor processes that may experience
both shifts in the mean and/or variance, the best performance is achieved by
implementing the two respective univariate GLR charts separately in parallel, rather
than the single chart designed to simultaneously detect shifts in both, as the simul-
taneous estimation of two parameters is unable to provide the best possible fault
detection performance. Moreover, the moving window interval aggregation
method, when combined with the multivariate GLR chart, was able to provide a
perfectly stable statistic, with an unwavering false alarm rate, in addition to the best
possible performance in detecting shifts in the mean and variance for two scenarios
of the Tennessee Eastman Process.
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