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Chapter

Informational Time Causal Planes:
A Tool for Chaotic Map Dynamic
Visualization

Felipe Olivares, Lindiane Souza, Walter Legnani
and Osvaldo A. Rosso

Abstract

In the present chapter, we made a detailed analysis of the different regimes of
certain chaotic systems and their correspondence with the change in the normalized
Shannon entropy, Statistical Complexity, and Fisher information measure.

We construct a bidimensional plane composed of the selection of a pair of the
informational tools mentioned above (a casual plane is defined), in which the
different dynamical regimes appeared very clear and give more information of the
underlying process. In such a way, a plane composed of the normalized Shannon
entropy, statistical complexity, normalized Shannon entropy, and Fisher
information measure can be applied to follow the changes in the behavior variations
of the nonlinear systems.

Keywords: chaotic dynamics, statistical complexity, information theory quantifiers,
Shannon entropy, Fisher information measure, Bandt-Pompe probability
distribution function

1. Introduction

In the space of few decades, chaos theory has jumped from the scientific litera-
ture into the popular realm, being regarded as a new way of looking at complex
systems like brains or ecosystems. It is believed that the theory manages to capture
the disorganized order that pervades our world. Chaos theory is a facet of the
complex system paradigm having to do with determinism randomness. As many
other people before, we wish to approach it from the information theory viewpoint.

In 1959 Kolmogorov had pointed out that the probabilistic theory of information
developed by Shannon could be applied to symbolic encodings of the phase space
descriptions of physical non-linear dynamical systems and with line of rezoning it
more or less direct characterize a process in terms of its Kolmogorov-Sinai entropy
[1, 2]. It has been a cornerstone in the updated theory of dynamical systems that
could be complimented with Pesin’s theorem in 1977 [3]. With this theorem, Pesin
has proven that for certain deterministic nonlinear dynamical systems exhibiting
chaotic behavior, an estimation of the Kolmogorov-Sinai entropy can be computed as
the sum of the positive Lyapunov exponents for the process.

As is well known, chaotic systems have sensitivity to initial conditions which
means instability everywhere in the phase space and lead to nonperiodic motion
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(chaotic time series) [4]. One of the main characteristics of this kind of systems is
its capability of long-term unpredictability despite the deterministic character of
the temporal trajectory. In a system undergoing chaotic motion, two closeup neigh-
boring points in the phase space after a short time elapsed show an exponential
divergence of their respective trajectories. For example, let X;(¢) and X, (¢) be such
two points, located within a ball of radius R at time ¢. Further, assume that these two
points cannot be resolved within the ball due to poor instrumental resolution. At
some later time ¢/, the distance between the points will typically grow to
1X1(') — Xo(t')| = | X1(t) — X2(t)| exp (A|t' —t|), in the case of chaotic dynamics,
with A > 0, the average of Lyapunov exponents of the system. Clearly, if
|X1(2') — X,(t')| > R, the points will be apart from each other, determining a non-
zero distance between them. This fact could be interpreted by a certain kind of
instability which reveals some information about the phase space population that
was not available at earlier times [4]. This fact contributes to think that the chaotic
behavior plays a role of information source.

As has been shown in the literature for a many of simple nonlinear processes, the
Lyapunov exponents may be computed very precisely with different algorithms.
In such a way, a nonlinear dynamical system may be considered as an information
source from which information-related quantifiers may help visualize relevant
details of the chaotic process. The existence of simple “calibrated” sources such as
the logistic map provides a means for a precise evaluation of the performance of
these information quantifiers. In this communication we take advantage such fact
in order to show that planar representations constructed with two information
theory-based quantifiers offer one possibility of easily visualizing many interesting
details of chaos characteristics, including the fine structure of chaotic attractors.
We exemplified their use showing the result on two chaotic maps: the logistic map
and the delayed logistic map.

2. Information theory quantifier prescription

Many systems during its functioning generate a sequence of values that can be
measured constituting what is called in science as time series (TS). The analysis
concerns to extract the major quantity of information of them to accomplish the
understanding of the meaning of the changes characterizing different dynamical
regimes. It usually computes the experimental, or when the case permits the theo-
retical, probability distribution function (PDF) of the regimes exhibited by the TS,
from here noted as X'(t).

The mathematical tools applied once the PDF is available receive the name of
informational tools; more precisely information theory quantifiers [5], the main
feature of the quantifiers is exactly quantifying the amount of information coming
from the TS, originating in the dynamical system.

2.1 Shannon entropy, Fisher information measure, and statistical complexity

The concept of entropy has many interpretations arising from a wide diversity of
scientific and technological fields. Among them is associated with disorder, with the
volume of state space, and with a lack of information too. There are various defini-
tions according to ways of computing this important magnitude to study the
dynamics of the systems, and one of the most frequent that could be considered of
foundational definition is the denominated Shannon entropy [6], which can be
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interpreted as a measure of uncertainty. The Shannon entropy can be considered as
one of the most representative examples of information quantifiers.

Let a continuous PDF be noted by p(x) withx € QCR and |, p(x)dx = 1; its
associated Shannon Entropy S|p| is defined by [7]:

Sl ==, plwin (o)) (1)

This concept means a global measure of the information contained in the TS; it
has a low degree of sensitivity to strong changes in the distribution originating from
a small-sized region of the set Q.

For a time series X'(¢) = {x;;¢ = 1, ..., M}, a set of M measures of the observable

X and the associated PDF, given by P = {pi;i =1, ...,N}, with Eﬁilpi =1l1and N as
the number of possible states of the system under study, the Shannon entropy
(formally Shannon’s logarithmic information) [7] is defined by

N

SIPl =~ pin(p,). (2)

i=1

Eq. (2) constitutes a function of the probability P = {p,;i = 1,...,N}, which is
equal to zero when the outcomes of a certain experiment denoted by the index k
associated with probabilities p, ~ 1 will occur. Therefore, the known dynamics
developed by the dynamical system under study is complete. If the knowledge of
the system dynamics is minimal, all the states of the system can occur with equal
probability; thus, this probability can be modeled by a uniform distribution
P, ={p,=1/N;Vi=1,..,N}.

It is useful to define the so-called normalized Shannon entropy, denoted as H[P]
in which its expression is

H[P] = S[P]/Smaxa (3)

(0 < H[P] < 1) with S = S[P,] = InN.

In order to analyze the local aspects of variations in the content of information
given by a TS is extended the use of the Fisher’s Information Measure, which uses
the gradient content of the PDF, and a difference that means the Shannon Entropy,
the FIM as can be seen from its definition given in the expression (4) reflect tiny
localized perturbations. It reads [8, 9]

0

Flol = | o lot)

0

—[w(x)]

2
Fw dx, (4)

7mmmz4j

Q

where y(x) = \/p(x).

In this sense, the Fisher information is a local information quantifier. It has
various interpretations, and, among others, it can be thought of as a measure of
the ability to estimate a parameter. In other cases, it is applied to calculate the
amount of information that can be extracted from a TS and also as a measure of
the state of disorder of a system or phenomenon [8]. The so-called Cramer-Rao
bound can be considered as the most important property in which the FIM
participates [9]. The local sensitivity of FIM can contribute in such cases in which
the analysis necessitates an appeal to a notion of order. When there are certain
points in the set Q at which the PDF p(x) — 0 is convenient to redefine the FIM



Nonlinear Systems - Theovetical Aspects and Recent Applications

avoiding the division by p(x), in such cases an alternative expression of can be
found in [9].

The signal discretization carries a problem of loss of information. It was
extended studies by several authors, for example, see [10, 11] and references
therein. In particular, it entails the loss of Fisher’s shift invariance, which has not
been relevant in the present chapter. Taking in mind the considerations made
above, the discrete normalized FIM runs over the interval [0,1] and [12] is given by

F[P] = FOIS [(1”:’+1)1/2 7 (Pi)l/z} 2’ ()

where the normalization constant Fy is given by

_{ 1 ifp. =1fori* =1ori® = Nandp, = OVi #i" 6)

Fo =
0 1/2 otherwise

The local sensitivity of FIM for discrete PDFs is reflected by the fact that the
specific i-ordering of the discrete values in P = {p;;i = 1, ..., N } must be seriously
taken into account in evaluating the sum in Eq. (5) [13]. Each term in Eq. (5) can be
regarded as a kind of “distance” between two contiguous probabilities. Thus, a
different ordering of the pertinent summands would lead to a different FIM value,
thereby its local nature.

In a system with N different states which reach a very ordered state, we can
think it generates a signal with a PDF given by Py = {Pk ~1,and p; = 0;Vk #

i =1,...,N}, as it has a Shannon entropy S[Py| = 0 and a normalized FIM

F[Py] = Fy = 1. In the other extreme, if the system under analysis develops a very
disordered state, it is natural to assume that this particular state is described by a
PDF approximated by a uniform distribution P, = {p, = 1/N;Vi =1,...,N}, and the
corresponding Shannon entropy S[P,| 2 S, = In N while F[Py] = 0. In certain
way it is easy to understand that the general behavior of the FIM is opposite to that
of the Shannon entropy.

The third information quantifier applied in this chapter is the statistical complexity
measure (SCM) which is a global informational quantifier. All the computations made
in the present work were done with the definitions introduced by Lépez-Ruiz et al.,
in their seminal paper [14] with improvements advanced by Lamberti et al. [15]. For
a discrete probability distribution function (PDF), P = {p,;i = 1,...,N}, associated
with a time series (TS), this functional C[P] is given by

C[P] = [P, P,].H[P], @)

where H denotes the amount of “disorder” given by the normalized Shannon
entropy (Eq. (3)) and Q; is called “disequilibrium,” defined in terms of the Jensen-
Shannon divergence, given by

Q[P, Pe] = Qo JIP, Pe] = Qo{S[(P + P.)/2] — S[P]/2 — S[P.]/2}. (8)

The normalization condition Q for the disequilibrium corresponds to the
inverse of the maximum possible value of Jensen-Shannon divergence, that is,

QO :][POaPG]:

Qo = —2{ <J%> In(N +1) —In(2N) + lnN}l. )
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In this way, we have 0 <H[P]<1and 0 <Q,[P,P,] <1.

The C[P] quantifies the existence of correlational structures giving a measure of
the complexity of a TS. In the case of perfect order or total randomness of a signal
coming of a dynamical system, the value of the C[P] is identically null that means
the signal possesses no structure. In between these two extreme instances, a large
range of possible stages of physical structure may be realized by a dynamical
system. These stages should be reflected in the features of the obtained PDF and
quantified by a no-null C[P].

The global character of the SCM arising in that its value does not change with
different orderings of the PDF. So the C[P] quantifies the disorder but also the
degree of correlational structures. It is evident that the SCM adopted in this work is
a not a trivial function of the entropy. It has consequences in the ranges that this
information quantifier can take. For a given H value, the complexity C runs on a
precise range limited by a minimum C,,;, and a maximum C,,, [16]. These extreme
values depend only on the probability space dimension and, of course, on the
functional form adopted by H and Q.

2.2 The Bandt and Pompe approach to building up a PDF

In the beginning of this section, it was mentioned that during the analysis of
a TS, one of the first steps is the computation of the PDF associated. Immediately
a question emerges: What is the appropriate PDF that can be computed from the
TS? The regrettable answer is not unique. There is no universal nonparametric
algorithm given by the statistics in the literature to do with this task.

To give light in this subject, Bandt and Pompe (BP) [17] introduce a simple and
robust symbolic method that takes into account the time causality connected with
dynamics of the system. They proposed to use a symbol sequence from the TS that
can be constructed in a natural way. So the PDF introduced by Bandt and Pompe
(BP-PDF) did not use any kind of assumption about the model, in general
unknown, in which of the underlying dynamics exists. To compute the BP-PDF, the
“partitions” are constructed by comparing the order of neighboring relative values
in the TS rather than by apportioning amplitudes according to different levels like
in the usual amplitude statistic methodology.

One problem remains linked with the lack of information associated with the
temporal causality in which origins are in the computed methodologies to calculate
the amplitude of the histograms. To give an answer to this problem, Kowalski and
co-workers [18] using the Cressie-Read family of divergence measure showed in
quantitative assessment the advantages of the BP-PDF in relation to any scheme
based upon the construction of the corresponding amplitude histogram of the PDF,
and also the BP-PDF brought some insight information about the dynamics of the
physical problem.

Two parameters are necessary to define at the time of computing the BP-PDF,
namely, the embedding dimension and the embedding delay. To clarify these cru-
cial concepts, we will give the following details. Let TS X(¢) = {xs;t =1,...,M},
with an embedding dimension D >1 (D € N) and an embedding delay 7 >1 (z €N);
the BP pattern of order D generated by this selection of parameters shall be consid-
ered of the form

5 (Xs (D—1)e» Xs— (D—2) Xs—(D—3)zs +oer Xs—z, X ) - (10)

So the methodology proposed by Bandt and Pompe has as a starting point for
every times, assigned with a D-dimensional vector that results from the evaluation



Nonlinear Systems - Theoretical Aspects and Recent Applications

of X(¢) at timess — (D — 1)z,s — (D — 2)7, ..., s — 7, 5. It is easy to note that higher
values of D imply more information about “the past” to contribute in the PDF.
Once time settled the ordinal pattern of order D related to the time sequence s,
the next step is to compute the permutation pattern denoted by 7 = (ro, 71, ...,7p-1)
of (0,1,...,D — 1) that could be formalized by
xS—V

Sxf—}’ 2)‘[ S oo SxS—Vl‘L' SxS—V()T' (11)

(b-n? (D—

At this stage of the BP-PDF procedure, the vector defined by Eq. (10) is
converted into a definite symbol z. Then to get a unique result, BP considers that
Vi <71 if %,y r = X,_, .. This is justified if the values of {x,} have a continuous
distribution so that equal values are very unusual.

Considering all the D! possible orderings (permutations) z; when embedding
dimension D, their associated relative frequencies can be naturally computed
according to the number of times; this sequence order is found in the TS, divided by
the total number of sequences

#{sls<M — (D — 1)z; (s) has type m; }

In Eq. (12) the symbol # (usually applied to designate the set cardinality) means
“number.” In such a way, an ordinal pattern probability distribution
IT = {p(z;);i =1,...,D!} is constructed from the TS.

Time series amplitude information is not considered, and it is a clear disadvan-
tage of the methodology proposed by BP, but it is compensated by the valuable
information given by the intrinsic structure of the process under analysis. The
scheme proposed by BP can be understood as a symbolic representation of time
series by recourse to a comparison of consecutive points (z = 1) or nonconsecutive
(r>1) points allowing for an accurate empirical reconstruction of the underlying
phase space, even in the presence of weak (observational and dynamical) noise [17].
It is noticeable that the ordinal-pattern’s associated PDF results invariant with
respect to nonlinear monotonous transformations. Accordingly, nonlinear drifts or
scaling artificially introduced by a measurement device will not modify the quanti-
fier estimation, a nice property if one deals with experimental data (see [19]).
Summing up all these advantages makes the BP methodology a better choice than
conventional methods based on range partitioning.

Among other properties, we can mention the following characteristics to give
reasons in the selection of the BP-PDF: (i) the reduced number of parameters
needed contributes to its simplicity of implementation (D and 7 the embedding
length and delay, respectively), and (ii) the time required in the calculation process
is in fact very short. The BP methodology has an extra advantage; it can be used to
compute the PDF in TS arising in low-dimensional dynamical systems, and signals
originated in a wide diversity of systems as well as chaotic, noisy, and regular
reality-based ones, with a light analysis in the stationarity because there no
mandatory condition to accomplish with a strong stationary assumption (for details
see [17]).

Parameter D, required by the BP-PDF methodology, determines the number of
accessible states which is given by D!. Moreover, the minimum length of the TS
must satisfy the condition M >> D! in order to achieve a reliable statistic and proper
distinction between stochastic and deterministic dynamics [20]. The seminal work
of BP [17] includes an advice on the choice of range of the parameters to compute
the BP-PDF, when the selection of time lag is 7 = 1, and recommends the other
parameter (D) to pick up on the interval 3<D <6.
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2.3 Ordinal patterns for deterministic processes

There is a demonstrated fact, done by Amigo et al. [21, 22], that in the case of
deterministic one-dimensional maps, independently of the TS length M, not all
possible ordinal patterns, applying BP methodology [17], can effectively give orbits
in the phase space. This is a kind of a new dynamical property that means the
existence of forbidden ordinal patterns. The proximity of patterns as well as correla-
tion is not linked with the abovementioned property [21, 22]. So the informational
quantifiers give a new characteristic in the analysis of chaotic or deterministic TS.

2.4 Causal informational planes

To characterize a given dynamical system described by a TS, we are able to use
two representation spaces: (a) one with global-global characteristics called causal
entropy-complexity plane (H x C) and (b) one with global-local characteristics
called causality Shannon-Fisher plane (H x F), respectively.

The time causal nature of the Bandt and Pompe PDF gives a criterion to separate
and differentiate chaotic and stochastic systems in different regions in both infor-
mational planes (H|[ IT] x C[I1]) [23] and (H[II] x F[II]) [24, 25]. While the global
plane gives information of the complexity of a system, the local one becomes able to
separate different dynamical behaviors in function of a control parameter.

3. Description of the chaotic maps

We focus our attention on two chaotic maps, namely, the logistic map and
logistic map with delay.

3.1 The logistic map

One of the most used examples of deterministic chaotic systems is the logistic
map. Its simplicity and easy computational implementation had been one of the
most useful tools to explain chaotic behavior. It is a quadratic map F : x, — x,11
[26], described by the ecologically motivated, dissipative system given by the first-
order difference equation:

Xni1 =7 % (1 —x,), (13)

where 0 <x, <1and 0 <r <4 can be associated with a kind of growth rate in the
population dynamics. The corresponding Lyapunov exponent can be evaluated
numerically [26] via

1 N-1
A(r) = lim Nzoln (1 —2x,)], (14)

N—oo

where N is the number of iterations. Figure 1a and 1b displays the well-known
bifurcation diagram and the corresponding Lyapunov exponent A(r), respectively,
as a function of the parameter 3.4 <7 <4.0 with Ar = 0.0005. We evaluated
numerically the logistic map starting from a random initial condition in the interval
0 <x0 < 0.5. The first Ny = 10’ iterations are disregarded (transitory states), and
the next N = 10° ones are used for Lyapunov evaluation (Eq. (14)) and information
theory quantifiers (Egs. (3), (5), and (7)).
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Figure 1.
(a) Bifurcation diagram and (b) Lyapunov exponent A for the logistic map as function of parameter r
(Ar = 0.0005). The vertical segment lines delimited the different dynamical windows described in the text.

In the bifurcation diagram (Figure 1a), for fixed , one appreciates that a
periodic orbit consists of a countable set of points, while a chaotic attractor fills out
dense bands within the unit interval. For » € [0, 1), one detects stable behavior
x, = 0. For r €[1, 3), there exist only a single steady-state solution given by
x, = 1 — 1/r. Increasing the control parameter, for » € [3,7,), forces the system to
undergo period-doubling bifurcations. Cycles of periods 2, 4, 8, 16, 32, etc. occur,
and, if 7, denotes the values of  for which a 2" cycle first appears, succesive 7,s
converge to the limiting value 7, ~ 3.5699456 [26]. The value r, splits the final-
state diagram into two distinct parts: (a) the period-doubling zone on the left and
(b) an area governed mainly by increasing chaotic behavior on the right. From
Figure 1b, we see that period-doubling zone r € [3, 7, ) Lyapunov are A(r) <0,
approximating to zero at each period-doubling bifurcation. The onset of chaos is
apparent at 7o, where A becomes positive for the first time. For » = 4 the iterates of
the logistic map are represented by a random-looking distribution of dots which
vertically span the range x, € [0, 1], that is, complete developed chaos. For > r,
the Lyapunov exponent increases globally (see Figure 1b), except for dips one sees
in the windows of periodic behavior. In the chaotic regime r € [r, 4], the period is
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infinitely long, and finite regions of the interval are visited by the orbits. Many
periodic windows are observed, and all possible periods are represented, but the
width of the window decreases as the period increases. Periodic windows suddenly
appear as r increases, and they contain their own periodic-doubling route toward
chaos. These facts exhibit the self-similar nature of the logistic map.

In Figure 1a and 1b, we marked eight zones in order to analyze the logistic map
behavior. They are Zone 1, r € [3.4, 7+ ) which corresponds to the period-doubling
zone; Zone 2, v € [rw,71), with 7, = 3.626557, which corresponds to the start of
periodic window of period 6; Zone 3, r € [r1,7,), with r, = 3.701645, which corre-
sponds to the start of periodic window of period 7; Zone 4, r € [r,73), with
r3 = 3.738177, which corresponds to the start of periodic window of period 5; Zone
5,7 €[rs,r4), with r4 = 3.828427, which corresponds to the start of periodic window
of period 3; Zone 6, r € [r4,75), the largest periodic window, with
rs = 3.905573, which corresponds to the start of periodic window of period 5; Zone
7, 7 € [rs,76), with 76 = 3.960108, which corresponds to the start of periodic win-
dow of period 4; and Zone 8, r € [rs, 4], with » = 4 for fully developed chaos.

Periodic windows “interrupt” chaotic behavior in noticeable fashion. At the
beginning of a window, there is a sudden and dramatic change in the long-term
behavior of the logistic map. Consider, for example, the behavior for » >4
corresponding to the beginning of a period 3 window. We see three miniature
copies of the whole final-state diagram (Figure 1a), and, indeed, we can reproduce
the entire scenario of period-doubling — chaos (band splitting) — chaos (band merg-
ing) again, albeit at a much smaller scale. Same findings are encountered at all the
other periodic windows, including miniature windows within the larger windows,
as evidence of self-similarity.

3.2 The logistic map with delay

In 1948 Hutchinson [27] introduces a delay in the logistic equation to improve its
applications in the study of population dynamics. The proposed model by Hutchin-
son has been applied in population dynamics [28], deterministic chaotic systems
[29], the analysis of random discrete delay equations [30-32], etc. We face a dis-
crete logistic equation with delay [33] given by the difference equation:

Xn+1 = VXn(l , Xn—l): (15)

with 0 <X, <1and 0 <r<2.3 (r the intrinsic growth). The equation resembles
the logistic map (Eq. (13)) saved for the fact that the factor regulating population
growth contains a one-generation time delay.

It is convenient to convert the second-order difference equation into an equiva-
lent pair of first-order difference equations. The logistic map with delay is thus
recasted as a two-dimensional map:

{ — rx,(1-,)

yn+1 = Xn

, (16)

and the corresponding Lyapunov exponents can be evaluated numerically
[26] via

— Xy zn)z +1
1+z,21

, (17)

Ai(r) = lim — Z ln

N—oo 2IN
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and
Ai(r) + Aa(r) = lim Zln|1fxn (18)

with 2,41 = 1/[r(1 — y, — x4%,]. In the previous equations, N is the number of
iterations.

The pertinent bifurcation diagram and the corresponding Lyapunov exponents
A1 and A; are displayed in Figure 2a and 2b, as a function of the parameter
0 <r<2.3 with Ar = 0.0005, respectively. We evaluated numerically the delayed
logistic map starting from a random initial condition. The first Ny = 10° iterations
are disregarded (transitory states), and the next N = 10° ones are used for

Lyapunov evaluation (Egs. (15) and (16)) and information theory quantifiers
(Egs. (3), (5) and (7)).

-

-

o3
-

a) 1,0 -

r
.’
0,9 :
] |
1
0,8 !
" 1
1
0.7 - i
| |
1
0,6 - '
i :
0,5 .
b3 . i
04 - :
:
1
1
1
1
1
1
1
1
i
1
1
1
I
I
0!

0,3+

0,2

Hopf bifurcation

U
~

011pq

i wil bl i b e ot onded e o Lt il e et il il e i aden i s R

0,0 ;
1,95 2,

T T T . T
0 2,05 2,10 2,15 2,20 2,25

-
-
-
-

b) 0,2 -

0,1+ !

-

(111

0,1
0,2

-0,3

Lyapunov

0,4

0,5

0,6

071pq

Hopf bifurcation

i
f
2,00

-0,8
1,95

T T T T T T T
2,05 210 215 2,20

Figure 2.

(a) Bifurcation diagram and (b) Lyapunov exponents Ay and A, for the delayed logistic map as function of
parameter v (Ar = 0.0005). The vertical segment lines delimited the different dynamical windows described in
the text.
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This map has common characteristics with the usual logistic map. In particular,
X = 0 is a fixed point for r€[0,1), and X,, =1 — 1/r is a stationary state for
€ [1,7y). In the delayed logistic map case, when the parameter value is 5 = 2, the
system shows a Poincare-Andronov-Hopf bifurcation (see Figure 2). The quasipe-
riodic behavior persists over most of the range r € [ry,71). A seven-cycle periodicity
is observed for r € [r1,7;) (with r; = 2.17640 and r, = 2.20071). For the parameter
r € [r2,7.), one mainly detects chaotic dynamics interspersed with regions of relative
simplicity. For » >r. = 2.271, the finite solutions are destabilized, and the system
experiences a transition to —oo. In the bifurcation diagram (see Figure 2a), it is
difficult to distinguish quasiperiodicity from chaos, but the plot displaying
Lyapunov exponents (see Figure 2b) indicates quasiperiodicity in the region where
Al — 0

4. Results and discussion

For each chaotic map previously described, the same time series of length
N = 10° data, used for evaluating the corresponding Lyapunov exponents at each
parameter value, are used now to build a Bandt-Pompe PDF (II), taking an embed-
ding dimension D = 6 and time lag 7 = 1. Then corresponding time causal infor-
mation theory quantifiers, normalized Shannon entropy (H[IT]), statistical
complexity (C[I]), and Fisher information measure (F[I1]), were evaluated.

For ordinal entropic quantifiers of Shannon kind (global quantifiers), the BP-
PDF provides univocal prescription. However, some ambiguities arise in the case in
which one wishes to employ the BP-PDF to construct local quantifiers. The local
sensitivity of the Fisher information measure for discrete PDFs is reflected in the
fact that the specific “i-ordering” of the discrete values p(z;) must be taken into
account in evaluating Eq. (5). If we are working with BP-PDF and consider patterns
of length D, we will have D!! possibilities for the i-ordering. We follow the Lehmer
lexicographic order [34] in the generation of BP-PDF, because it provides the best
graphic separation of different dynamics in the causal Shannon-Fisher plane
[13, 24]. We display in Figures 3 and 4 the causal information quantifiers (entropy,
complexity and Fisher) as a function of the parameter r for the logistic map (see
Figure 1) and delayed logistic map (see Figure 2), respectively. In these figures, the
different dynamical zones and corresponding colors are both used in the original
bifurcation diagrams (Figures 1a and 2a).

For the logistic map, the period-doubling zone is detected for all the quantifiers.
In particular for » <7, low entropy and complexity values and maximum Fisher
value are found with the different periodic behaviors. A jump in the entropy and
complexity value and a drop in Fisher value are observed when period doubling
happens. This quantifier behavior is due to for periodic sequences the BP-PDF
consisting of a very few p(z;) # 0 values.

After 7, the dynamic becomes chaotic (positive Lyapunov exponent). An
abrupt entropy and complexity growth and Fisher decreasing values are observed
for » > r, reaching their maximum value at » = 4, where we face a totally devel-
oped chaotic dynamics. The several “drops” in the entropy and complexity, with the
“jumps” in the Fisher values in the parameter interval 7, <7 <4, correspond to the
periodic windows as can be easily confirmed compared with the bifurcation and
Lyapunov exponent (see Figure 1).

For the delayed logistic map, a regular dynamic (steady state) is observed for
parameter in the range » <7y and then has entropy and complexity null values and
Fisher maximum value. For » > ry an oscillatory behavior appears, which is Hopf
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bifurcation with A; = 0. This quasiperiodic orbit can be thought as a mixture of
periodic orbits of several different fundamental frequencies. The three quantifiers,
entropy, complexity, and Fisher, are able to detect changes in the quasiperiodicity
oscillations as a function of », being Fisher the most sensitive (see Figure 3b). The
growth in the amplitude of this oscillatory behavior as a function 7 is not detected by
the quantifiers because of the independence of the BP-PDF on the amplitude values.
Note that the same number of ordinal patterns (~30 patterns) is materialized for the
whole quasiperiodic behavior, indicating its deterministic nature but not giving
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zones is the same as in Figure 1a.
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indications about the type of dynamics. For the parameter values 7; <7 <7,, a period
7 window with H = 0.299576, C = 0.288624, and F = 1 is observed. In the parame-
ter range r, <r <7, chaotic dynamics with some periodic windows is observed,
characterized by higher values of entropy and complexity and lower values of Fisher,
in relation to those previously obtained for the period 7 window.

The causal planes H x C and H x F for the logistic map in the parameter range
3.4 <r <4.0 are shown in Figure 5a and 5b, respectively. Both planes provide a
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characterization of the intrinsic information of the system, independently of the
control parameter. From the causal plane H x C (Figure 5a), we can observed that
the variation in the whole range of the parameter r locates the system very close to
the maximum complexity curve C,,,, reaching at » = 4 (totally developed chaos)
and its maximum value C = 0.48425. Note also that low entropy values

H < 0.3 correspond to periodic behavior values; however, these values have also
associated high values of complexity with curve C,,,,, making difficult in this way
the clear separation of the different dynamic behaviors, but a quantification of the
global complexity of the logistic map is obtained. The causal plane H x F (see
Figure 5b) shows a clear characterization of the various associated dynamics to
different values of the control parameter 7, locating them in different zones of the
plane. It is in this instance, in which the Fisher permutation reveals its local charac-
ter and, simultaneous with the global information delivered by Shannon entropy,
gives us a sort of “topographical” plane of the dynamics.

In Figure 6, we show the behavior of the delayed logistic map for the whole
range of the parameter  in the two causality planes. It is clearly that the H x C
plane (Figure 6a) gives us just the information of the complexity of the map, which
reaches the maximum curve (C,,), but does not differentiate between a Hopf
bifurcation and the chaotic dynamics developed for » > r,. On the other hand in the
H x F plane (Figure 6b), one obtains a good defined structure for the quasiperiodic
orbits, due to the oscillations in the quantifiers. The shapeless blue points for
ry <r <r, is due to neither the H and the F are not detecting any kind of intermit-
tency or bifurcation that can be present into the chaotic dynamic, at the present
parameter resolution Ar.

5. Conclusions

We have shown that taken as starting point a probabilistic description of
dynamical system considering the inherent temporal causality in the generated time
series throughout Bandt-Pompe methodology, it is possible to evaluate information
quantifiers of global or local character and a complete and detailed characterization
of the dynamical system can be successfully archived with reference to an informa-
tion causal plane, in which the two coordinate axes are different information quan-
tifiers. The causal information planes defined are the global-global H x C plane and
the global-local H x F plane, in which (i) the permutation normalized Shannon
entropy (H|IT]) and the permutation statistical complexity (C[II]) are responsible for
the global features and (ii) the permutation Fisher information measure (F[IT])
accounts for the local attributes (all the information quantifiers are evaluated using
BP-PDF denoted by II).

For the discrete systems considered here, the logistic map and the delayed
logistic map, we find that both H and C show a correspondence with one of the
classic measures of chaoticity, the maximum exponent of Lyapunov, while the local
sensitivity of F reveals details of the dynamics, invisible to the other quantifiers.
The visualization of the location of the dynamics of the system under analysis, in
the information planes, allows us to account for (a) the complexity of the system
and (b) characterization of different dynamics in different locations of the plane,
enabling the identification of different routes to chaos.
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