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Chapter

Understanding Urban Mobility 
and Pedestrian Movement
Marija Bezbradica and Heather J. Ruskin

Abstract

Urban environments continue to expand and mutate, both in terms of size of 
urban area and number of people commuting daily as well as the number of options 
for personal mobility. City layouts and infrastructure also change constantly, 
subject to both short-term and long-term imperatives. Transportation networks 
have attracted particular attention in recent years, due to efforts to incorporate 
“green” options, enabling positive lifestyle choices such as walking or cycling 
commutes. In this chapter we explore the pedestrian viewpoint, aids to familiarity 
with and ease of navigation in the urban environment, and the impact of novel 
modes of individual transport (as options such as smart urban bicycles and electric 
scooters increasingly become the norm). We discuss principal factors influenc-
ing rapid transit to daily and leisure destinations, such as schools, offices, parks, 
and entertainment venues, but also those which facilitate rapid evacuation and 
movement of large crowds from these locations, characterized by high occupation 
density or throughput. The focus of the chapter is on understanding and represent-
ing pedestrian behavior through the agent-based modeling paradigm, allowing both 
large numbers of individual actions with active awareness of the environment to be 
simulated and pedestrian group movements to be modeled on real urban networks, 
together with congestion and evacuation pattern visualization.

Keywords: infrastructure, population dynamics, environmental issues, agent-based 
modeling, pedestrian behavior

1. Introduction

Currently, the field of urban mobility modeling is experiencing a surge of activ-
ity due, in part, to renewed interest in crowd management (including evacuations 
due to natural and man-made disasters) but also influenced by increased efforts to 
reduce CO2 emissions through optimization of urban networks for both traffic and 
pedestrian purposes [1, 2]. Urban sprawl is a recognized phenomenon for growing 
cities, and tools, such as urban growth models, have proven valuable for planners 
and decision-makers in identifying challenges and potential environmental impacts 
[3]. Expansion of the built environment to meet population demand implies 
extended daily commutes as well as loss of other land function and is recognized as 
a critical challenge in global change, not only in countries experiencing explosive 
industrialization but worldwide [4–9]. Growth in population size of many major 
cities presents complex logistics in meeting demands for increased numbers of 
daily commuters and alternative transport modalities. In the UK, for example, 
the 11 most populous cities since 2015 are to be found in Scotland, (Glasgow and 
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Edinburgh); the conurbations of Northeast England, the West Midlands, and South 
and West Yorkshire (adjacent to the cities of Greater Manchester and Liverpool); 
Bristol and Cardiff in the southwest; and, of course, Greater London [10]. Between 
mid-2011 and mid-2015, Greater London’s population grew by 5.7% to around 8.67 
million, compared to that of other city regions (2.3%) and to the average growth 
(2.7%) for the country as a whole.

Under pressures of increased population growth, short-term crises and long-
term policies, city layouts and infrastructure constantly adapt to meet needs, but 
the many factors involved render solutions for high volume passenger movement 
far from trivial. Awareness of the consequences of unrestricted urban sprawl has 
motivated legislation and a global move toward environmental sustainability over 
several decades, but change is slow [11]. The performance and modalities of trans-
portation networks have attracted considerable attention, fueled mainly by efforts 
to reduce road congestion and harmful emissions. For example, Transport for 
London (TfL) (created in 2000) manages the capital’s principal road networks, the 
underground system and its extension, the Docklands Light Railway, and TfL Rail 
(responsible in conjunction with the Department of Transport for commissioning 
crossrail, designed to improve East–West transit). While the TfL budget (~10 billion 
sterling in recent years) demonstrates major commitment to maintenance and new 
development, its business scorecard also emphasizes the need for a system acces-
sible to all, the “greening” of the city streets and the health benefits for Londoners 
“traveling actively” [12]. Accommodating positive lifestyle choices such as walk-
ing or cycling commutes, as well as decreasing the CO2 burden from road traffic, 
has served also to shift more attention toward the pedestrian’s city experience. In 
consequence, this chapter also explores the implications for “traveling actively,” and 
safely, in London.

From the pedestrian viewpoint, the need for green spaces in city planning has 
long been recognized [13], but factors for active travel remain complex. Digital 
street mapping and mobile technology have improved familiarity and navigation 
within the urban environment, but, while novel modes of individual transport 
(such as smart urban bicycles and electric scooters) reduce the emission burden, 
road usage is increasingly multifaceted. Inevitably therefore, strategic emergency 
management is complicated by the challenge of prompt multimodal evacuation of 
dense urban areas [14]. In discussing plausible modeling approaches which capture 
principal factors influencing rapid transit to daily destinations (such as schools and 
offices), as well as leisure trips to parks and entertainment venues, consideration is 
given not only to throughput but also efficient evacuation from these high-density 
locations. The focus, specifically, is on the flexibility which agent-based model-
ing brings to representing pedestrian behavior. The paradigm permits individual 
actions, awareness of the environment, and pedestrian group movements to be 
modeled simultaneously on real urban networks.

Pedestrians are distinguished by a number of key features, such as personal 
choice, variable dynamics, and vulnerability. Debatably, they have the least predict-
able behavior patterns, although it has been shown that crowded venues restrict 
optimal choice [15–18]. Specifically, it has long been demonstrated that pedestrians 
can move freely only when pedestrian densities are small [15]. Designing urban 
infrastructure in order to increase pedestrian activity, therefore, has to balance 
often conflicting requirements of personal characteristics (such as walking speed), 
against considerations of safety. The problem is that parameter space is greatly 
expanded by variation in pedestrian profiles; for example, age, speed, knowledge of 
the environment, individual or group transit, entrance and exit point to the net-
work, time of day, and occupation density (among other factors) all affect efficient 
transit as well as the logistics of congestion and evacuation. Variable dynamics 
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can be illustrated by examples of walking patterns for an average shopper, which 
are markedly distinct from pedestrians in a business district. Similarly, an elderly 
person typically moves differently to a young one, as does a native to a tourist and 
so on. Even within a particular scene, e.g., a shopping district, logistics are different 
for the successfully laden pedestrian and those still browsing [19].

As a consequence of this diversity, shaping sustainable city infrastructure 
relies on understanding pedestrian movement patterns and the environmental 
and behavioral reasons that guide them, together with provision of suitable public 
transportation options at key locations. Cities with strong track record in infra-
structural design for mobility include Singapore and Zurich (Figure 1). Arguably 
due to large budgets, it has been shown that quality and safety of urban infrastruc-
ture do not relate solely to wealth, as good planning practices are vital [20]. Looking 
ahead, GPS-enabled mobile apps are likely to shape pedestrian behavior trends 
further, with awareness of urban layout (such as important intersections, walking 
routes, street signs, and transport alternatives), less reliant on physical observation 
than ‘in-app’ street map layouts, together with walking time estimates based on the 
historical consumer mix [21].

Investing resources in sustainable city planning is not for the fainthearted. 
Burgeoning demand for access and choice continues to threaten limits for air 
quality, noise, energy consumption, and biodiversity. The last hundred years has 
seen urban population growth concentrated on less than 3% of the world’s surface 
but with the corresponding environmental footprint disproportionately impact-
ing climate: currently, 75% of greenhouse gas emissions can be attributed to cities 
with ecological effects many times larger than the actual urban area occupied [22]. 
Socioeconomic implications, such as health and well-being, are also a cause for 
concern: in France and elsewhere, urban mobility plans are now a required compo-
nent of the urban planning process for the future [23], while global city initiatives, 
such as the 10 Aalborg Commitments [24], attempt to define basic guidelines for 
sustainable development.

2. Overview of modeling approaches

Within the broader agenda of sustainable urban planning, computer modeling 
has gained increased popularity as a versatile tool. The ability to explore in silico the 
nature and effect of change can facilitate the planning process, providing insight on 
the parameters, key dependencies and potential pitfalls, as well as complementing 
pilot schemes.

Figure 1. 
Aerial views of Singapore (left) and Zurich (right) urban layouts. Both cities consistently rank in the top 10 in 
the world for urban layout and mobility [20, 28, 29].
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Emergency evacuation typically follows natural disasters, terrorist attacks on 
transport networks or at major events, as well as other causes of injury or where 
crowd dynamics destabilize [25]. The so-called climatic “extreme events” have 
markedly increased over the last decade, with ever-more severe consequences [26]. 
Increased frequency of such events, together with increased population density 
(mainly concentrated in urban areas and regions experiencing rapid urbaniza-
tion, such as Asia) [26], has led to some of the largest losses of infrastructure in 
recent history. Besides highlighting the need for preemptive action and resilient 
infrastructure, extreme event prediction is widely employed to mitigate the human 
cost and employ successful evacuation strategies (as in the very recent example of 
Cyclone Fani’s landfall in India and Bangladesh (2019) where more than 2.8 million 
people were evacuated ahead of the storm) [27].

Approaches to modeling crowd behavior, pedestrian flows, and evacuation 
methods are varied and range from studies looking at flows of people as a paradigm 
[30–32] to the analysis of individual behavior patterns [33–36]. Early work aimed to 
describe pedestrian motion through physical model types including fluid dynamic 
and social forces, based on Newtonian mechanics [37]. Pedestrian motion can be 
described, for example, using a sum of different force vectors—namely, attrac-
tive, repulsive, driving, and fluctuating. However, the downside of these models is 
their reliance on sophisticated mathematical expressions that become intractable 
on expansion for newly discovered parameters and behaviors. Further, individual 
movement is represented as a superposition of pedestrian interactions, not only 
nontrivial to solve but often opaque to interpretation [38].

Key features to be incorporated are the agenda of the individual (purpose of 
journey) as well as interaction with the built and demographic environment—road 
traffic, urban layout, and crowd size. Two elements present particular difficulty. 
Pedestrians do not always follow simple logic or “stimulus-and-response”-based 
behavior and, unlike other road users (such as motorized vehicles or bicycles) do 
not need to, and indeed do not, follow preset movement lines. This freedom in 
choice and execution of movement means that any model must allow for random-
ness, treating individual behavior as unique to some extent.

2.1 Pedestrian movement

Two main model types can be distinguished for pedestrian interactions, namely, 
those for route choice and road crossing behavior, respectively. The former category 
is concerned with optimizing route layouts to achieve shortest travel times between 
origin and destination under various constraints, such as emergency road closures 
or congested pathways: investigations of crowd behavior and evacuation dynamics 
mainly utilize these scenarios, e.g., [39]. In contrast, road crossing models focus on 
pedestrian decision-making and the nature of interactions on road crossings: here 
key elements include aspects such as crossing gap (gap acceptance theory) and the 
use and location of the crossing itself (utility theory), e.g., [40].

Further categorization is possible by model scale, usually denoted micro-
scopic or macroscopic. Macroscopic models are often route choice ones and are 
underpinned by the mathematics of fluid mechanics and queueing theory. Earlier 
examples include optimization of pedestrian network topologies [41] based on 
pedestrian queueing networks, representing crowds as single, flowable entities 
[42] and resolution of bottlenecks by disaggregating upstream and downstream 
flows around the point of congestion [30]. More recent work includes formulat-
ing pedestrian flows as a family of measures and flow maps [43] and vision-based 
models [44]. Microscopic models currently account for the majority of pedestrian 
movement studies [45], with some of the first models in this space based on the 
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cellular automata (CA) paradigm [46]. In CA, the environment and street layouts 
are represented as matrices of cells with individual pedestrians being able to move 
from cell to cell by discrete steps in a given model iteration. Update between itera-
tions is performed by applying a matrix of cell state translation rules (the transition 
matrix) to model successive movements (Figure 2). Historically, CA models were 
used to describe various pedestrian movement scenarios in both route choice and 
pedestrian crossing categories, from bi-directional pedestrian flows on footpaths 
[33] to interactions of pedestrians with the urban layout [47].

Increase in computing power over the last decade has seen expansion of the 
CA paradigm with next-generation simulations for pedestrians based on multiple 
agents. These multi-agent or agent-based models (ABM) achieve microscopic levels 
of simulation, based on artificial intelligence concepts [45]. In agent-based systems, 
pedestrians are modeled as fully autonomous entities with cognitive and behavioral 
learning characteristics. Early applications included analysis of global movement 
patterns [50] and impact of pedestrian space allocation during movement [34]. 
Recent examples include [48, 49] where the former considers interactions of 
pedestrian agents in counterflow situations and the latter employs ABM to simulate 
different categories of pedestrian behavior at congestion points in a large city lay-
out. The ABM approach, combined with the processing power of large computing 
clusters, enables effects of individual human choice within precise urban geom-
etries to be modeled realistically. The practical potential for the future of city design 
and provision is considerable (e.g., smart city initiatives—such as [51]).

2.2 Evacuation dynamics

In modeling disaster scenarios, normal pedestrian movement simulation does 
not apply. Evacuation of metropolitan areas requires rapid crowd dispersion by safe 
routes to non-hazard zones at short notice. In terms of large-scale natural disasters 
such as cyclones, circumstances are even more extreme in terms of volume of 

Figure 2. 
An example of a cellular automata model with transition matrix [54]. (A) A particle (individual) with 
possible transitions, (B) Matrix of transition probabilities, and (C) Simulation of pedestrians leaving room 
with single door.
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people movement and area affected; for example, a few million persons might need 
to be moved to safety from an area of 160 square kilometers [27, 52]. Evacuation 
models again, therefore, have a clear division by scale, based on the area impacted: 
small-scale evacuations may involve isolated locations, such as rooms, buildings, 
and stadia, while large-scale evacuations can include anything from suburban and 
urban metropolitan areas (with high population density) to tracts of land with 
different population densities [53].

Microscopic models for building evacuation have been around for some time 
[54]. A useful categorization is provided by the US National Institute for Standards 
and Technology (NIST) [55], based on orientation, building type applicability, size 
of grid, user-perspective, type of behavior, and type of movement. Of particular 
interest in the NIST nomenclature is the classification of models into behavioral and 
movement types. Behavioral models simulate action-taking by pedestrians, depend-
ing on the specific emergency circumstances, while movement models concentrate 
on evacuation flows. Models, which incorporate both individual action and evacua-
tion strategies, are classified as mixed.

Further subdivision is possible according to the nature of the behavior exhibited. 
Thus, implicit behavior models, conditional behavior models, models utilizing 
artificial intelligence, and probabilistic models have all been proposed, of which the 
first are the simplest. The behavioral response of individual pedestrians is built into 
movement patterns or response delays but is not modeled explicitly as a conscious 
choice [56]. Conditional approaches follow an “if-then” rule pattern—evacuee behav-
ior is modeled as a response to structural characteristics or structural changes in the 
surrounding environment [57]. All models simulate individual pedestrians through 
modeling the human intelligence aspect of their behavior directly (as opposed to indi-
rectly via movement parameters as for other model types) [58]. Probabilistic models 
assign behavior probabilities to individual groups permitting random outcomes for 
each model run, with statistics analyzed after repeated runs. Compared with AI 
models, parameterization can be based on summary data for real disaster events [49]. 
Agent-based models (ABM) (combining both AI and probabilistic approaches) thus 
offer considerable strengths (discussed in more detail below).

2.3 Model choice

Choice of the right model does not always involve the more complex or even 
the most realistic since complexity requires a large set of parameters, for which 
empirical estimates are often unavailable (e.g., profiles of people in a given 
evacuation context), so simplicity can be an advantage. Moreover, the mode of 
evacuation can be a critical determinant (applicable almost exclusively to mac-
roscopic models). For large-scale evacuations, the majority of research to date 
has assumed vehicular transport (predominantly car-based) movement [14]. 
However, this is sometimes neither practical nor possible and can, on occasion, 
lead to further escalation of disaster situations by contributing to congestion 
[59]. In other cases, no such transport option is available, and/or existing public 
transport cannot be used in the immediate vicinity [60]. In 2005, for example, 
Hurricane Katrina left 80% of New Orleans in the US state of Mississippi 
flooded, with some parts under nearly 5 m. of water [61]. In consequence, inves-
tigation of exclusively pedestrian-based evacuations in circumstances where 
utilizing of usual transport modes is not an option (e.g., earthquake disasters or 
floods) is gaining prominence.

In this context, Figure 3 illustrates New Orleans (map taken from [62] with 
vehicular evacuation routes shown in green and population densities in orange). 
Implications for loss of access to routes for car transport are clear.
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Well-established early traffic simulation models, such as PARAMICS, VISSIM, 
and CORSIM [63–65], have recently become popular also for emergency evacua-
tion scenarios, using adjusted parameter values, e.g., acceleration of vehicles and 
reaction time, which differ in disaster situations [66, 67]. However, other transport 
options, such as the rail system (arguably an effective evacuation mechanism due to 
larger capacity), have not been extensively modeled (although included in existing 
urban evacuation plans (e.g., for Chicago [68])).

Clearly, however, major disruption to (or congestion of) available transport 
networks, combined with the high population density in urban areas, means that 
evacuation on foot provides a vital mode of escape. Pedestrian evacuation models 
of this type have only recently begun to feature in the development of city evacua-
tion plans, while adaptation of existing evacuation model tools is again necessary to 
accommodate features involved [45].

Increasingly important, however, in modeling both urban mobility and 
evacuation scenarios are new technology tools, such as volunteered geographic 
information (VGI) systems. VGI systems allow for collection and dissemination 
of global urban data, based on user-generated content and peer-review, and thus 
allow creation and curation of geographical datasets that would otherwise be too 
cost-prohibitive to assemble for individual research purposes. A good example of a 
VGI system is OpenStreetMap (OSM), an open project with the purpose of creating 
nonproprietary geographical maps of the world [69]. Led by the OpenStreetMap 
Foundation, its stated goal is to encourage the development and distribution of free 
geospatial data for anyone to use and share. Particularly attractive is its fine-grained 
coordinate layout and geographic metadata associated with each map element. OSM 
maps provide a good backdrop on which to develop both CA and AB model types. 
These can incorporate both quantitative (e.g., street lengths and lane numbers) and 
qualitative (street types, nearby amenities) map data to accurately simulate grid 
“cells” (in the CA type) or free-flowing pedestrian environments (for ABM).

Figure 3. 
Map of New Orleans showing the sectors of an evacuation plan obtained via optimized modeling. Blue lines 
indicate secondary roads used in evacuation routes. Green lines indicate roads used as one-way contraflow 
evacuation routes. The orange shading indicates population density, with darker shading indicating greater 
density [62].
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3. Pedestrian behavior

As urban environments expand, routine travel to work or other destinations 
typically takes longer and can be increasingly affected by congestion and delays 
for both public and private transport modes. Alternative lifestyle choices such 
as walking and cycling can prove both healthy and efficient but are also subject 
to constraints of the built environment and demographics. Although pedestrian 
behavior has been studied for more than several decades [70], predominantly 
with respect to self-organization patterns and interaction of pedestrian flows [20], 
additional parametrization has become possible relatively recently due to expansion 
in computing power. In consequence, the questions addressed have become more 
complex and more relevant for both normal movement and for emergency scenar-
ios. Examples cited include the use of models to analyze evacuation patterns from 
enclosed spaces (such as buildings, underground stations, and other public venues) 
[27, 71, 72], to address large-scale problems in morphological urban structure as 
well as to understand cognitive behavior in the context of disasters (such as hur-
ricanes and terrorist attacks among others) [38, 73].

3.1 Groups or individuals

Addressing self-organization [15, 32], some studies report that, rather than 
wholly random or individual movement, interactions inside and between groups 
lead to formation of typical walking patterns. Distinction exists between travel as 
a single individual or within a group, however, so that while pedestrian behavior 
is diverse, with each individual permitted flexible options for movement through 
crowds or definition of “optimal” route, such groups or crowd pressure act as limit-
ing factors to free choice [74]. Equally, knowledge of the built environment and 
configuration of the urban street network augments visual perception and cognitive 
understanding of spatial complexity to determine route choice and understanding of 
the way in which directional change complements distance [75, 76]. Consequently, 
while motorized (and non-motorized) road-using vehicles are constrained by traffic 
rules, signalization, and street orientation, pedestrian flows are subject to fewer 
fixed rules, exhibiting greater randomness at every time point during free movement 
[45] but subject to continuous real-time reassessment and rapid adaptation of route 
choice under congestion. Figure 4a and b illustrates some of the flexibility of choice 
available to the pedestrian under his or her perception of advantage to be gained 
during urban travel.

The figures serve to highlight those properties which strongly motivate bottom-
up modeling of pedestrian movement; the agent basis provides a flexible tool for 
analysis of complex social behavior [78], with agents actively aware of their environ-
ment (traffic, adjacent pedestrians, and the street network).

3.2 Real urban networks

Perceptions of the network also depend, however, on how well this can be 
represented, and the importance of VGI (noted above) has led to considerable 
model refinement. For example, in [49] the authors introduced a discrete, behavior-
driven space–time framework, allowing pedestrian movement to be modeled on a 
real urban network. The main focus is on exploring the potential of the approach 
through example scenarios and investigation of simple hypotheses of pattern 
evolution. The research considered pedestrian movement originating from three 
main “cognitive features” [76, 79]: (i) walking strategy, (ii) spatial awareness, 
and (iii) knowledge of the urban grid. Figure 5 shows emergence of flow patterns 
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originating from such features in a hypothetical peak commute hour scenario for 
several hotspots in the City of London’s financial district.

Unfortunately, normal cognitive behavior patterns do not apply in emergen-
cies, and route choice during a disaster scenario involves elements that are not 
present during regular commutes. Among others, these include decision-making 
under pressure, limited visibility, unclear evacuation routes, and dependency on 
others in the same group (and in authority) to indicate optimum or safe direction. 
Additionally, crowd dynamics can change rapidly. It has been shown that crowd 
turbulence restricts movement at extreme densities (a phenomenon observed 
during recent crowd disasters) [38] and also modeled by [80, 81]. Thus self-
organizing behaviors, designed to optimize motion on the urban network under 
normal conditions, break down at high crowd densities and for bottlenecks that 
occur during large evacuation scenarios [38]. Simple patterns, such as formation 
of unidirectional pedestrian flows in bidirectional traffic, disappear and are 
replaced with other collective patterns like long-range collisions and stop-and-go 
waves that lead to serious participant injuries during mass events. In an attempt 

Figure 4. 
(A) Examples of different pedestrian behavior depending on interaction with other pedestrians during street 
crossing [77]. (B) Examples of different pedestrian behavior depending on shortest route perception; green, 
shortest distance is the least actual cost path; red, least angle change requires pedestrians to course correct their 
path toward “most likely” turns; blue, least turns put the highest “cost” of the route into actual turns needed to 
reach the destination.
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to understand the forces and factors involved, recent studies have considered 
merging behavior of pedestrians under different scenarios as well as models for 
collision avoidance [32, 82, 83].

In summarizing model choices and trying to understand pedestrian behavior, 
it seems clear that advantage lies in replacing classical physics models with a more 
cognitive approach, tailored to single-person (agent) granularity. In evacuation 
scenarios, in particular, behavior is based on the concept of heuristics, namely, quick 
and simple cognitive processes that tend to pare down visual perception of the world 
and optimize for speed (a crucial aspect of emergency decision-making). Agent-
based models also permit simulation of well-known “grouping” behavior during 
such scenes, including cohesive bounds and “herding,” where groups of individuals 
decide to communicate, act, and stay together as a group. These fine-grained cluster-
ing aspects of behavior are not well-captured by physical approximation [84].

4. Agent-based modeling

4.1 Advantages and scope

Building on earlier discrete methods (such as cellular automata), agent-based 
modeling (ABM) has gained considerable popularity for the representation of indi-
vidual pedestrian interactions. The approach has several key advantages, the most 
important being the expressive and intuitive nature of the modeling language, its 
suitability to high-performance execution environments, adaptability to inclusion 
of heterogeneous behavior, and incorporation of stochasticity [85, 86]. The origins 
of application of ABM to pedestrian modeling lie in simulations of social behavior 
and decision-making, introduced in detail in [87]. From early models, where agents 
of two distinct types populated a simple grid [88], use has expanded to representa-
tion of complex real-world situations and social behavior involving millions of 
entities (e.g., TRANSIMS [89]).

The modeling strengths of the agent-based approach for pedestrian behavior 
are wide-ranging. Characteristics of individual pedestrians can be defined, 
including estimates of their spatial awareness using cognition precepts, 

Figure 5. 
Simulation of pedestrian flow size using commute hotspots in a hypothetical City of London peak hour scenario 
with agents displaying full knowledge of urban grid; right, original OpenStreetMap of the financial City of 
London district; left, hotspot flow rate model (number of pedestrians passing per second) for the map section.
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combining with preferential choices determined for different social groups. ABM 
can be used to investigate behavior patterns that incorporate rules of movement 
along pedestrian routes as well as intermediate decision and conflict points. 
Dynamic volunteered geographic information system data (such as that from the 
OpenStreetMap platform) can be utilized, permitting analysis of arbitrary city 
networks and comparison of the effect of grid structure and amenity distribution. 
Interaction of multiple social groups can also be investigated, for example, those 
consisting of pedestrians who have “directed” (e.g., point-to-point) patterns as 
opposed to those progressing at “leisure” (with patterns that are more random 
and less easily graphed). Such features offer the potential for these models to 
explore urban flows and congestion and the way in which changes in network 
morphology affect route choice. Equally, characteristics of the urban networks 
in responding to changing demand can also be modeled as well as disruptions 
impacting individual agent paths and travel times. ABM also compares well with 
statistical prediction techniques for pedestrian flows that have gained popular-
ity in recent years, such as multiple regression analysis (MRA) [90]. This type 
of analysis relies on known parameters such as length of pedestrian routes and 
visual connectivity between points to estimate e.g. throughput numbers per given 
unit area [91]. While useful for estimating and understanding aggregate numbers 
representing pedestrian flow data, difficulties arise in accounting for aspects such 
as urban network architecture and layout [92]. Although agent-based models 
cannot access real pedestrian movement data on a large-scale urban level to model 
flows through individual streets, known information about individual pedestrian 
behavior does enable fine-grained implementation to explore different mobility 
scenarios at individual street level (within the large city model) as well as stochas-
tic approximation for areas with sparse data.

4.2 Visualization of pedestrian behavior on urban networks

In simulating crowd and group dynamics, ABM enables exploration of force 
effects at different crowd densities by using discrete grid cells with assigned force 
vectors [93] and demonstration of local patterns for random pedestrian walks, 
utilizing aspects of both micro- and macro-simulations [94].

In Figure 6, an extract from OpenStreetMap shows a section of central London’s 
financial district for which the agent-based model has been used to simulate dif-
ferent types of progression, i.e., point-to-point or directional walking (that might 
relate to a commute) vs. the more random progression (associated perhaps with 
tourist sight-seeing). The implications for density and dispersion of occupation 
are indicated by the coloring. In the first part of the figure, clear preferred routes 
are the most congested and are colored red, the next preferred yellow, and so on. 
Hotspots are clearly identified. In the second part of the figure, clustering occurs at 
“sights” rather than along routes, but hotspots are often offset in terms of access. 
Clearly these scenarios represent different challenges in the case of closures or 
evacuation requirements. Shown specifically here are entrance points to alternative 
transport modes (black squares and red triangles, respectively), such as the under-
ground. In some scenarios these may of course be unavailable or closed down in the 
immediate emergency zone.

In [49] the authors show how a general agent-based model combined with VGI 
data can be utilized to describe a wide variety of pedestrian behaviors covering 
both emergency and non-emergency situations. ABMs perform well in modeling 
individual pedestrian behavior as generic state machines. For every pedestrian we 
can specify a generic decision-transition-waiting flow. Individual states can then be 
further broken down to simulate fine-grained psychological or perceptual aspects 
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of individuals. In the example of non-emergency behavior (i.e., daily commute, 
travel, leisure), we can break down the decision state to distinguish an individual’s 
knowledge of the urban network they are traversing. A person with partial or 
limited knowledge exhibits a different behavior set compared to a person with full 
knowledge who can optimize travel based on this and grid perception. Other factors 
also contribute to decision-making—e.g. personal walking preference (aggres-
sive, cautious, or random), age, pedestrian group size, and so on. As an example, 
Figure 7 illustrates age and walking preference-based differences in terms of time 
taken and distance traveled overall for the financial sector of the City of London 
grid. In evacuation scenarios, a similar decision state can be used to simulate 
behavioral aspects under emergency conditions; decision factors can range from 
group dynamics, placement of safe areas, visual perception under reduced visibility 
conditions, and “fear.” Transition and waiting states aim to simulate the action part 
of the behavior, namely, execution and re-evaluation as the situation develops. This 
state transition diagram is illustrated in Figure 8.

Figure 6. 
An example of an agent-based model simulating the congestion areas of the London financial district for 
hypothetical pedestrian flows: left, point-to-point walking behavior from a set of local underground stations 
(denoted by black squares) to place of work; right, random behavior simulating, e.g., tourist traffic originating 
from underground stations and converging at local points of interest. Adapted from [49].

Figure 7. 
Simulation of age-based agent route performance when traversing an urban network [49], for pedestrians of 
different behavioral types.
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This type of model detail facilitates understanding of actual patterns observed 
in both traffic and pedestrian flows and evacuation scenarios. Similar features can 
occur for pedestrians to those found in traffic modeling (e.g., lane formation—as 
agents have to wait for other agents on the same route choice path to move out of the 
way). Route choice preferences (and those with high throughput) are clearly visible. 
Moreover, as lanes form, the ABM model allows for re-evaluation of routes based on 
dynamic parameters like congestion (e.g., during large crowd events, where destina-
tion nodes in the urban or evacuation grid display become jammed, usually due to 
too few approaches, or alternative exits rendered unreachable due to blocking by 
incomers or slow movers). Congestion avoidance of fellow pedestrians in free move-
ment and in crowds is also readily simulated using the agent basis. Pedestrians make 
optimal choices in the context only of perceived local grid congestion (as opposed to 
global knowledge of congestion points). Finally, ABM allow for clear identification 
of network inflection points, when impact of crowd size on travel or evacuation times 
becomes exponential rather than linear.

It should be emphasized again that a critical aspect of ABM performance for 
these problems is the choice of VGI or GIS platforms used to source the grid infor-
mation. A platform such as OpenStreetMap permits extraction and visualization of 
relatively accurate street-level details, not only with respect to street geometry and 
space but also in terms of street metadata such as throughput and physical street 
characteristics—e.g., length and width of sidewalk, etc. These data are critical 
to provision of accurate grid simulations and assessment of pressure points and 
associated risks. Furthermore, the ability to edit the data to permit experimental 
analysis of the impact of alternative urban layouts and scenarios is important in 
building a relevant model, with a potential for understanding, anticipating, and 
responding to a range of pedestrian behavior. Linkage to geographic information 
systems (GIS), combining spatial and temporal aspects, additionally promises an 
effective geo-simulation tool facilitating interpretation of the urban environment 
[95]. Nevertheless, models using both separate crowdsourced GIS and ABM are 
relatively rare [96], and further investigation of social behavior patterns is clearly 
required.

5. Conclusion

In this chapter, we have discussed factors influencing pedestrian urban mobil-
ity, which motivate ongoing research in commute efficiency, together with the 

Figure 8. 
An agent decision-transition-waiting diagram, as implemented by the agent-based model in [49].
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wider implications for health and safety. Urban grids with high throughput 
typically utilize multiple transport modes and require efficient navigation, with 
non-motorized options increasingly seen as important in terms of reduction of 
harmful CO2 emissions and benefits to health. In addition, infrastructure expan-
sion and population growth present increased challenges for city management 
and emergency responders. Recently, the ability to visualize urban networks with 
greater accuracy has received considerable impetus from the emergence of new 
tools, such as VGI platforms, on which detailed simulations can be built. The use of 
stochastic agent-based models in these simulations has proven particularly useful in 
terms of evaluating urban layouts and the diverse patterns of pedestrian movement. 
Moreover, ABM combined with VGI demonstrates considerable potential in model-
ing a range of real-world situations, ranging from crowd formation and dispersion 
to evacuation in the event of natural and man-made disasters.
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