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Abstract

Diabetes mellitus is a highly prevalent noncommunicable disease globally. One 
of the main complications of diabetes is the increased susceptibility to bacterial 
infection. Neutrophils play a crucial role in inflammatory response against bacterial 
infections, once they are the first cells recruited to the sites of injury. In diabetes, 
there is a failure in the neutrophil functions, including migration, ROS production, 
phagocytosis, and bacterial killing, which are associated with the high incidence of 
bacterial infections. Herein, we point out pieces of evidence revealing the primary 
molecular mechanisms involved with impairment of neutrophil functions in diabe-
tes, with relationship with high susceptibility to bacterial infections.
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1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by a 
hyperglycemic condition that results in several complications, such as neuropathy, 
nephropathy, retinopathy, and increased risk of cardiovascular disease [1]. DM can 
be classified into type 1 (T1DM) and type 2 (T2DM). T1DM is common in child-
hood or young adulthood and is a result of autoimmune destruction of beta-cells 
in pancreatic islets mediated by T cells, leading to defect in insulin synthesis [2, 3]. 
The T2DM appears mainly in adulthood, affecting people with the most produc-
tive age. This type of diabetes is associated with insulin resistance and inadequate 
compensation by beta-cells, leading to a relative insulin deficiency [1, 4]. Currently, 
it is known that there are over 425 million people with DM globally. Worryingly, it is 
estimated that in 2045, this number will grow to over 600 million [5].

Hyperglycemia, a hallmark of DM, is associated with patient vulnerability to 
bacterial infections, such as tuberculosis and pneumonia, besides more severe 
sepsis of bacterial origin [5]. In fact, diabetic patients generally present microbial 
persistence, greater susceptibility to new infections, recurrences, and an increase 
in the risk of mortality if compared to nondiabetic individuals [5, 6]. This is due to 
the compromised immune response presented by diabetic patients, which leads to 
failure in leukocytes protective effects. Cyclically, infection profile in these patients 
can worsen glycemic control [5]. Neutrophils present an important role in host 
immune response to bacterial infection, once they are one of the first leukocytes 
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that arrive in the infected area [7]. In normal conditions, these cells act by differ-
ent manners against microorganism, leading to infection control and resolution 
of the inflammatory process. However, the immune response in diabetic patients 
is characterized by impairment in neutrophil function [7, 8]. Here, we revised the 
mechanisms involved with the failure of neutrophil functions noted in DM and its 
relationship with the high susceptibility to bacterial infections.

2. Role of neutrophils in bacterial infections

2.1 Migration of neutrophils to infected sites

Neutrophils are polymorphonuclear (PMN) versatile innate effector cells 
essential for immune defense, which arise from hematopoietic stem cells (HSCs) 
in bone marrow [9]. Under normal conditions, about 5 × 1010–10 × 1010 new neu-
trophils are produced in the bone marrow daily [10, 11]. Chemokine gradients and 
adhesion molecules are central players that regulate neutrophil release from the 
bone marrow [11]. Neutrophils express CXC receptors (CXCR)-1 and CXCR2 that 
interact with CXC chemokines (CXCL1/KC, CXCL2/MIP-2, and CXCL8/IL-8) and 
result in neutrophil migration from bone marrow into the bloodstream. Neutrophils 
also express CXCR4, which interacts with CXCL12/SDF-1 produced by osteoblasts 
and other stromal cells to mediate neutrophil maintenance in the bone marrow [10, 
12]. Thereby, only a small fraction of mature neutrophils is released into the blood. 
However, after a bacterial invasion, the host defense activates strong neutrophil 
release from bone marrow and migration toward infected sites [11, 12].

Under bacterial infection, sentinel cells detect the microorganisms via pattern 
recognition receptors (PRRs), such as Toll-like receptors (TLRs) and NOD-like 
receptors (NLRs). These receptors identify highly conserved pathogen-associated 
molecular patterns (PAMPs), including peptidoglycan (PGN) and lipopolysaccha-
ride (LPS) expressed in the cell membrane surface of bacteria. They can also recog-
nize danger-associated molecular patterns (DAMPs), such as high mobility group 
protein B1 (HMGB1), ATP, and uric acid, released from damaged and necrotic cells 
after tissue injury. Then, sentinel cells release mediators such as granulocyte colony-
stimulating factor (G-CSF), which leads to neutrophil production and release from 
bone marrow via upregulation of CXCR2 and its ligands, and reduces expression of 
CXCL12/SDF-1 and CXCR4. After this event, neutrophils can be mobilized to sites 
of infection and combat microorganism [13–15].

Correct leukocyte recruitment requires the adhesive interactions between 
P-selectin glycoprotein ligand-1 (PSGL-1), E-selectin ligand-1 (ESL-1), and CD44 
expressed on the neutrophil membrane surface to the P- and E-selectin which are 
upregulated in endothelial cells of inflamed tissue. These processes will lead to 
neutrophil capture and fast rolling [16, 17]. Rolling event exposes neutrophils to 
chemokines that are arrested on the glycocalyx of endothelial cells, such as CXCL8/
IL-8. Then occurs the activation of integrin molecules such as VLA-4 (CD49D/
CD29), macrophage-1 antigen (MAC-1 or CD11b/CD18), and lymphocyte function-
associated antigen-1 (LFA-1 or CD11a/CD18) on neutrophils [10, 18]. The integrin 
binds to their ligands such as intercellular adhesion molecule (ICAM)-1, ICAM-2, 
and platelet endothelial cell adhesion molecule-1 (PECAM-1) on endothelial cells, 
resulting in slow rolling and firm adhesion of the neutrophil to endothelial cells 
[17]. Thence, the neutrophils perform diapedesis toward the tissue and migrate 
along a chemokine gradient until they arrive in the infected site. The long-distance 
recruitment is mediated by chemoattractants, including leukotriene B4 and 
CXCL8/IL-8, while near chemoattractants are peptides and C5a [17].
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Despite the canonical neutrophil migration during infections, in sepsis occurs 
an inadequate migration of neutrophils even with high levels of chemokines at 
the infection site [12]. The decrease of CXCR2 expression on the cell surface 
of neutrophils is among the mechanisms leading to this failure. The prolonged 
exposure to CXCR2 agonists, which leads to phosphorylation of G protein-coupled 
receptors (GPCRs) by GPCR kinases (GRKs) and induces the desensitization and 
internalization of CXCR2, can explain the down-regulation of this receptor [16]. In 
addition, the activation of lectin-like oxidized low-density lipoprotein receptor-1 
(LOX-1) by inflammatory products, such as C-reactive protein (CRP), bacte-
rial products, apoptotic cells, or activated platelets, can also account for CXCR2 
neutrophil endocytosis [12, 19].

2.2 Actions of neutrophils in infected sites

At the sites of infection, neutrophils can combat pathogenic microorganisms 
and clear infections by different ways including phagocytosis, degranulation 
of microbicidal molecules, production and secretion of reactive oxygen species 
(ROS), and release of neutrophil extracellular traps (NETs) [20]. For efficient 
bacterial phagocytosis, the microorganism needs to be covered with opsonins, 
such as immunoglobulins (Igs) and components of the complement system, which 
are recognized by neutrophil specific surface receptors. After phagocytosis of an 
opsonized pathogen by neutrophils, there is a mobilization of intracellular granules 
or lysosomes, leading to the killing of the ingested bacteria [21].

Neutrophil activation can induce the production of ROS to combat infection. It 
happens mainly due to the action of NADPH oxidase complex (NOX), but can also 
be generated by mitochondria. After neutrophil activation, NOX acts converting 
molecular oxygen (O2) into superoxide anion (O2˙

−) which suffers dismutation, 
spontaneously or catalyzed by myeloperoxidase (MPO), generating hydrogen 
peroxide (H2O2) [22, 23]. In addition to ROS, neutrophils can also enhance the 
inducible nitric oxide synthase (NOS2) expression, which will convert O2 to nitric 
oxide (NO), resulting in reactive nitrogen species (RNS). Both ROS and RNS 
contribute to microbicide activity and are crucial for the defense against intracel-
lular microorganisms [22]. Curiously, NO is supposed to be involved in the failure 
of neutrophil migration during sepsis, once it stimulates the internalization of 
CXCR2 on the neutrophil surface and reduces expression of adhesion molecules, 
leading to diminished leucocyte rolling and adhesion to the endothelium [12]. 
After neutrophil migration, degranulation occurs, which is the process mediated 
by microbial or inflammatory stimuli in which neutrophils release the granule 
contents, such as MPO, defensins, cathepsin G, neutrophil elastase, and collage-
nase. These granule contents are released by exocytosis or into the phagosome to 
kill microorganisms [24].

Neutrophils may also perform the antimicrobial activity directly attacking 
and restraining microorganisms by releasing NETs (NETosis) [25, 26]. NETs are 
extracellular fibrous structures composed by a network of extracellular chro-
matin fibers, histones, antimicrobial peptides, and enzymes, including MPO, 
α-defensins, cathepsin G, elastase, and lactoferrin, to capture and kill microorgan-
isms [12, 20, 26]. NETosis occurs after neutrophil exposure to bacteria or stimula-
tion with mediators such as interleukin CXCL8/IL-8. This neutrophil stimulation 
will result in activation of intracellular pro-inflammatory kinases, such as Akt, 
p38 MAPK, or MEK/ERK, a release of neutrophil elastase, oxidative burst, and 
actin polymerization [20, 26, 27]. This mechanism will result in microorganism 
destruction and neutrophil death [25]. NETs also limit the microorganism growth 
and dissemination; however, excessive formation of NETs in association with the 
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uncontrolled inflammatory response that occurs in sepsis can result in multiple 
organ damage to the host [12, 20].

2.3 Resolution of neutrophilic inflammation

Resolution phase is an essential process to interrupt the inflammatory response 
after the danger signal or when microorganism has been eliminated, preventing 
the development of chronic inflammation and fibrosis [28]. Resolution of inflam-
mation was previously considered a passive response, associated with clearance of 
inflammatory stimulus, reduction of pro-inflammatory mediators, and prevention 
of leukocyte recruitment. Currently, it is known that resolution is an active and 
tightly controlled process, carried out by specialized pro-resolving mediators 
(SPM) such as resolvins, lipoxins, maresins, and protectins, which are produced 
locally from polyunsaturated fatty acids and act orchestrating the end of inflam-
mation, but do not evoke unwanted immunosuppression [29, 30]. For a correct 
resolution of inflammation, the neutrophil reverse migration, lymphatic drainage, 
exudation to the external environment, apoptosis of activated neutrophils fol-
lowed by efferocytosis, and autophagic clearance of intracellular inflammatory 
signals are necessary [31, 32].

The reduction in neutrophil recruitment is regulated by a class-switch from the 
production of pro-inflammatory to pro-resolving mediators, resulting in down-
regulation of CXCR2 on neutrophils [28]. Pro-resolving lipid mediators also resolve 
inflammation by promoting neutrophil apoptosis [28, 32]. Apoptotic neutrophils or 
cell bodies are phagocytosed by professional phagocytes, mainly macrophages, in 
a process known as efferocytosis. This event is mediated by an interaction between 
phosphatidylserine expressed on the neutrophil surface and macrophage recep-
tors, such as TIM1 and TIM4 [32, 33]. During resolution, macrophages change their 
profile decreasing the pro-inflammatory feature and acquiring anti-inflammatory 
and pro-resolving functions, acting in apoptotic cell clearance, and producing 
immune regulatory intracellular messengers, including cyclic adenosine monophos-
phate (cAMP) [28, 34]. Macrophage phagocytosis allows the complete elimination of 
dead neutrophils and tissue debris of the infected and inflamed area. Generally, this 
process is followed by macrophage autophagy [35, 36]. Together, all these processes 
contribute to the resolution of neutrophil inflammation and tissue homeostasis [31].

3. Impaired neutrophil migration in diabetes

The causes of increase in susceptibility to infections in DM are not yet fully 
known, but one of the possible and well-established explanations is that diabet-
ics present an impairment in defense mechanisms of innate immunity, including 
neutrophil migration to the site of inflammation, phagocytosis, ROS production, 
and bactericidal activity [37].

The number of neutrophils in the circulation is also altered in DM. Older studies 
have shown that in T1DM patients, there is an increase in neutrophil counts com-
pared to healthy individuals [38, 39]. Recent researches described a decrease in 
circulating neutrophil numbers in T1DM patients in comparison with nondiabetics 
[40, 41]. Impairment in neutrophil yield and maturation in bone marrow, increase 
in peripheral neutrophil consumption, and/or tissue sequestration could explain 
this reduction in blood neutrophil counts observed in T1DM [42]. This divergence 
between studies can be attributed to differences between ethnic groups and the 
discovery of the existence of various stages of DM [43]. While in T1DM, the data 
about circulating neutrophil counts are still controversial, most of the studies 



5

Neutrophil Function Impairment Is a Host Susceptibility Factor to Bacterial Infection in Diabetes
DOI: http://dx.doi.org/10.5772/intechopen.86600

described that in T2DM patients, there is an increase in the number of neutrophils 
in circulation in comparison to healthy individuals [40, 44]. This neutrophilia was 
related to elevation in the circulation levels of inflammatory cytokines, including 
TNF-α, IL-1β, and IL-6, and CRP, a known marker of inflammation [45].

Regarding migration, in vitro studies described a reduction in CXCL8/IL-8, 
platelet-activating factor (PAF), or N-formyl-methionyl-leucyl-phenylalanine 
(fMLP)-induced chemotaxis of neutrophils from T1DM or T2DM patients compared 
to cells from healthy subjects [40, 46]. In situ evaluation of chemotaxis toward fMLP 
using T1DM rat neutrophils also revealed a deficiency in migration. This impairment 
in neutrophil chemotaxis was positively related to DM severity which was character-
ized by glycaemia values greater than 400 mg/dL [47]. In addition, blood neutrophils 
of diabetic animals presented a decreased migratory response to CXCL2/MIP-2 in 
vitro and in vivo compared to nondiabetic animals. Despite the deficiency in CXCL2/
MIP-2 induced-neutrophil migration, there was no difference between the expres-
sion of CXCR-2, a CXCL2/MIP-2 receptor, on neutrophils from diabetic animals 
[48, 49]. Similarity in CXCR-2 mRNA levels was also found among bone marrow 
neutrophils obtained from NOD mice (a strain that spontaneously develops T1DM), 
NOR mice (a strain that is resistant to diabetes), and control mice strain. However, 
CXCR-1 mRNA levels were reduced in neutrophils isolated from NOD mice in 
comparison to neutrophils from NOR and control mice [50]. Then, it is possible to 
consider that alterations in CXCR-1 expression and activity may also contribute to 
the impairment of neutrophil migratory activity in diabetics.

A feature well described in DM is the increase in oxidative stress which may 
also be related with impairment of neutrophil migration. Oxidative stress can 
induce glutathionylation (S-thiolation) of several proteins, including L-plastin 
(LPL) [51] that is expressed exclusively in leucocytes and controls polarization and 
migration of neutrophils through bundling of β-actin filaments [52]. Neutrophils 
from diabetic patients and from T2DM mice showed enhanced S-thiolation of LPL 
in comparison to neutrophils from nondiabetic subjects, which culminate with 
impaired fMLP-chemotaxis of neutrophils from diabetics. S-thiolation of LPL 
reduces its interaction with β-actin and this may be another mechanism involved in 
defective migration of neutrophils in DM [51].

In addition, T1DM rats administered with LPS by intra-tracheal route exhibited 
a reduction in neutrophil accumulation in the bronchoalveolar fluid (BAL), which 
occurred in association with a decrease in TNF-α and IL-1β levels, when compared 
with nondiabetic rats provoked with LPS. However, no difference was observed in 
relation to the expression of ICAM-1 and E-selectin in lung vascular endothelium 
and cytokine-induced neutrophil chemoattractant-1 (CINC-1) amount in BAL [53]. 
A deficiency in neutrophil migration to airways after LPS intra-tracheal injection 
was also observed in a spontaneous rat model of T2DM, using Goto-Kakizaki (GK) 
rats. This reduction in neutrophil migration to the airways in GK rats stimulated 
with LPS occurred despite an increase in the number of neutrophils in the blood. 
These data showed that there was no failure in the production of these cells by the 
bone marrow, but impairment in the recruitment mechanisms of these leukocytes 
to the lungs. Indeed, GK rats exhibited a decrease in IL1-β, IL-6, and TNF-α concen-
tration in BAL and also a reduction in the expression of adhesion molecules, such 
as LFA-1 and ICAM-2, on neutrophils. All these alterations were associated with a 
reduction in the TLR4 expression and activation in neutrophils [54].

3.1 Failure in neutrophil migration associated with hyperglycemia

Hyperglycemia can influence various components of the immune response, 
including activities of inflammatory cells [55]. Incubation of human neutrophils 
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with supraphysiological levels of glucose decreased both chemotaxis in response to 
zymosan and phagocytosis/killing of the intracellular bacteria Staphylococci in vitro. 
In addition, high glucose concentrations increased neutrophil adherence in vitro, 
and this also can limit neutrophil locomotion from blood vessels toward infected 
tissues in vivo [56].

It is debated which mechanisms are involved in the benefit of insulin treatment 
on the immune response of diabetics. While some authors argue that the benefi-
cial effects are dependent on the correction of hyperglycemia by insulin, others 
believe that the insulin may have direct actions on immune system independently 
of glycemic control [55]. Indeed, it has been shown that insulin in vitro increases 
human neutrophil chemotaxis induced by fMLP, calcium ionophore, or phorbol-
myristyl acetate (PMA) [57, 58]. Besides, insulin presents a chemokinesis effect 
which required activation of tyrosine kinase and phosphatidylinositol 3-kinase 
(PI3K), but did not depend on protein kinase C (PKC) stimulation [59, 60]. 
Interestingly, in a hyperglycemic medium, the chemokinetic action of insulin in 
neutrophils is blocked through a mechanism that involved activation of PKC [60]. 
These data suggest that insulin is able to exert direct effects on neutrophils, but 
the maintenance of glucose levels is also important for actions of this hormone on 
these leukocytes. In addition to acting on neutrophils, insulin can increase expres-
sion of the PECAM-1 in endothelial HUVEC cells and thus enhance transmigration 
of neutrophils across these cells in response to fMLP in vitro [61]. Finally, in vivo 
studies showed that insulin restored neutrophil migration to the lungs in T1DM 
rats subjected to LPS provocation. This effect of insulin occurred in parallel to a 
reduction of 50% glycemia; however, the glycemic levels continued to be high in 
these animals compared to nondiabetic rats [53]. These data suggest that the action 
of insulin on LPS-induced inflammatory response was not totally dependent on its 
effect on blood glucose.

It is well known that chronic hyperglycemia upregulates the generation of 
advanced glycation end-products (AGE). AGEs are produced by a nonenzymatic 
reaction between reducing sugars, such as glucose, and amino acids of proteins. 
AGEs can induce cross-link between proteins and also can bind cellular receptors; 
among them, the best described is the receptor for AGE (RAGE) [62]. AGE accu-
mulation has been associated with the development of several diabetic complica-
tions, including retinopathy, nephropathy, and neuropathy [63]. RAGE is expressed 
on neutrophils and its activation by AGEs, like glycated albumin, induces a tran-
sient rise in intracellular free-calcium levels and actin polymerization. Nevertheless, 
the dimension of increase in calcium levels induced by glycated-albumin is smaller 
than that induced by fMLP. In addition, glycated-albumin pre-treatment in neutro-
phils inhibited elevation of intracellular calcium levels promoted by fMLP, causing 
a defective signal processing and, consequently, a reduction in fMLP-induced-tran-
sendothelial migration in vitro [64]. Furthermore, glycated collagen also inhibited 
chemotaxis in response to fMLP, and this effect was associated with the capacity of 
glycated collagen to increase adhesion strength of neutrophils in vitro [62]. In addi-
tion, the blockade of AGE formation in diabetic animals restored leucocyte rolling, 
adhesion, and migration in response to zymosan in vitro [65], and also restored 
neutrophil accumulation toward traumatic skin tissue induced by hot water [66]. 
Therefore, it is possible that in DM, AGEs promote sustained stimulation of neutro-
phils which decreases the responses of these cells to chemotactic stimulus.

A positive relation between hyperglycemia and serum NO levels was also 
described in rats [67], and some studies have reported an increase in serum or 
plasma NO concentrations in T1DM and T2DM patients [67, 68]. Human neutro-
phils treated with L-Arginine, a NO precursor, have decreased chemotaxis toward 
CXCL8/IL-8 in vitro, while treatment with NOS inhibitor increased CXCL8/
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IL-8-induced-chemotaxis of neutrophils in vitro [69]. In addition, a NO donor 
inhibited human chemotaxis promoted by fMLP in vitro and incubation with a 
guanylate cyclase inhibitor did not interfere with the effect of NO donor. These data 
suggested that the inhibitory action of NO on neutrophil chemotaxis is independent 
of cGMP [51]. The NO-induced impairment of neutrophil migration was confirmed 
using bone marrow neutrophils isolated from NOS2−/− mice stimulated with fMLP 
in vitro, which showed increased chemotaxis in comparison to that isolated from 
NOS2+/+ mice [51]. Furthermore, the pre-treatment with NOS inhibitor prevented 
impairment of neutrophil recruitment toward peritoneal cavity observed in severe 
sepsis [70]. Therefore, it is possible to hypothesize that deficiency on migration 
activity of neutrophils may be associated with increased serum levels of NO in 
diabetics.

3.2 Failure in neutrophil migration independent of hyperglycemia

DM has altered levels of several molecules in serum that are not directly related 
to hyperglycemia, some of which can interfere with components of immune 
response, including neutrophils. Alpha-1-acid glycoprotein (AGP) is one of the 
main acute-phase proteins in organisms; its synthesis depends mainly on liver, and 
during an inflammatory response, the concentration in serum increases. [71]. AGP 
can bind to hormones and interfere with functions of endothelial cells, platelets, 
and leukocytes, and in fact, it inhibits human neutrophil chemotaxis in response to 
fMLP in vitro [72]. In addition, intravenous administration of AGP in rats prevented 
migration of neutrophils to peritoneal cavity, reducing rolling and adhesion of these 
leukocytes on endothelium of mesenteric microcirculation induced by carrageenan 
[73]. DM patients present high serum levels of AGP [48], so it is feasible that AGP 
can mediate the impairment of neutrophil locomotion described in DM.

Furthermore, AGP-mediated neutrophil dysfunction was also demonstrated 
in diabetic animals upon sepsis induction by cecal ligation and perforation (CLP). 
Neutrophils from septic T1DM mice showed impaired rolling, adhesion, and 
migration from mesenteric tissue toward the peritoneal cavity, while accumulated 
in lung tissue. These observations were associated with an altered expression of 
adhesion molecules (CD62L-CD11b) and a clear reduction in CXCR2 in neutrophils 
from diabetic animals compared to nondiabetic, after CLP. Accordingly, neutrophils 
from diabetic mice presented an increased expression of GRK2, a key modulator 
of CXCR2 receptor desensitization, upon sepsis induction compared to control 
septic mice. AGP administration in septic nondiabetic mice impaired neutrophil 
migration to peritoneal cavity, augmenting GRK2 expression, and reducing CXCR2, 
which reproduced the diabetic condition. On the other hand, insulin treatment 
reduced GKR2 and augmented CXCR2 on neutrophils obtained from diabetic mice, 
while decreased AGP serum concentrations. Thus, AGP increased production is 
involved in neutrophil impaired migration to infection during diabetes, possibly 
by enhancing GRK2 expression and/or augmenting NO production in these cells 
[48]. Notably, CXCR2 downregulation in diabetic animals seems to depend on 
the presence of comorbidity since several studies showed no difference in CXCR2 
expression between normal and diabetic mice.

Histamine for a long time was considered as a pro-inflammatory mediator 
whose main role is played in allergic inflammation. However, some evidence has 
shown that histamine can modulate other immunological events. Neutrophils 
express both histamine receptors, H1 and H2 [74] and activation of H2 inhibited 
human neutrophil chemotaxis in vitro [75]. Furthermore, blood neutrophils 
obtained after systemic or inhalatory administration of histamine in normal 
volunteers showed a reduction in chemotactic response to zymosan in vitro [75]. 
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After septic stimuli, T1DM mice exhibited mast cell accumulation in the peritoneal 
cavity and higher plasma levels of histamine than nondiabetic mice. In addition, 
the augmented activation of H2 receptor promoted an increase in intracellular 
expression of GRK2 and cAMP levels in diabetic septic mice neutrophils, favoring 
CXCR2  desensitization [74].

Resistin is a cysteine-rich protein that belongs to the resistin-like molecule 
(RELM) family that, in humans, is released mainly by macrophages but can be 
also produced by adipose tissue [76]. Resistin impairs glucose tolerance and insu-
lin action and therefore has been related to obesity-induced insulin resistance and 
T2DM [77]. Beyond metabolic effects, resistin can act directly in immune cells, 
including neutrophils. Resistin decreased fMLP-induced neutrophil chemotaxis 
in vitro through inhibition of PI3K pathway activation. Resistin also decreased 
oxidative burst in neutrophils after stimulation with PMA and Escherichia coli 
[78]. Since resistin directly affects neutrophil function and T2DM patients pres-
ent higher serum levels of this hormone [79], it can be suggested that resistin is 
also involved with the deficiency of neutrophil responses in DM independently of 
hyperglycemia.

4. Neutrophil response to bacterial infections in diabetes

It is now generally accepted that high glucose concentrations impaired several 
functions of neutrophils beyond their migratory capacity, including phagocytosis 
and bacterial killing. Hyperglycemia hinders neutrophil activity by inducing higher 
concentrations of intracellular calcium and thereby reducing ATP levels, which in 
turn leads to reduced phagocytic ability of PMN cells. Nevertheless, under glycemic 
control, diabetic patients restored intracellular calcium levels and increased cellular 
ATP content in neutrophils, which consequently improved phagocytosis. In addi-
tion, hyperglycemia was shown to affect other immune and hemostatic responses 
during experimental human endotoxemia. Healthy patients submitted to high 
blood glucose levels presented a reduction of E. coli endotoxin-induced neutro-
phil degranulation and exaggerated coagulation. A reversal of these effects was 
observed when glucose was controlled with insulin therapy [55].

Neutrophils from diabetic patients showed increased production of inflam-
matory cytokines [80] and ROS without any stimulation, although neutrophil 
oxidative responses to certain pathogens appear to be predominantly suppressed 
in diabetes [64, 81, 82]. Furthermore, hyperglycemia led to decreased mRNA 
synthesis of different pro-inflammatory cytokines in neutrophils after LPS stimula-
tion, compared with the euglycemic state [55]. In addition, T1DM mice showed a 
hyperglycemia-induced pre-activation of NOX, resulting in a significantly higher 
release of superoxide. Sustained hyperglycemic condition may, therefore, induce 
oxidative damage and the onset of diabetic complications, particularly at sites with 
neutrophilia [83, 84].

In DM, neutrophils increased basal ROS generation in a close-relationship to 
sustained hyperglycemia and the generation of AGEs [64]. On the other hand, 
decreased pathogen-stimulated ROS production is thought to be related to impaired 
glucose metabolism by the pentose-phosphate pathway, which produces NADPH 
that is a requirement for optimal superoxide generation by NOX [6]. Off noted, 
phagocytosis and NETosis were shown to depend on oxidative burst in neutrophils. 
Nevertheless, the relevance of the ROS production misbalance noted in neutrophils 
obtained from diabetics is not clear, since not all the diabetic patients with dimin-
ished ROS production presented recurrent bacterial infections [82].
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4.1 Neutrophil dysfunction and sepsis

According to The Third International Consensus Definitions for Sepsis and 
Septic Shock, “sepsis is a life-threatening organ dysfunction secondary to a deregu-
lated host response to an infection” [85]. During septic processes, serum inflamma-
tory marker concentration increases in patients although innate immune response 
appears to be impaired. Particularly, defective neutrophil recruitment to the sites of 
infection was reported in animal models of sepsis [86, 87]. Clinical studies reported 
that the incidence of sepsis is increased in diabetic patients [5]. Accordingly, DM 
is associated with high severity of sepsis, likely due to compromised immune 
responses, such as adhesion, chemotaxis, phagocytosis, and bacterial killing by 
immune cells [88]. Few studies reproducing septic inflammations in the context 
of diabetes had been performed in animals. T1DM or T2DM animals have worse 
prognosis upon CLP-induced sepsis even though plasma levels of systemic pro-
inflammatory cytokines, like TNF-α, CXCL2/MIP-2, and IL-6, are increased in 
diabetic animals compared with control animals upon sepsis induction. This situa-
tion is normally attributed to neutrophil dampened activity [48, 74, 89, 90].

On the other hand, results obtained upon CLP-induced sepsis in a mouse model 
of T2DM showed an increased neutrophil infiltration in the peritoneal cavity in 
diabetic animals compared to nondiabetic upon sepsis induction. Nevertheless, 
neutrophils from diabetic animals presented reduced phagocytic activity and ROS 
generation after sepsis induction compared to control animals in the same condi-
tion. This impairment in neutrophil functions was related to a downregulation 
of TAM family of receptor tyrosine kinases. The lack of an appropriated innate 
immune response results in deficient bacterial elimination and augmented death 
rate in diabetic septic animals compared to control septic animals [90].

Similar results were observed in T1DM NOD mice intraperitoneally challenged 
with Staphylococcus aureus. The augmented neutrophil presence in the peritoneum 
of diabetic mice was associated with a sustained TNF-α production which prevents 
apoptosis in these leukocytes. Despite it, diabetic mice were more susceptible to S. 
aureus infection possibly associated to neutrophil decreased oxidative burst [91]. 
In addition, administration of GM-CSF, a cytokine known to activate PMNs, in 
diabetic animals submitted to CLP was able to restore neutrophilic activity and 
prevent the increased mortality of the animals. These effects of GM-CSF were 
associated with an increased neutrophil phagocytic activity and ROS generation, 
which controlled bacterial proliferation in the peritoneal cavity [90].

4.2 Neutrophil counts and function in tuberculosis

Several clinical and epidemiological studies have identified DM as a risk factor 
for the development of pulmonary tuberculosis (TB). T2DM and TB are two of 
the most common co-morbid conditions in many parts of the world. In addition, 
DM has been associated with a greater severity of TB disease among the infected 
population and worse outcome in response to treatment [92]. TB-DM co-morbidity 
is characterized by heightened levels of bacterial loads in sputum accompanied by 
increased neutrophil counts in peripheral blood [93]. Neutrophilic inflammation is 
a central feature of TB-DM, accompanied by elevated levels of biomarkers associ-
ated with macrovascular complications.

Whole blood gene expression and plasma analyses showed that several inflam-
matory markers, including IL-1β, CXCL8/IL-8, IL-17A, CCL3/MIP-1, TNF-α, and 
VEGF, associated with neutrophilic activity and absolute neutrophil counts were 
highly increased in TB-DM patients compared to TB or DM patients. A higher 
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frequency of participants with high molecular degree of perturbation (MDP) was 
also noted in the TB-DM subgroup. MDP is a parameter that reflects the “distance to 
health,” based on molecular expression scores in comparison with a healthy popula-
tion. Consequently, they suggest that epigenetic reprogramming and neutrophilic 
inflammation determine the pattern of plasma cytokines and growth factors in 
TB-DM co-morbidity, highlighting neutrophilic inflammation as the main cause of 
susceptibility to develop TB by DM patients. Thereby, neutrophilic inflammation 
may be a useful target to improve TB treatment outcomes in this growing TB-DM 
patient population [94]. In addition, increased levels of three of the most prominent 
antimicrobial peptides, cathelicidin (LL37), human β-defensin 2 (HBD2), and 
human neutrophil peptide 1–3 (HNP1–3), principally secreted by neutrophils were 
found in individuals with TB-DM and TB compared with individuals with latent 
TB or non-TB-infected [7]. However, neutrophils isolated from T2DM patients 
showed a decreased capacity to phagocyte Mycobacterium tuberculosis or other 
M.  tuberculosis-related molecules compared to control donors [95].

There are few studies using animal models of TB-DM co-morbidity focusing on 
neutrophil activity. Even though it is frequently observed that diabetic animals have 
an increased accumulation of neutrophils within lung tissue upon infection [96, 
97], T2DM animals were more vulnerable to M. tuberculosis showing a decreased 
survival rate compared to control infected animals. Also, diabetic animals recruited 
more neutrophils and express higher levels of CXCL8/IL-8 in lung tissue than 
control infected animals [96]. In T1DM mice, infection with M. tuberculosis led to 
a decreased survival rate associated with an impaired bacterial control compared 
to nondiabetic infected mice. This high mortality of T1DM mice was accompanied 
by a lung neutrophilia and IL-6 overexpression. The treatment of TB-DM animals 
with neutralizing anti-IL-6 antibodies reduced neutrophil numbers and controlled 
bacterial burden in lung tissue, improving the survival rate [97].

4.3 Neutrophil counts and function in pneumonia

DM increases the risk of patients acquiring a pneumococcal disease, and besides, 
adversely affects the severity and outcome of this infectious illness [98]. In fact, 
DM has been shown to be a significant predictor of hospitalization in patients with 
community-acquired pneumonia (CAP) and also, a risk factor for the development 
of bacteremia in patients with pneumococcal pneumonia. T2DM is frequently asso-
ciated with increased mortality rate from pneumonia, which appeared to be highest 
in the early phase of infection where neutrophilic inflammation is more important 
[99]. Streptococcus pneumoniae is the most frequent cause of CAP irrespective of 
age and comorbidity. The phagocytosis of S. pneumonia was reduced in neutrophils 
recovered from eight patients with poorly controlled DM, but this defect improved 
with insulin treatment. Notably, control neutrophils incubated with serum taken 
from patients with diabetes also demonstrated a defective phagocytosis, suggest-
ing that the inefficient bacterial opsonization might be occurring in the diabetic 
patient’s serum [100].

Once phagocytosed, bacterial killing by neutrophils depends on the generation 
of ROS. Ex-vivo studies using neutrophils from T2DM patients have demonstrated 
a defect in the intracellular killing of S. pneumoniae together with a reduced O2 
production, reduced MPO activity, and H2O2 generation. In addition, chronic 
hyperglycemia induces inactivation of the source of leukocyte ROS, which results 
in high prevalence of oral abscesses, progressive interstitial inflammation, and 
fibrosis in the lung of mice in the absence of an inflammatory stimulus, leading to 
cachexia and death. These data suggested that ROS generated by NOX is not only 
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beneficial but also essential to oral and respiratory health in DM, particularly when 
the glycemia is uncontrolled [84].

Klebsiella pneumoniae is emerging as an agent which induces severe CAP. DM 
is associated with increased susceptibility to K. pneumoniae and poor prognosis of 
infection. Streptozotocin-induced diabetic mice are more susceptible to oropha-
ryngeal infection with K. pneumoniae, presenting increased mortality rate and less 
bacterial control. There was no difference in the antibacterial activity of neutrophils 
recovered from nondiabetic and diabetic mice, indicating that the higher bacterial 
burden in hyperglycemia is probably related to a defective inflammatory signal-
ing and late neutrophil recruitment. In fact, K. pneumoniae LPS induced a fewer 
recruitment of neutrophils to the alveolar airspace in diabetic mice compared to 
nondiabetic mice. Also, diabetic mice reduced neutrophil accumulation and early 
production of CXCL1/KC, CXCL2/MIP-2, IL-1β, and TNF-α in lung. Additionally, 
TLR2 and TIRAP, a Toll receptor and adaptor protein, were under-expressed in 
lungs of diabetic mice following K. pneumoniae-LPS provocation compared to 
nondiabetic infected mice, while no differences were observed for TLR-4 expres-
sion. These observations suggested that the failure in neutrophil recruitment and 
activation during the first hours of infection with K. pneumoniae is a most probable 
mechanism for high susceptibility to pneumonia in diabetics [101].

Commonly, K. pneumoniae infections cause pneumonia or urinary tract infec-
tions; however, during the past two decades, a distinct invasive syndrome that 
causes liver abscesses (KLA) has been increasingly reported in Asia, and this 
syndrome is emerging as a global disease [102]. DM is the most common comorbid-
ity in KLA patients. It was shown that DNA and MPO levels were elevated in the 
plasma of KLA patients compared to uninfected individuals, indicating neutrophil 
activation independently of diabetic status. In addition, clinical K. pneumoniae 
isolates induced phagocytosis, bacterial killing, and NETosis comparable by neu-
trophils from diabetic and nondiabetic patients. Notably, the IL-12-IFNγ axis and 
its downstream chemokines CXCL9/MIG, CXCL10/IP-10, and CCL5/RANTES were 
produced at lower levels by peripheral blood mononuclear cells (PBMCs) from 
T2DM compared to PBMCs from healthy individuals in response to K. pneumoniae 
strains. These observations indicated that although T2DM does not overtly impact 
on neutrophil intra- and extra-cellular killing of K. pneumoniae, it may influence 
cytokine/chemokine production and intracellular killing by PBMCs.

4.4 Neutrophil function in bacterial infection-induced deficiency in wound 
healing

Delayed wound healing is one of the main diabetes-related morbidities. 
Neutrophil inefficient activity has been pointed as one of the major responsible 
factors for the impaired wound healing in diabetes, since neutrophil depletion 
accelerates wound resolution independently of the presence of an infection [103]. 
Furthermore, increased serum elastase levels, a marker of neutrophilic inflamma-
tion, predicted delayed wound healing in diabetic patients. In addition, proteomic 
analyses of the diabetic patient’s foot ulcers (DFUs) showed elevated expression of 
NET components, including elastase, histones, neutrophil gelatinase-associated 
lipocalin, and proteinase-3, in nonhealing wounds as also in circulating blood. 
Consistently, neutrophils isolated from blood of DFU patients showed an increase 
of spontaneous NETosis but an impaired inducible NETosis [104]. Isolated neu-
trophils from T2DM patients presented higher NETosis rate than neutrophils from 
healthy patients in the absence of stimulation, which was associated with elevated 
intracellular calcium levels. Hyperglycemia is strongly related to these effects since 
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neutrophils derived from healthy patients produced more NETosis after pre- 
incubation with high glucose medium in vitro. In addition, large amounts of NETs 
were found in excisional skin sterile-wounds of streptozotocin-induced diabetic 
mice. Although the role of NETosis in wounds remains elusive, it has been con-
firmed that the inhibition of NETosis or degrading NETs improved sterile-wound 
healing and reduced NET-driven chronic inflammation in diabetic mice [105].

Gram-positive bacteria cause more than half of cases of diabetes-related wound 
infections. Especially, Staphylococcus aureus is a major pathogen in these infections, 
and its presence correlates with significant delays in wound healing [106]. Wounds 
induced by S. aureus in T2DM mice showed delayed resolution compared to non-
diabetic mice. Seven days after infection, the lesions of diabetic mice presented 
exacerbated NETosis, while nondiabetic mice had their inflammatory process 
already resolved and healing was nearly completed. Although neutrophils derived 
from both T1DM and T2DM patients produced greater amounts of NETs compared 
to healthy volunteer’s neutrophils, the induction of NETosis cannot be explained 
just by hyperglycemia. In fact, some works showed that high glucose exposure 
reduced LPS- or IL-6-induced NETosis in vitro [105, 107, 108].

Some mechanisms that could also explain the increased neutrophil NETosis in 
diabetic patients are the elevated levels of zonulin and the overexpression of PAD4. 
Zonulin is a protein that modulates the permeability of tight junctions between cells 
of the digestive tract. Interestingly, the increased zonulin levels in diabetic patients 
revealed a strong correlation with neutrophil elastase concentration and NET for-
mation in a glucose-independent way [109]. PAD4 is a calcium-dependent enzyme 
that mediates NETosis. In diabetes, PAD4 was upregulated in neutrophils from 
individuals with diabetes and was responsible for the unbalanced NET production 
by these leukocytes.

In T2DM mice, although neutrophil infiltration toward the lesion was aug-
mented, the impaired wound healing upon surgical site infection with S. aureus 
was related to a significant reduction in phagocytic activity and bacterial killing 
by neutrophils. Consistently, S. aureus-induced phagolysosome maturation was 
abolished and PMA-stimulated superoxide production was decreased in neutro-
phils recovered from diabetic mice. In addition, treatment of neutrophils with 
insulin significantly restored neutrophil killing activities and increased phagocy-
tosis. Interestingly, phagosome maturation and superoxide production restoring 
were dependent on glycemic control and not on a direct effect of insulin. These 
abnormalities in neutrophil functions were closely related with impaired wound 
healing in DM, once treatment with insulin restored normal wound healing in 
diabetic mice [110].

5. Conclusion

The increased susceptibility to bacterial infections is one of the hallmarks of 
diabetic complications. Under comorbidity with diabetes, the high prevalence and 
severity of bacterial infections, as observed in tuberculosis, pneumonia, and sepsis, 
is closely associated to impairment in neutrophil functions, such as migration, 
phagocytosis, ROS production, and NET formation. The alterations in neutrophil 
functions noted in diabetics occur both dependently and independently of the 
glycemic control. Among the mechanisms that lead to neutrophil dysfunction in 
diabetic conditions not related to glycemic control, some targets have been high-
lighted, such as AGP, H2 receptor, IL-6, PAD4, resistin, and zonulin. These poten-
tial targets should be better explored in clinical studies concerning their putative 
benefits to diabetic patients.
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