We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter
Efficient Simulation of Fluids

Pievve Thuillier Le Gac, Emmanuelle Darles,

Pierre-Yves Louis and Lilian Aveneau

Abstract

Fluid simulation is based on Navier-Stokes equations. Efficient simulation codes
may rely on the smooth particle hydrodynamic toolbox (SPH), a method that uses
kernel density estimation. Many variants of SPH have been proposed to optimize
the simulation, like implicit incompressible SPH (IISPH) or predictive-corrective
incompressible SPH (PC-ISPH). This chapter recalls the formulation of SPH and
focuses on its effective parallel implementation using the Nvidia common unified
device architecture (CUDA), while message passing interface (MPI) is another
option. The key to effective implementation is a dedicated accelerating structure,
and therefore some well-chosen parallel design patterns are detailed. Using a rough
model of the ocean, this type of simulation can be used directly to simulate a
tsunami resulting from an underwater earthquake.

Keywords: fluid simulation, SPH, CUDA, MPI, Navier-Stokes, tsunami

1. Introduction

Submarine earthquakes may generate tremendous disasters for human, like
what occurred during the Tohoku earthquake in 2011. Even if their seismic waves
may damage buildings and structures when they occur close to the coast, the
tsunami they generally cause are a massive risk for humans. Indeed, the energy
produced by a massive undersea quake is transmitted into the water at high speed
and results in a high wave when it arrives on the coast.

To avoid human losses, tsunami’s simulations can help to inform the govern-
ments and society about the risks before and after a submarine earthquake. This
chapter presents solutions for implementing such simulations. The main objective is
to be able to calculate the propagation of the tsunami wave into the ocean and then
to simulate efficiently its effects when the wave reaches the coast. These kinds of
simulation can be done in two dimensions considering only the profile of the coast
or in three dimensions when all the topography is considered. In both cases, the
simulation must handle how water is affected by the earthquake wave.

Viscosity is the measure depicting how a fluid resists deformations. Even water
is considered having a non-nil viscosity: so, this parameter must be considered
carefully for tsunami simulations. Water simulation relies on Navier-Stokes equa-
tions that describe the motion of a viscous fluid. Unfortunately, Navier-Stokes
equations cannot be solved directly like it is the case for many differential equa-
tions. The only way to obtain a solution at a given time consists of approximating it
through simulation. In practice, two family of methods may be used. The first one
consists in discretizing the simulation space into small parts and to do the

1 IntechOpen

Seismic Waves - Probing Earth System

simulation considering fixed cells in this discrete space (mesh approach). Well-
known methods are the finite element, the finite difference, and the finite volume.
A second alternative approach is the smoothed particle hydrodynamics (SPH),
introduced in astrophysics in 1977 [1, 2], which is applied in computer graphics [3],
oceanography, and many other fields. The latter is particularly interesting for tsu-
nami simulation, since the most important part of the simulation is not in the ocean
but rather on the ground. This implies that a part of the fluid will cover the coast.
This heterogeneity makes the mesh-free SPH approach more adapted.

This chapter is organized as follows. Section 2 presents the basics of SPH,
detailing the different involved mathematical expressions and steps and previous
implementations proposed in the literature. Section 3 presents a parallel implemen-
tation of SPH: it recalls the main parallel patterns and how they are used to obtain a
reliable and fast simulation. Before the conclusions, Section 4 presents some results
for a simple case of tsunami.

2. SPH formulation

SPH is a Lagrangian approach, meaning that particles representing tiny parts of
the fluids may move during the simulation. It is based on density estimation applied
to moving particles, leading to an approximation of the Navier-Stokes equations.
This section recalls these equations and presents the basics of SPH.

2.1 Navier-Stokes equations

Navier-Stokes equations model the dynamics of a fluid. They rely on the Newton
second law, stating that the sum of the forces applied on a body equals the product
of its mass by its acceleration (}.F = m - a). In practice, it is a system of two
equations: the mass continuity equation and the momentum equation. The first one
is given by

ap B
It + V(pu) =0 (1)

where p designs the fluid density, V is the gradient operator, and u is the flow
velocity. The momentum equation is

ou
p(§+u-w> = —Vp+pVu+pg (2)

where -V is the divergence operator, V* the Laplacian operator, p the pressure,
the dynamic viscosity coefficient, and g the gravity term. The right part of the
momentum equation represents the sum of the forces that the fluid undergoes,
where —Vp is the pressure force, pV2u the viscosity force, and pg the gravitational
force. With the fluid velocity function being unknown, it is not possible to compute
analytically its divergence. Then, the momentum equation is nonlinear.

Nevertheless, some methods allow to calculate an approximation of these two
equations. Most of them regularly discretize the Euclidean space and calculate an
approximation by using the finite difference theorem. The advection term (the left
part of the momentum equation) is approximated placing particles into the grid and
then computing their displacement. In other words, each grid cell contains a given
amount of fluid, and the algorithm calculates the exchanges between adjacent cells.

Efficient Simulation of Fluids
DOI: http://dx.doi.org/10.5772/intechopen.86619

Such a solution is quite difficult to use into environment where some large part (like
ocean) and highly detailed parts must be considered together.

Another method to approximate the Navier-Stokes equations is SPH. The
Euclidean space is no more discretized. Instead, it considers some moving particles
representing the fluid and their interactions. Each particle comes with its specific
velocity, pressure, density, and viscosity. Then, the total derivative allows to
approach the advection term (those between parentheses on the left part of the
momentum equation) by a single derivative term %. For a given particle i, the
momentum equation becomes

du;
Pi (d—b;) = —Vp; + VUi + pig 3)

Therefore, the acceleration a; of the particle i is given by

dui Vpi pz-Vzui
G=tie B B (4)
dt Pi Pi 8

2.2 Introduction to SPH

SPH relies on the kernel density estimation [4]. When we only have some
samples of a given function, we can estimate its value at a new location using a
kernel function W and the following estimation:

f(x) = X W (ke =5)fx) ©

The kernel function W must be a unit positive function. In other words, it must
satisfy the two following properties:

VxeR, W(x)>0 (6)

J Wx)dx = 1 %
R

We denote W), a kernel function with bounded support [0, %]. This simply means
that Wj,(x) = 0 for all x < 0 or x > /. This mathematical tool is used to approximate
any scalar field A; for any particle i:

A= 3 4w (|lx — x])) (8)
=1 P

where m; and p; are, respectively, the mass and the density of the jth particle.

Useful kernels for liquids are given in [3]. From this simple expression, we can
deduce the estimation of the gradient and the Laplacian of a scalar A;:

VA = 3 AL VW([lx - x]) ©)
j=1 " Pj

V2A; = Y A2 VW, (|Jx — x5]|) (10)
j=1 P

These formulas allow to calculate the density of any particle, the gradient of the
pressure, and the Laplacian of the velocity to approximate a solution of the Navier-
Stokes equations. For each particle 7, the SPH algorithm follows:

Seismic Waves - Probing Earth System

* Compute the density p;:

pi = S my Wi ([~) ¢
p:

* Compute the pressure p;:
p; = k(p; — po) (12)

where £ is the gas constant and pj, is the rest density.

» Compute f, the sum of the forces at particle i of pressure, viscosity, surface
tension, and gravity:

ressuve < p +p
FE = = o BV (s))
j=1 Pj
viscosity < u] Ui 2
[= p Zm == VW, (|lx —) (14)
j=1 Pj
f;utface _ _szcsilz_l:l (15)
f‘lgmvity = pg (16)

where o is the tension coefficient relating to the interface between the fluid and
the exterior (the air), #; is the normal vector to a particle i, and cs; is the color field
of the particle i.

* Compute the velocity #; and the new particle position x; using a small
integration time step Af:

u; = u; + At& (17)
P
X; = Xx; + Atu; (18)

The SPH simulation uses these formulas to compute the positions of the particles
for a given time length through an iterative procedure. The particles’ interactions
are very important: we use a rather small support (small 2 value) for the kernel
function in order to limit the number 7 of neighboring particles. Then, in any good
implementation, one of the key elements is the neighboring handling. Using a
parallel processor, this can be achieved with a low complexity, allowing to reach
short computation times.

2.3 SPH algorithms

SPH method presented in Section 2.2 is quite immediate to implement [3]. Using
a small kernel support, the calculation of the forces that apply to a given particle is
quite fast, since only a few numbers of neighbors have to be considered. Neverthe-
less, the neighborhood needs to be efficiently computed and stored to accelerate the
calculations. This needs to be done for each time step. To do that, a regular grid is
the faster solution. The size of a grid cell is set as the radius of the kernel support.
Then, to find the neighbors of a given particle, it is enough to consider the cells

Efficient Simulation of Fluids
DOI: http://dx.doi.org/10.5772/intechopen.86619

surrounding the one containing this particle. In dimension 2 this leads to 9 cells
(including the cell containing the particle) and 27 in dimension 3.

The SPH method described in Section 2.2 has been extended to solve some
accuracy problem with incompressible fluids, for instance, predictive-corrective
incompressible SPH (PC-ISPH), incompressible SPH (ISPH), and implicit incom-
pressible SPH (IISPH) [5-7]. In Ref. [7], comparisons between these three tech-
niques show that IISPH is faster than PC-ISPH and ISPH, mainly since it allows to
use bigger time steps. Hence, this chapter focusses on an implementation of IISPH.
This evolved method is also more complex than classical SPH, and then each time
step uses more calculations (but they are longer, so it is faster still). More precisely,
for each particle it calculates the density p; and the forces of viscosity, surface
tension, and gravity like in SPH method. It adds the calculation of the advection
velocity, which is the portion of the velocity independent to the pressure exerted by
the other particles:

u?dy —u; + ; <fiviscosity + fisuﬁace + f igmvity) (19)
i

The IISPH algorithm calculates the advection factor d;; and the advection coef-
ficient a;;:

di = — AL z% Wi, (x; — ;) (20)
J Fi
aj; = ZWLJ (dl',' — dj,‘)AWh (xi — X]) (21)

J

The IISPH algorithm continues with the calculation of pressure’s forces. It is
done through at least two corrective loops to enforce the minimization of the
difference between the rest density and the sum of the density of all particles. First,
this loop calculates the advection density:

n
p?d” =p; + At Y my <ufd” — u]”.’”l”> AW, (xi — xj) (22)
J

Second, it calculates the following term per particle that will be used many times
in the next steps:

n n oy
Z dllp]l = At z — p—szleWh (Xi — Xj) (23)
]] 1)

where [is the iteration number of the corrective loop. Notice that for/ = 0,
IISPH uses p? = wp,, with ® = 0.5.

Then, the IISPH corrective loop continues by computing for each particle the
pressure force thanks to the following expression:

vessuve < i P;
[= X —mim, Ziz +5 | AW, (xi — ;) (24)
j Pi P
where p; is the pressure at a particle i:
®
pi=(1—o)p;+—(po — " = Xp;) (25)

1]

Seismic Waves - Probing Earth System

This last term is computed using the displacement factors:
Ypi=Xm (Z dipj — dipj — g djk%) - Wi (xi — %)) (26)
J J i

All these calculations should be made in parallel to reduce the computation
times, using a tuned implementation, for instance, using message passing interface
(MPI) for high-performance computing (HPC) or using the Nvidia common uni-
fied device architecture (CUDA) on graphics processing unit (GPU) for simpler
computers.

3. Parallel SPH implementation

An efficient SPH implementation relies on parallelism at some level. A fully
parallel solution may become a very efficient solution, as previous works have
shown it. While most of the calculations may be done considering a single particle
into a single core, finding the neighboring particles that play a role in the density,
the pressure, and the external forces needs collaboration between different cores.

Using the texture mechanism available with GPU, working with the neighbors is
quite simple and efficient. Nevertheless, this implies to store all the particles into a
regular grid at each time step during the simulation. This part is somewhere the
most complicated, and the key step for an efficient implementation.

This section first presents the main parallel patterns (MAP, SORT, SCAN, etc.)
and then shows how they can be combined to write a new fast parallel SPH solver.

3.1 Parallel patterns

Writing a parallel algorithm is not as simple as writing a sequential algorithm.
This truism is based on the necessary consideration of the collaborations between
the different processors of a parallel machine: all the processors must work in
concert, and not isolated as in a sequential approach. These collaborative aspects are
the main difficulty. How to make sure all these processors expect when it’s needed
and work to the fullest when no synchronization is required?

Rather than writing a parallel algorithm based on classical sequential patterns,
parallel patterns make it possible to write a parallel algorithm directly, abstracting
the underlying machine. These patterns rely on very simple parallel architecture,
called the parallel random-access memory (PRAM). It assumes a synchronization
between an infinite set of processors and an infinite amount of memory [8].

3.1.1 Simple parallel patterns

Simple parallel patterns do not need synchronization. This means that, using a
GPU or an HPC, they may be run without any difficulties, even with less processors
than needed. The simpler one is the MAP, or transform, that consists in applying a
given function f to an input data to obtain the output. The key of this pattern is
about the localisation of the data: input and output are generally considered as
vectors (or arrays). Then, MAP applied to data at the same index:

Y; = f(X;) (MAP) (27)

Figure 1 describes this pattern on small arrays.

Efficient Simulation of Fluids
DOI: http://dx.doi.org/10.5772/intechopen.86619

Xo X1 X2 X3 5o c Xn—2 Xn—l
Yo |l i |l v | Vs .. Yoo | Yo
Figure 1.

Hlustration of the MAP parallel pattern.

Xo X1 X2 X3 Xa Xs Xo | Xo—2 | Xn—1

Yo i Y2 Y3 Ys Ys Yo | Yn—2| Yo

Figure 2.
The SCATTER and GATHER patterns move data using a permutation.

In many occasions, it is necessary to write the result at a new location, another
index. When each possible destination index is used once and only once, we obtain
a quite simple parallel pattern called SCATTER. It consists of writing the input data
from location i to the destination location map (i), map being a permutation func-
tion. Figure 2 illustrates this parallel pattern.

In the same spirit, the GATHER parallel pattern writes at index i data coming
from index map (i), using again a permutation function. To differentiate between a
SCATTER and a GATHER, you should remember that at first we read contiguous
data, while in the second, we write at contiguous location. This is resumed with the
following two expressions:

Yoap) = Xi (SCATTER) (28)
Y; = Xpap) (GATHER) (29)

PRAM model is very useful to write efficient algorithms on theory. Nevertheless,
at the end these algorithms run on real computers, with a limited amount of
memory and a fixed number of processors. Brent’s theorem links the theoretical
computation time on PRAM model with the one obtained using only p processors:

an algorithm made in O(1) using m processors will run in O <%) using only p pro-

cessors. This allows to predict the behavior of (very) simple algorithm on a GPU.

3.1.2 Advanced parallel patterns

In many cases, some degree of collaboration is needed between processors. This
leads to some more complicated parallel patterns. A very common parallel pattern
using such a collaboration is the SORT that sorts data according to a given order. It
is used in previous SPH implementation for building the neighbors’ grid. The SORT
pattern is based on the PARTITION pattern that moves values with respect to a
given predicate. More precisely, for # values X; and using the predicate P; € [0, 1],
the PARTITION pattern moves the values X; for which P; = 1 at the beginning of
the resulting array, the others at the end (see Figure 3 for a simple example).

Seismic Waves - Probing Earth System

P= 1 0 1 0 1 0 0 0 1
X=Xo | X1 | Xo | X3 | Xa | Xs | Xo | X7 | Xs

2 FAPAFEAEAFEBEAEAFAR?

Figure 3.
Hlustration of the PARTITION pattern for nine input values; the values with predicate 1 ave put at the
beginning of the output, the others at the end.

These complex patterns are built using a fundamental pattern called SCAN. It
corresponds to a prefix sum of values, according to the following expression:

[
Y =@X; (INCLUSIVE — SCAN) (30)
j=0

The fundamental pattern exists in two versions: inclusive and exclusive ones.
The first corresponds to the expression given above, doing a sum-up to the current
output position. The exclusive version omits the current position, doing a sum-up to
i — 1 and using a nil value for Y (generally, using 0):

i—1
Y:i=@X; (EXCLUSIVE — SCAN) (31)
j=0

Figure 4 shows that these two versions of SCAN are almost the same, except the
shift between the resulting arrays: the values obtained with inclusive version corre-
spond to the ones obtained with the exclusive version at the same position plus one.

Another pattern of interest into this chapter is the REDUCE that allows to
calculate a single value from an array of values and using any given associative
binary function:

n—1
Y=@X; (REDUCE) (32)
j=0

For instance, using X = [1,2,3,4,5,6,7,8,9,10] and the classical integer sum as
binary operator, this pattern returns Y = 55, the sum of the 10 first non-nil integers.
These complex patterns have roughly speaking all the same complexity, in

O(logn) on a PRAM machine and O (1% log 1%) using p processors only. Nevertheless,

since they are built using the SCAN, PARTITION and SORT are in practice more
complex and take more time. A fast implementation of the SORT pattern relies on
the radix sort algorithm that loops over the number of digits of the maximum key to
sort, thus having a practical complexity in O(32log#) with 32-bit integers.

Figure 4.
Differences between the inclusive and exclusive SCAN patterns.

Efficient Simulation of Fluids
DOI: http://dx.doi.org/10.5772/intechopen.86619

The last programming tool this section covers is the atomic operation notion. A
load-modify-write operation cannot be handled in parallel program without cau-
tion. Let us consider two processors doing a “plus one” in parallel at the same time.
The addition is done by the CPU using registers (local memory to the CPU). Hence
the variables to add need to be loaded from the main memory, then added, and then
stored into the main memory. If the two processors do the load-modify-write
operation at the same time exactly on the same variable, then the result is false. If
the processors are not exactly synchronized, the result is certainly false also: to be
correct, the two operations must be done sequentially. Atomic operations provide
this behavior, performing the read-modify-write operation for one and only one
processor at a time.

Obviously, other parallel patterns exist. They are not discussed in this chapter
since they are not used in our SPH implementation.

3.2 Grid building

Previous SPH implementations use the SORT pattern to build the neighbors’ grid
[7, 9, 10]. The first step consists in calculating the grid index of each particle, using
a MAP. Next, the particles are sorted with respect to this index. Then, it is necessary
to compute the number of particles per cell and the starting position of each cell. In
[9], atomic operations are used for these two operations: the minimum for the first
particle into each cell and the addition for the number of particles per cell.

In Ref. [7], authors follow a similar approach with the particle sort with respect
to their cell index but using a MAP to mark the start and the end of each cell with
respect to the sorted cell indices, considering their unicity.

The main problem is that the sorting algorithm takes a large part of the compu-
tation time, near 30% according to [10]. In this chapter, we avoid the full sorting by
combining simple parallel patterns and atomic operations. Our grid building algo-
rithm is summarized in Figure 5.

This algorithm uses the Nvidia Thrust API with some freedom to shorten it. First,
at line 8 the number of particles per grid cell is set to zero. Next, like with previous
methods at line 9, the index of each particle is calculated with a MAP. Using a second
MAP at line 10, the particle cell offset is calculated using an atomic addition. More
precisely, we use the CUDA int. atomicAdd(int*cc, int. a) function that adds a to
the variable *cc and returns the old content of *cc. Since atomic operations are done
in sequence, the number of particles per cell is correctly computed. Moreover, each
particle receives the old counter value, which is O for the first atomic operation
execution, 1 for the second, and so on up to 7 — 1 for the last particle added to the

il void GridBuilding(
2 device_vector<Particle>& Particles,
3 device_vector<unsigned>& cell_start
4)
5 device_vector<Particle> p(Particles);
6 device_vector<unsigned> index(Particles.size());
7 device_vector<unsigned> local_offset(Particles.size());
8 memset(local offset, @, local offset.size());
9 transform(p, index, Particle2Index());
10 transform(index, local_offset, Index2LocalOffset());
11. exclusive_scan(local_offset, cell start);
12 transform(index, local offset, local offset, Local2Global(cell start));
13 scatter(p, local offset, Particles);
14 }
Figure 5.

Our algorithm to build the neighbors’ grid.

Seismic Waves - Probing Earth System

cell, m being the number of particles added into the cell. These values are used to
scatter all the particles to their local position into the grid, at line 13. But, before to do
that we need to calculate the global grid offset, corresponding to the position of the
first particle of each cell. This is done using an exclusive SCAN at line 11 to

compute the global offset, followed by a MAP at line 12 to calculate each particle
global offset.

In practice, this algorithm can be optimized in many ways. First, the device
vectors can be allocated only once, and not each time the grid is built. Second, the
first two transforms (lines 9 and 10) can be mixed into one. This will limit the
memory loading into device registers, known as a major performance limitation
with GPU. At last, the last transform (line 12) and the scatter (line 13) can be mixed
into a single call again to minimize the memory bandwidth usage. Moreover, the
particles’ data must be split into multiple arrays for efficiency (one array for
position, one for density, one for pressure, etc.) as in [10].

3.3 Main algorithm

The most difficult part of the implementation of the IISPH method is the con-
struction of the neighbors’ grid, as for any non-mesh density kernel method. The
rest of the calculation is rather simple and relies on two parallel models: the MAP for
all the loops on particles and the REDUCE to control the termination of the correc-
tive loop in the calculation of the pressure force.

It is noticeable that the IISPH loop to correct the pressure force runs on the CPU,
because there is no available global synchronization on the GPU. Then, the
REDUCE is used to return a value from the GPU to the CPU, to decide if more
corrections are needed or not. Nevertheless, since this just consists of sending one
real value, it is not a big bottleneck.

Moreover, many calculations use data from the neighbors (pressure, density,
position, etc.). L1 GPU’s memory is used to accelerate these calculations, reducing
the computation time around a third in our experiment. Notice also that the IISPH
corrective loop amortizes the neighbors’ grid building. In our experiments the grid
building now represents less than 10 percent of the full computation time.

4. Experiments

The IISPH is a valid solution to simulate a tsunami [11]. Its main advantage
regarding a discrete method is that it does not need to refine the mesh near the
obstacles, like the coast and the buildings. Moreover, the wave can go everywhere,
including interfering with the beach, buildings, infrastructure, etc.

In this chapter, we illustrate the tsunami simulation using IISPH algorithm
through a rather simple scenario. It contains a short coast ending with a mountain.
We put a building just after the beach. The main difficulty, if either, consists of
generating the solitary wave. A tsunami, for instance, is generated by an earthquake
at long distance. The produced wave runs at 200 meter per second (720 km/h). We
do not need to simulate the propagation of the wave since its epicenter, which is
quite difficult with long distance: it needs very long simulation time to see the wave
reaching the beach, and obviously it needs a huge amount of memory to handle the
sea between the two distant locations. Instead, we simulate the wave into a rather
small space. We can predict the time of arrival to the beach, assuming we know the
exact distance between the beach and the earthquake location.

In [11], authors solve the solitary wave solution of Boussinesq. They calculate
the wave paddle displacement using the equation:

10

Efficient Simulation of Fluids
DOI: http://dx.doi.org/10.5772/intechopen.86619

X(t) = Ct — 0 (33)

K

where C is the wave velocity, ¢ is the time in the simulation frame, « is the decay
coefficient, and 0 is given using Newton’s method by

o' — xCr —|—%I tan (Gl)

o' =o' - 34
I +Hsech®(0) (34
More precisely, 0 is the solution of the following problem:
H
X(t) = —tanh(x(Ct-X(z))) (35)

Kh

where H and & are the wave height and the water depth, respectively.

While this method works on CPU, it is not well-suited for a CUDA implemen-
tation of the IISSPH, mainly because the number of iterations of the Newton-
Raphson method depends on the input values, and so is not constant per particle.

Hence, in this chapter we use a different but simple technique. The wave is
produced using a piston wave generator. Here, the piston is a huge virtual object
that moves the water to reach the speed of the wave. The length and the speed of
the piston movement are calibrated to obtain the good height and speed of the
tsunami solitary wave.

Figure 6 illustrates such a simple wave simulation, before the tsunami wave
arrives. Figure 7 shows the wave arriving at the building at ¢ = 4 s in the simulation
frame. In Figure 8, att = 8 s, the building is completely below the ocean that returns

Figure 6.
Tsunami simulation before the solitary wave arrives.

Figure 7.
Tsunami wave reaching the building near the beach.

11

Seismic Waves - Probing Earth System

Figure 8.
The tsunami wave engulfed the building and the coast.

Figure 9.
The tsunami wave begins to pull off the coast. With flat coasts, this may take some time.

Figure 10.
After a longer time, the tsunami wave has almost completely disappeared.

into its bed after some more time (see Figures 9 and 10). The building is made with

fixed particles that nevertheless are considered with the moving particles of the fluid.
This allows an interaction between two kinds of particles, and it permits to obtain the
pressure and force applied to the building, for instance, to check if it will resist or not.

5. Conclusions

This chapter focusses on the simulation of a tsunami solitary wave. Such a wave
is mainly produced by submarine earthquake and may provoke vast disasters for

12

Efficient Simulation of Fluids
DOI: http://dx.doi.org/10.5772/intechopen.86619

human living near the coasts. Such phenomena also may produce strong degrada-
tion on buildings and structures, in turn inducing human loss as what happened
after the Tohoku earthquake in 2011. To avoid these disasters, it is important to be
able to validate the robustness of structures and buildings near the dangerous coasts
and to inform population after an always unpredictable submarine earthquake.

To achieve these goals, it is necessary to produce robust and fast fluid simulator
software. To simulate a tsunami wave, a good candidate is the SPH method. Since it
does not need the usage of a fix mesh like in discrete techniques, it allows to handle
correctly the wave running on the beach and after. Moreover, it correctly handles
the contact with buildings and structures, allowing to simulate the forces that they
undergo.

This chapter recalls the implicit incompressible SPH method, which is one of the
fastest among the SPH ones. The parallel implementation for GPU is detailed in
depth, with a fast algorithm to build the neighbors’ grid, avoiding the classical
sorting method which is more time-consuming.

At last, this chapter proposes a simple tsunami wave simulation using a piston
wave generator, a simple solution for implementing and providing valuable results.
It can be used to simulate tsunami generated by submarine earthquake occurring in
a pattern of seismic source mechanism when both the location and intensity are
estimated.

Author details

Pierre Thuillier Le Gac!, Emmanuelle Darles!, Pierre-Yves Louis”
and Lilian Aveneau

1 XLIM, UMR 7252, CNRS, University of Poitiers, France
2 LMA, UMR 7348, CNRS, University of Poitiers, France

*Address all correspondence to: lilian.aveneau@univ-poitiers.fr

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

13

Seismic Waves - Probing Earth System

References

[1] Gingold RA, Monaghan JJ. Smoothed
particle hydrodynamics: Theory and
application to non-spherical stars.
Monthly Notices of the Royal
Astronomical Society. 1997;181(3):
375-389. DOI: 10.1093/mnras/181.3.375

[2] Lucy LB. A numerical approach to
the testing of the fission hypothesis. The
Astronomical Journal. 1977;82:
1013-1024

[3] Miiller M, Charypar D, Gross M.
Particle-based fluid simulation for
interactive applications. In: Proceedings
of the 2003 ACM SIGGRAPH/
Eurographics Symposium on Computer
Animation. 2003. pp. 154-159

[4] Silverman B. Density Estimation for
Statistics and Data Analysis. New York:
Routledge; 1998. DOI: 10.1201/
9781315140919

[5] Solenthaler B, Pajarola R. Predictive-
corrective incompressible SPH. In:
Hoppe H, editor. ACM SIGGRAPH
2009 papers (SIGGRAPH ’09). New
York, NY, USA: ACM; 2009. 6 p. DOI:
10.1145/1576246.1531346

[6] Shao S, Lo EYM. Incompressible SPH
method for simulating Newtonian and
non-Newtonian flows with a free
surface. Advances in Water Resources.
2003;26(6):787-800. DOI: 10.1016/
S0309-1708(03)00030-7

[7] Thmsen M, Cornelis], Solenthaler B,
Horvath C, Teschner M. Implicit
incompressible SPH. IEEE Transactions
on Visualization and Computer
Graphics. 2014;20(3):426-435. DOL:
10.1109/TVCG.2013.105

[8] Blelloch GE. Vector Models for Data-
Parallel Computing. Cambridge,
Massachusetts, London, England: MIT
Press; 1990

14

[9] Goswami P, Schlegel P, Solenthaler
B, Pajarola R. Interactive SPH
simulation and rendering on the GPU.
In: Eurographics/ACM SIGGRAPH
Symposium on Computer Animation;
2010. pp. 1-10

[10] Bilotta G, Zago V, Hérault A. Design
and implementation of particle systems
for meshfree methods with high
performance. In: High Performance
Parallel Computing. IntechOpen; 2018.
DOI: 10.5772/intechopen.81755

[11] Sampath R, Montanari N, Akinci N,
Prescott S, Smith C. Large-scale solitary
wave simulation with implicit
incompressible SPH. Journal of Ocean
Engineering and Marine Energy. 2016;
2(3):313-329. DOI: 10.1007/s40722-016-
0060-8

