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Chapter

Application of Topographic
Analyses for Mapping Spatial
Patterns of Soil Properties
Xia Li and Gregory W. McCarty

Abstract

Landscape topography is a key parameter impacting soil properties on the earth
surface. Strong topographic controls on soil morphological, chemical, and physical
properties have been reported. This chapter addressed applications of topographical
information for mapping spatial patterns of soil properties in recent years. Objec-
tives of this chapter are to provide an overview of (1) impacts of topographic
heterogeneity on the spatial variability in soil properties and (2) commonly used
topography-based models in soil science. A case study was provided to demonstrate
the feasibility of applying topography-based models developed in field sites to
predict soil property over a watershed scale. A large-scale soil property map can be
obtained based on topographic information derived from high-resolution remotely
sensed data, which would benefit studies in areas with limited data accesses or
needed to extrapolate findings from representative sites to larger regions.

Keywords: DTM-based model, high-resolution remotely sensed data, soil carbon,
principal component analysis, factor analysis

1. Introduction

Landscape topography is a key parameter influencing biogeochemical processes
that occur in the near-surface layer of the earth [1]. In particular, the topography
plays an important role in soil formation through regulating soil hydrological
regimes and controlling the gravity-driven soil movements [2–6].

Quantitative and qualitative topographic information is essential in understand-
ing the heterogeneity of soil chemistry and physics. Before the 1990s, geographic
maps were the main source to quantify landscape topography in soil science [7].
Topographic variables, such as slope and plan and profile curvatures, were calcu-
lated manually from these maps to investigate their relationships with soil proper-
ties and to generate soil maps [8–10].

Along with the development in computer, aerial, space, and geographic tech-
nologies, the availability of high-resolution digital elevation models (DEMs) intro-
duces a new technique in deriving digital terrain models (DTMs) and has been the
main source for topographic information extraction in soil biogeochemical studies
since the 1990s [7]. A DEM is a digital representation of the terrain surface elevation
referenced to a vertical datum. A DTM is an enhanced DEM that has been
augmented with breaklines and other observations to describe the land surface
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geometry [1, 11, 12]. The application of DTMs enables effectively reconstruct topo-
graphic landscape over a large scale. Recently, there are two main applications of
DTMs in soil science. One is analyses of topographic influences on soil formation
and movement, which would be introduced in Section 2. The other is modeling of
relations between soil properties and topography and using the results to predict
soil properties, which would be discussed in Section 3.

The objective of this chapter is to provide an overview of how topographic
heterogeneity causes the spatial variability in soil properties. This chapter starts
with an introduction of DTMs applications, which is then followed by reviews of
investigations on topographic impacts on soil formation and movements and
modeling of soil morphological, chemical, physical properties based on DTMs. The
last section presents a case study of DTM-based analysis on how land topography
affects soil carbon (C) dynamics.

2. Impacts of topography on soil properties

DTMs are functions of morphometric variables that digitally represent the
geometry of the land surface. Various techniques have been developed to generate
different DTMs such as topographic metrics of slope, aspect, and curvature. Fifteen
topographic metrics that have been reported to be highly correlated with soil prop-
erties, including slope gradient, slope aspect, profile curvature, plan curvature,
general curvature, flow accumulation, topographic relief, topographic openness,
upslope slope, flow path length, downslope index, catchment area, topographic
wetness index, stream power index, and slope length factor, are introduced in this
section (Table 1). Based on the spatial scope, the topographic metrics can be
grouped into three main categories [7]:

1. Local topographic metrics: variables describe the surface geometry at a given
point on the land surface. Slope gradient, slope aspect, and curvature related
(plan, general and profile curvatures) metrics belong to this category.

2.Nonlocal topographic metrics: variables consider relative positions of a selected
point, including catchment area, upslope slope, downslope index, flow path
length, flow accumulation, topographic relief, and topographic openness.

3.Combined topographic metrics: variables integrate local and nonlocal
topographic metrics considering both local surface geometry and relative
positions of a point on the land surface. This group of metrics includes
topographic wetness index, stream power index, and slope length factor.

These nonlocal and combined topographic metrics often reflect important phys-
ics involved in water and soil mass transfer processes considered to have important
impacts on soil property patterns.

2.1 Local topographic metrics

Slope gradient indicates the steepness of a line which directly influences the
velocity of a gravity-driven flow [2]. For example, a steep area drains quickly and
retains less soil than a flat area [4, 13]. Therefore, negative soil redistribution rates
with high erosion possibilities are often observed in steep areas. The erosion pro-
cesses tend to remove fine particles which are usually enriched in soil organic
carbon (SOC), leading to low SOC content in a steep area [4, 14]. Meanwhile, the
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slope gradient can impact soil water content [2, 7]. For relatively flat areas, soil
water content commonly decreases with slope gradient due to increased lateral flow
and depositional crusts that decrease infiltration; while as slope steepens, rills may
occur that can disrupt the crusts and favor greater infiltration, and therefore lead to
a positive relationship between soil water content and slope gradient [15–18].

Slope aspect shows the direction that a slope faces. This metric influences soil-
water balance by affecting insolation and evapotranspiration [19]. Soil temperature
and evapotranspiration tend to be lower, and soil water content tends to be higher
in shady aspect areas. These environmental conditions can be favorable for slow
decompositions of organic matter and high accumulations of soil C and nitrogen
(N) content [20–22]. Soil water content impacted by slope aspect can further

Variables Definition and formula

Slope gradient, G (radian) An angular measure of the relation between a tangent plane and a
horizontal plane

G ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2
p

Slope aspect, A (radian) Direction of slope measured clockwise with north as 0

A ¼ arctan q
p

� �

Profile curvature, P_Cur (1/m) Slope change rates in the vertical plane

P_Cur ¼ � p2rþ2pqsþp2t

p2þq2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þp2þq2
p

Plan curvature, Pl_Cur (1/m) Curvature in a horizontal plane

Pl_Cur ¼ � q2r�2pqsþq2t

p2þq2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þp2þq2
p

General curvature, G_Cur (1/m) Curvature of the surface itself
G_Cur ¼ �2 r þ tð Þ

Catchment area, CA (m2) Upslope area contributing runoff to a given point on the land
surface

Upslope slope, Upsl (radian) Mean slope of upslope area

Downslope index, DI (radian) Head differences along a flow path
DI ¼ arctan h Ld= Þ

�

Flow path length, FPL (m) Maximum distance of water flow to a location in the catchment

Flow accumulation, FA (m2) Land area that contributes surface water to an area in which water
accumulates

Topographic relief,TR (m) Elevation difference between the highest (hmax) point in an area
and a given point (hi)
TR ¼ hmax � hi

Positive topographic openness,
PTO (radian)

Angular measure describing the relationship between surface relief
and horizontal distance

Topographic wetness index, TWI Frequencies and duration of saturated conditions
TWI ¼ ln CA G=ð Þ

Stream power index, SPI Erosive power of overland flow
SPI ¼ CAs Pl_Curð Þ tan Gð Þ

Slope length factor, LS Distance from flow origin to a point where deposition begins

LS ¼ nþ 1ð Þ CAs

22:13

� �0:4 sinG
0:0896

� �1:3

Ld is the horizontal distance to a point with an hmeter elevation below the starting cell. CAs is specific catchment area.
p, q, r, t, and s are partial derivatives of elevation (h), h ¼ f x; yð Þ:
p ¼ δh

δx q ¼ δh
δy r ¼ δ2h

δx2
t ¼ δ2h

δy2
s ¼ δ2h

δxδy :

Table 1.
Definitions and formulas of selected topographic metrics.
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influence vegetation density, which may have impacts on runoff velocities and soil
erosion rates [23].

Profile, plan, and general curvatures are important topographic factors control-
ling patterns of overland flow and soil water content. Profile curvature shows
upwardly concave with positive values and upwardly convex with negative values
(Figure 1a). This variable affects flow acceleration and deceleration and therefore
influences soil redistribution and distribution patterns of SOC content [24–26]. A
positive plan curvature value indicates a laterally convex surface and a negative
value indicates a laterally concave surface [24] (Figure 1b). Water accumulates and
soil water content decrease when flow diverges (positive plan curvature) and
increase when flow converges (negative plan curvature) [7]. General curvature is
the curvature of the land surface and describes peaks with positive values and
valleys with negative values. This metric enables more accurate estimation of over-
land flow paths than plan and profile curvatures, and can significantly correlate
with patterns of soil erosion and deposition [4, 27].

2.2 Nonlocal topographic metrics

Catchment area and slope related nonlocal topographic metrics (upslope slope
and downslope index) affect soil properties mainly through regulating soil water
content. At a location, increases in water amount from upslope areas can increase
water supply to the location and affect the water accumulation [28]. Therefore,
positive correlations have been observed between the catchment area and soil water
content [7]. Furthermore, as the catchment area increases, the chance for sediment
deposition increases, and thus affects the soil C stocks [29]. The upslope slope
relates to slopes in upslope contributing areas. Overland flow velocities are usually
less at positions with lower values of upslope slope [1, 30]. The downslope index is a
metric including dispersal (downslope) controls on drainage [31]. Since the drain-
age of a location is the balance between the water from a specific upslope contrib-
uting area and to a downslope area, this index usually shows a better representation
of groundwater gradients and soil water content than slope gradient [31, 32].

Figure 1.
Diagrammatic illustration of (a) profile and (b) plan curvatures.
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The two flow-related nonlocal topographic metrics (flow path length and flow
accumulation) reflect the impacts of soil hydrology on soil properties. The longer
flow path length decreases overland flow velocity and increases infiltration [33, 34].
Increased erosion of fine particles can also be observed when flow path length
increases [35, 36]. This metric has been widely used in soil erosion models, describ-
ing soil loss under flow divergence and convergence conditions [37, 38]. Flow
accumulation mainly influences water conditions in soils. Flow volume and soil
water content response positively to this metric, which in turn can influence the soil
C stocks [39, 40].

For topographic relief, higher values suggest larger differences from the highest
points, which would stimulate flow velocity, leading to more rapid downslope soil
transport from low relief areas [4, 41]. Moreover, topographic relief influences
landscape drainage characteristics. Tucker and Bras [42] found that drainage den-
sity was positively correlated with relief in semiarid and low-relief landscapes but
negative related to relief in humid or high-relief landscapes. Areas with a broad
range of relief may cover several altitudinal climatic zones with differences in
vegetation types, further influencing weathering and denudation processes [43].

Topographic openness describes the distinction between relief and surrounding
topographic features [44]. Convex landforms often exhibit high positive topo-
graphic openness values, whereas concave landforms typically have high negative
topographic openness values (Figure 2) [44, 45]. Therefore, soil water content may
change with this variable [46]. The low positive openness areas are more likely to be
depressional areas with high soil water contents that provide suitable anaerobic
environments for denitrification but impede aerobic SOC decomposition [4, 46].

2.3 Combined topographic metrics

Topographic wetness index combines a local topographic metric (slope) and a
nonlocal topographic metric (upslope contributing area) [47]. It is considered as an
indicator effectively reflecting the spatial distribution of wetness conditions as the
upslope contributing area would impact groundwater level and soil water content,
and the slope would influence drainage processes [3]. Areas with higher wetness
index tend to be wetter. The topographic wetness index has been used to estimate
the spatial distribution of hydrological and geochemical properties of soil, and
significant correlations have been observed between this metric and soil C and N
content [3, 4, 32, 46, 48, 49].

Stream power index takes into account both specific contributing area and slope.
This metric is useful for characterizing potential erosive power of water flow [1].
When the slope gradient and catchment area increase, the amount of water from
contributing area and the velocity of water flow increase, and consequently

Figure 2.
Positive (α) and negative (β) topographic openness along two profiles.
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enhancing the erosive power of water [50]. Therefore, areas with larger stream
power index values have greater potential to be erosive regions [4, 51]. Due to its
impacts on erosive power, this metric can also be useful in understanding erosion-
induced soil C and N dynamics [14, 52, 53].

Slope length factor includes the length and steepness of a slope and thus reflects
the topographic impacts on erosion [54, 55]. As the slope length increases, the soil
loss per unit area usually increases due to a greater runoff accumulation on a longer
slope length that increases transport capacity of runoff; as slope steepness increases,
soil loss also generally increases [54, 56]. This factor is essential in estimating soil
transport and erosion by runoff [37, 38, 50, 56, 57].

3. DTM-based soil property prediction

In a DTM-based soil property model, the predictive variable could be the mor-
phological, chemical, or physical property of soil. Development of DTM-based
models follows two assumptions including that (1) the controls of topography on
soil properties can be found through a relatively small set of soil samplings and
topographic metrics, and (2) the statistical correlations between topography and
soil properties are often strong. In this case, soil properties can be predicted based
on the topographic metrics [7]. Due to the recent availability of large-scale, high-
resolution DEMs, DTMs over large-scales can be derived. The DTM-based models
benefit investigations in regions with limited observations and can generate spa-
tially continuous soil property maps based on extrapolation.

Methods of DTM-based soil property prediction could be grouped into two
categories [7]:

1. DTM-based models to predict quantitative soil properties based on statistical
analyses. Multiple regression analysis, regression kriging, cokriging, and
kriging with external drift are the widely used methods to predict quantitative
soil properties.

2.DTM-based models to predict categorical soil properties. Statistical methods
such as classification tree model, fuzzy logic, and discriminant analysis are
usually employed in this category.

3.1 DTM-based methods to predict quantitative soil properties

Multiple linear regression (MLR) simulates relationships between two or more
independent variables and a dependent soil property variable by fitting to a linear
equation. The DTM-based MLR models have been applied to study spatial patterns
of soil structures, horizonation, and soil water content [12, 39, 58–65], to explore
spatial variability of cation exchange capacity and pH [62, 65–67], and to derive
continuous quantitative maps of SOC, C isotopes, and nutrients over large spatial
scales [4, 6, 12, 14, 46, 52, 68, 69]. In some modeling investigations, Hybrid regres-
sion methods were used to improve the efficiency of soil property prediction. Li
et al. [4] combined stepwise MLRs with principal component analysis (PCA) for
SOC mapping. Results suggested that the combination of DTM-based MLRs with
PCA outperformed regular stepwise MLRs in the prediction of SOC and soil redis-
tribution rates at a watershed scale.

Regression kriging (RK) is a spatial prediction combining an MLR with kriging
of the regression residuals. The RK acts as a MLR model if the data used in the
model have low spatial structure, and the method reduces to Ordinary kriging (OK)
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if there are no linear statistic correlations between the dependent variable and the
ancillary variables [64]. Based on topographic and other environmental variables,
numerous studies have applied RK for predicting spatial patterns of soil properties,
such as soil horizon thickness [70, 71], soil structures [63, 70, 71], soil water content
[72, 73], soil C content [63, 69, 74, 75], cation exchange capacity [66, 76], and soil
hydraulic properties [77, 78]. Generally, this method is more accurate in soil prop-
erty estimations than the OK, Cokriging, or MLR because residual values from
kriging analysis were added to the regression [63, 70, 71, 73, 76, 77]. However, Zhu
and Lin [72] reported that the RK performed worse than the OK for soil property
prediction in relatively low relief areas.

Cokriging (CK) and kriging with external drift (KED) are also popular and
practical spatial predicting techniques in digital soil mapping. The CK calculates soil
properties by investigating topographic metrics in the kriging procedure and KED
uses external ancillary topographic variables as kriging weights. Various studies
have employed CK and KED to derive continuous maps of soil physical and chem-
ical properties [65, 66, 70, 71, 76–80]. Some of these studies were also suggested
that these techniques would be superior to OK in soil property estimation when the
selected topographic metrics are highly correlated with the dependent variables
[79, 81].

3.2 DTM-based methods to predict categorical soil properties

Classification tree models (CTMs) are a major type of Decision Tree method
used in soil science, in which the target variable is a categorical soil variable.
This model applies a set of rules that use explanatory variables to split data into
homogeneous subsets. The explanatory variables can be either categorical, such as
geological unit number, soil unit, etc., or continuous, such as slope, elevation,
topographic wetness index, etc., [82, 83]. Compared to mathematic functions, the
tree structure can provide a more visualized explanation of relationships between
explanatory variables and the target variable. The CTMs can be used to derive
efficient predictions of soil taxonomic classes from local to large spatial scales
[82–91]. Soil drainage can also be effectively classified using the CTMs with soil
profiles and topographic metrics as predictors [92–96].

The basic idea of fuzzy logic (FL) is to show “degrees of truth” for a variable.
Soils are continuums in both geographic and attribute spaces. As a result, using 0
and 1 or discrete categories cannot provide sufficient information about soil prop-
erties. The FL overcomes the limitation. If a variable belongs to a set, the model
would take a value between 0 to 1 instead of 0 or 1. Several studies have used the
DTM-based FL to improve soil taxonomic classes in soil mapping [97–101], soil
texture and soil horizonation prediction [98, 102–105], and soil vulnerability
classification [106]. Qi et al. [102] found that using the FL the accuracy of soil series
name prediction increased 17% compared to the conventional soil survey. The FL
was also combined with maximum likelihood regression to derive the prediction of
some continuous soil properties [97].

Discriminant analysis (DA) is a type of supervised classification to assign
objects to the most likely group among a lot of groups. It uses some observations
(training dataset) to classify others. This method is applicable when correlations
between soil property variables and independent variables are high [107]. It has
been applied to differentiate soil taxonomic classes and to generate soil texture
maps using multiple ancillary variables including topographic metrics [107–110].
Several studies also demonstrated the feasibility of using DA in deriving soil drain-
age classes based on its relationships to topography and soil electrical conductivity
[111–114].
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3.3 New emerging methods to predict soil properties

Artificial intelligence (AI) or machine learning gives computers a degree of
sophistication to act intelligently [115]. Therefore, to be intelligence, computers
should be able to learn from training datasets, correctly interpret external data, and
apply learned knowledge to achieve specific goals. With increased computing
power, massive sets of labeled data, and developed pre-trained models, increasingly
researchers have applied AI to fields such as speech recognition, objective detection,
visualization, machine translation, image processing and others [116]. However, it
is not until the recent decade that the potential applications of AI on soil property
prediction have come into more common awareness by scientists.

Artificial neural networks (ANNs) are a representative AI technique that has
been applied to solve complex machine learning problems (Figure 3a). The method
has similar data processes as a biological neural with nonlinear mapping structures,
which consists of a set of interconnected units (neurons) [117]. The input neurons
are predictors, linking to one layer of hidden neurons and finally linking to the
output variables [118]. To obtain accurate prediction results, the network model is
trained first by a set of observations. The weights that connect neurons are adjusted
iteratively using the training dataset. After training, the model is applied to predict
areas with the same input variables. ANNs outperform traditional statistics in han-
dling large datasets even when the input data are noisy with low levels of precision
due to the ability to reduce bias by evenly distributing training data across classes
[119]. Various researchers have employed ANNs for efficient prediction of quanti-
tative soil chemical and hydrological properties [118, 120, 121] and adequate map-
ping categorical soil taxonomic classes [122–129] based on DTMs and
environmental variables. Zhao et al. [93] also tested the feasibility of using ANNs
for soil drainage classification and found an accuracy of 52% between field obser-
vations and digital classification.

Deep learning (DL) is considered as an advanced ANN (Figure 3b) that has
been facilitated by recent advances in technology for highly parallel computing. In
contrast to single hidden layer ANNs, DL algorithms allow the computer to learn on
its own by multi-layer nonlinear transformations of the input training data [130].
For instance, such algorithms can define edges within images by training on multi-
ple examples and perform automatic feature extraction without human interven-
tion. Therefore, massive quantities of representative learning data are the
prerequisite for effective estimation from DL. The architectures of DL include
Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and

Figure 3.
Architectures of the (a) artificial neural networks and (b) deep learning.
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Recurrent Neural Networks (RNNs). CNNs are classic feedforward networks in
which the hidden layers consist of convolutional layers, pooling layers, and fully-
connected layers. The convolutional layers apply different convolution operations
(filters) to pass results from local patches in the feature maps of the input or the
previous layers to the next layers, enhancing certain features in the output. Neurons
in the same convolutional layer share the same weight. The pool layers merge
similar feature together, improving the robustness of features against noise and
distortion. The convolutional and pooling layers are finally stacked to a fully-
connected layer. The local connectivity in a convolution layer allows CNNs to
achieve a better generation in output analysis and the shared weights increase the
possibility to extract information of high complexity [131]. Padarian et al. [132]
applied CNNs to predict SOC at multiple depths using elevation, slope, topographic
wetness index, temperature and rainfall as input data. The results suggested that the
CNNs reduced errors by 25% for SOC predictions than the conventional Cubist
model. The DBNs are considered as a composition of unsupervised sub-networks,
which are trained to maximize the likelihood of training data. Each sub-network
serves as a visible layer used for unsupervised training of the next layer [133]. Song
et al. [134] demonstrated the usefulness of DBNs in predicting soil water content in
highly nonlinear forms over an irrigated field. RNNs have a “memory” called
hidden state to remember all information that has been calculated, so the output of
RNN loops connect to their past decision nodes based on the hidden state. The
networks process an input sequence at one time, preserving the sequential infor-
mation in the hidden state and producing the output sequence. Therefore, this
model is especially useful for tasks containing sequential input [131]. Researchers
have demonstrated the feasibility of using RNNs for hydrological study, although
no reports were found using this approach to map soil properties based on
topography [135, 136].

Random forest (RF) is another emerging method of AI and consists of an
ensemble of classification and regression trees for prediction (Figure 4). Each tree
is a random subset of features and uses a random set of the training data (about 2/3
of the available observations), which increases the diversity of the forest and
decreases the correlation of individual trees. RF commonly has high efficiency and

Figure 4.
Architectures of the random forest model.
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low bias and variance since the output is the average or majority voting of a large
number of trees [137]. The method has been proved to be resistance to over-fitting
because each tree is trained on a unique bootstrap subset and provide a reliable error
estimate using Out-Of-Bag data (the remaining one-third of the observations) [138].
Because of the above advantages, increasing scientists have used RF in soil mapping.
Combining topographic metrics, environmental variables, climate variables, or/and
land cover as input, RF can predict quantitative and category soil properties. For
quantitative soil property prediction, the output is the average of individual tree
outputs. RF has been successfully applied to investigate spatial patterns of soil organic
matters [139–142] and to estimate soil texture [143]. Guo et al. [144] further devel-
oped soil organic matter prediction by combining RF with Residuals Kriging, for
which the prediction accuracy increased dramatically (R2 = 0.86) compared to the
method using RF only (R2 = 0.65). For categorical soil property classification, the
output is obtained from voting by the majority on the correct classification. Several
studies have demonstrated the feasibility of using RF for updating soil survey maps
[145] and predicting soil classes in unmapped regions [146–148].

4. Case study: DTM-based models on SOC dynamics

4.1 Introduction

In this section, a case study about DTM-based modeling of SOC and soil redis-
tribution (SR) was discussed to understand the impacts of topography on SR and
SOC dynamics. We also compared efficiencies of three types of DTM-based models
in predicting the soil properties. Cesium-137 (137Cs) was used to trace the SR
process, and high-resolution light detection and ranging (LiDAR) data were applied
to derive DEMs for DTM extraction. Based on the DEM-derived topographic infor-
mation and field measured SOC density and SR rates, the multiple linear regression
(MLR), MLR combined with principal component analysis (MLR-PCA), and MLR
combined with factor analysis (MLR-FAn) were developed and discussed.

The study was carried out in Walnut Creek watershed (WCW), which is located
in Boone and Story counties, Iowa, USA (Figure 5a, 41°550–42°000N; 93°320–93°
450W). It has a humid continental climate. The landscape of this watershed is
relatively flat with a low topography relief (2.03 � 1.62 m). The typical soils are
poor-drained Nicollet andWebster soils in the lowlands and well-drained Clarion in
the uplands. More than 86% area of the watershed is cropland. Chisel plowing in
autumn and spring disking are the current primary tillage operations. Directions of
tillage practices in the WCW are mostly north-south or east-west, depending on the
management and field configurations. Detailed information on climate, soils, and
farming practices can be found in Hatfield et al. [149].

Two field sites were selected for intensive sampling investigation. Each site is
approximately 15 ha. Site 1 is in the WCW (Figure 5b) and Site 2 is located between
Boone and Ames (Figure 5c), which is within 10 km of the closest watershed
boundary. Similar to the WCW, low reliefs (<4.6 m) were observed for both sites.
Tillage practices at these two sites were along the north-south direction.

4.2 Materials and methods

4.2.1 Field sampling and laboratory analyses

The SOC and 137Cs data used in this section have been reported in Ritchie et al.
[25] and Li et al. [4, 52]. A total of 460 locations were randomly selected for WCW
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and 230 locations were selected for each site of Sites 1 and 2 (Figure 5). Topography
information was extracted for all locations using the LiDAR-derived DEMs. For the
watershed, 100 out of the 460 locations, including two 300-m transects, were
chosen for field estimations of SOC content and 137Cs inventory in 2006. The field
samplings for Sites 1 and 2 were collected in 2003. A 25 � 25 m grid was created for
each site of Sites 1 and 2. The 230 samplings were obtained at grid nodes. At each
location, we collected three samples that were located within a 1 m � 1 m quadrat
from top 30 cm of soil using a push probe (3.2 cm diameter). At locations where
sediment depositions were observed, deeper soils from the 30 to 50 cm layer were
collected. Four reference soil samples for estimation of the baseline 137Cs inventory
were collected from a local cemetery inWCWwhere no apparent soil redistribution
had occurred from the 1950s. Trimble RTK 4700 global positioning system (GPS)
was used to record the locations of sampling.

During laboratory analyses, bulk density was calculated after drying soil at 90°C
for 48 hours based on the soil volume and dry mass weight. Then, the three
samplings were mixed and sieved through a 2 mm screen. We ground subsamples
that were taken from the composite soils to fine power with a roller mill and
measured soil total C content by dry combustion at a temperature of 1350°C using
an elemental analyzer (LECO CNS 2000, LECO Crop., St. Joseph, MI). Then, C
content in CaCO3 was analyzed by dry combustion after the soil sample was baked
in a furnace at 420°C for 16 hours. Estimates of SOC content (SOCcontent, %) were
obtained from the differences between total C content and C content in CaCO3.

Figure 5.
Location of a) Walnut Creek watershed (WCW), b) Site 1 and c) Site 2 (z-axis 15� elevation).
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SOC density (ρSOC, kg m�2) of the top 30 cm layer was calculated from the bulk
density (ρbulk) and SOC content using the equation of ρSOC = SOCcontent � ρbulk� 0.3.

Measurement of 137Cs inventory used another subsample of the sieved soil
sample and placed and sealed in a Marinelli beaker. The 137Cs concentration was
estimated by Canberra Genie-2000 Spectroscopy System that receives input from
Canberra high purity coaxial germanium crystals (HpC > 30% efficiency) into three
8192-channel analyzers through gamma-ray analysis. Analytic mixed radionuclide
standard (10 nuclides) that follows the U.S. National Institute of Standards and
Technology was applied for calibration the Spectroscopy System. The measurement
precision is between �4 and � 6%. Unit of 137Cs concentration is in Becquerels per
gram (Bq g�1) and was converted to 137Cs inventory in Becquerels per square meter
(Bq m�2) using soil bulk density.

Calculation of SR rates based on 137Cs inventories was carried out by applying a
Mass Balance Model II in a spreadsheet Add-in program [150]. Before running the
model, parameters of tillage depth, proportion factor, and relaxation depth were set
to 0.25 m, 0.5, and 4 kg m�2, respectively. The baseline 137Cs inventory estimated
from the mean of 137Cs inventory in Ref. sites was 2657 Bq m�2 for Sites 1 and 2 in
2003 and 2526 Bq m�2 for the WCW in 2006. Positive SR rates were obtained when
137Cs inventories were higher than the baseline and the sites were referred as
depositional sites; while eroded sites were considered when negative soil SR rates
were estimated under conditions of lower 137Cs inventories than the baseline.
Details of soil sampling and laboratory analyses can be found in Ritchie et al. [25]
and Li et al. [4].

4.2.2 Topographical analysis

Fifteen topographic metrics that were discussed previously were used as ancil-
lary variables for the development of the DTM-based SOC and SR models. All
metrics were derived from DEMs generated from high resolution (1 m horizontal
and 0.1 m vertical resolutions) LiDAR data [48]. Before generation of topographic
metrics, inverse distance weighted interpolation was applied to produce 3 m spatial
resolution DEMs after converting the raw LiDAR data to LAS files.

Topographicmetricswere derivedbased on the 3mDEMsafter filtering twice by a 3-
kernel low pass filter. Modules in an open-access software of the System for Automated
Geoscientific Analysis (SAGA) v. 2.2.5 were applied to generated 14 of the selected
topographicmetrics including slope gradient (G), aspect (A), profile curvature (P_Cur),
plan curvature (Pl_Cur), general curvature (G_Cur), flow accumulation (FA), positive
topographic openness (PTO), upslope slope (Upsl), flow path length (FPL), downslope
index (DI), catchment area (CA), topographic wetness index (TWI), stream power
index (SPI), and slope length factor (LS). Topographic relief (TR)was calculated by the
difference between amaximumelevationmapwithin a specific area and the filtered 3m
DEMs. In order to reduce errors due to an arbitrary selection of the radius of the specific
area, a series ofmaximumelevationmapswithmultiple radiuses including 7.5, 15, 30, 45,
60, 75, and 90m, were used to generate TRmaps with different spatial scales. Principal
component analysis (PCA) and varimax rotated Factor Analysis (FAn)were used and
converted the TRmaps into twomain topographic relief components (TRPC1 and
TRPC2) and two topographic factors (TRFA1 and TRFA2). The detailed topographic
metric processing can be found in Li et al. [52].

4.2.3 Statistical analysis

Spearman’s rank analysis was applied to understand the impacts of topographic
metrics on SR and SOC distribution patterns. Due to high correlations between
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some of the topographic metrics, PCA and varimax rotated FAn were used to limit
errors caused by collinearity between topographic variables. The PCA analyzed
topographic metrics from the 460 locations of the WCW. Loadings for the first
eight components that explained 90% of the variance of all metrics were selected
and used to calculate topographic principal components (TPCs) at the field Sites 1
and 2. Similarly, eight topographic factors (TFAs) at field sites were also estimated
based on loadings from the watershed using FAn with varimax rotation.

4.2.4 Model calibration and evaluation

The stepwise linear regression with “leave-one-out” cross-validation was applied
for MLR, MLR-PCA, and MLR-FAn model development using the topographic
metrics from two field sites. Akaike Information Criterion was used to select vari-
ables contained in each model. The SOC density and SR rates were log-transformed
to meet the assumption of residual normality. Model efficiencies were assessed with
the following three criteria. The first one is the adjusted coefficient of determination
(R2

adj), which adjusts coefficient of determination based on the number of predictors
in the model. The second one is Nash-Sutcliffe efficiency (NSE). Ranging from �∞
to 1.0, the NSE estimates the ratios of residual variance to measured variance. The
model performance was considered acceptable when the NES is in a positive value.
The third one is the ratio of the root mean square error (RMSE) to the standard
deviation of measured data (RSR). It standardizes RMSE. The smaller the RSR value
is, the higher efficiency it indicates. Usually, the model performance is considered as
satisfactory if the NSE value is larger than 0.5 and the RSR is <0.7 [151].

4.3 Results and discussion

4.3.1 Topographic impacts on soil properties

The high-resolution topographic metrics derived from LiDAR data presented
detailed topographic information in the WCW. Take field Site 1 as an example,
Figure 6 exhibited characteristics of each topographic metric in response to the
elevation. Seven topographic metric maps, including catchment area (CA, Figure 6f),
downslope index (DI, Figure 6h), flow path length (FPL, Figure 6i), flow accumu-
lation (FA, Figure 6j), topographic relief component 1 (TRPC1, Figure 6k), topo-
graphic relief factor 1 (TRFA1, Figure 6m), and topographic wetness index (TWI,
Figure 6p), showed high values in depressional areas and low values in sloping and
ridge areas. Positive topographic openness (PTO, Figure 6o) had a reverse pattern
compared to the above seven metrics. It showed high values in ridge areas where a
wider view of a landscape can be seen. For slope gradient (G, Figure 6a), upslope
slope (Upsl, Figure 6g), topographic relief component 2 (TRPC2, Figure 6l),
topographic relief factor 2 (TRFA2, Figure 6n), stream power index (SPI, Figure 6q),
and slope length factor (LS, Figure 6r), high values were observed in sloping areas,
but low values were found in ridges and depressional areas.

Most topographic metrics showed significant correlations with SOC density and
SR rates except A. The A was slightly correlated with SOC density (r = �0.097;
P = 0.02) and insignificantly correlated with 137Cs inventory (P > 0.05) and SR rates
(P > 0.05). Generally, stronger topographic controls on SOC density than 137Cs
inventory and SR rates were observed (Table 2). TWI, TRFA1, TRPC1, CA, FPL,
DI, FA, SPI, and TRFA2 were significantly positively correlated with SOC density
and G, LS, PTO, Upsl, Pl_Cur, G_Cur, TRPC2, and P_Cur were significantly nega-
tively correlated with SOC density. For both 137Cs inventory and SR rates, similar
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high related topographic metrics (|r| > 0.5) were observed, including TRPC1, TWI,
TRFA1, G, and CA.

Topographic wetness index (TWI) was the most influential topographic factor
with a correlation coefficient up to 0.735. The finding is consistent with the high
TWI impacts on SOC in previous studies. The high impact of TWI suggests that soil
water content distribution was an important driver of SOC dynamics in the WCW.
In areas with high TWI and possibly elevated water content, litter decomposition
rates decrease and plant productions increase, which increases SOC input and
accumulations and results in high SOC density in the soil; while low soil water
content areas provide an adequate environment for rapid aerobic decomposition of
soil C, leading to a negative correlation between SOC and TWI [3, 4, 32, 46, 152].

Topographic relief (TR) was found to be the most important factor for 137Cs
inventory and SR rates with correlation coefficients of 0.686 and 0.687, respec-
tively. This metric was also highly correlated with SOC density. The strong effects
of TR on soil properties may be due to its influence on flow velocity. The flow
velocity reflects runoff shear stress, which would impact the sediment transport
capacity of the runoff [153, 154]. Thus, as the TR increases, the flow velocity and

Figure 6.
Topograhic metrics of Site 1 (z-axis 15� elevaton). The metrics include a) slope gradient (G), b) aspect (A),
c) profile curvature (P_Cur), d) plan curvature (Pl_Cur), e) general curvature (G_Cur), f) catchment area
(CA), g) upslope slope (Upsl), h) downslope index (DI), i) flow path length (FPL), j) flow accumulation
(FA), k) topographic relief principal component 1 (TRPC1), l) topographic relief principal component 2
(TRPC2), m) topographic relief factor 1 (TRFA1), n) topographic relief factor 2 (TRFA2), o) positive
topographic openness (PTO), p) topographic wetness index (TWI), q) stream power index (SPI),
and r) slope length factor (LS).
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G A P_Cur Pl_Cur G_Cur CA Upsl DI FPL

SOC �0.687*** �0.097* �0.159** �0.333*** �0.288*** 0.587*** �0.315*** 0.413*** 0.500***

137Cs �0.646*** — �0.210*** �0.277*** �0.286*** 0.568*** �0.209*** 0.366*** 0.490***

SR �0.650*** — �0.205*** �0.274*** �0.282*** 0.565*** �0.217*** 0.361*** 0.487***

FA TRPC1 TRPC2 TRFA1 TRFA2 PTO TWI SPI LS

SOC 0.204*** 0.698*** �0.171*** 0.723*** 0.143** �0.451*** 0.735*** 0.165*** �0.453***

137Cs 0.192*** 0.686*** �0.095* 0.623*** 0.221*** �0.437*** 0.640*** 0.160** �0.433***

SR 0.193*** 0.687*** �0.099* 0.624*** 0.218*** �0.427*** 0.647*** 0.156*** �0.438***

G and A are slope gradient and aspect, respectively; P_Cur, Pl_Cur, and G_Cur are profile curvature, plan curvature and general curvature, respectively; TRPC1 and TRPC2 are topographic relief
components 1 and 2, respectively; TRFA1 and TRFA2 are topographic relief factors 1 and 2, respectively; PTO is positive topographic openness; Upsl is upslope slope; FPL is flow path length; DI is downslope
index; CA is catchment area; TWI is topographic wetness index; SPI is stream power index; LS is slope length factor. The values in bold have correlation coefficient > 0.5 and values in italic and bold indicate
the highest correlation coefficient for soil properties.
*P < 0.05.
**P < 0.005.
***P < 0.0001.

Table 2.
Spearman’s ranking correlation between topographic metrics and SOC density, 137Cs inventory, and soil redistribution (SR) rates.
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runoff shear stress increases, leading to enhance in sediment transport capacity,
which increases the transports of 137Cs and SOC-enriched fine fraction of sediments
from low TR areas to the high TR areas.

Slope gradient (G) was another important factor for SOC density, 137Cs inven-
tory, and SR rates with absolute correlation coefficients larger than 0.6. Our find-
ings are consistent with those of other researches, reporting high erosion rates in
areas with relatively steep slopes [151, 155]. In agricultural fields, the main erosion
processes include both water and tillage erosion [156–158]. Soil and associated SOC
are transported to downslope due to gravity-driven lateral transport by overland
and concentrated flows. Tillage operations would also cause redistribution of soil by
small downslope movements of soil associated with each operation. Furthermore, as
discussed in Section 2, G increase could enhance runoff and decrease infiltration,
reducing water content in soil in the flat watershed area [15, 17, 18]. The controls of
G on water and tillage erosion and water content could be related to the high slope
impacts on soil properties in agricultural areas.

4.3.2 DTM-based models on soil property predictions

Since slope aspect (A) showed a weak correlation with SOC and no significant
correlations with 137Cs inventory and SR rate, we removed the A for the following
DTM-based model development. Therefore, 17 topographic metrics, including slope
gradient (G), curvature related metrics (P_Cur, Pl_Cur, and G_Cur), catchment
area (CA), upslope slope (Upsl), downslope index (DI), flow path length (FPL),
flow accumulation (FA), topographic relief principal components 1 and 2 (TRPC1
and TRPC2), topographic relief factors 1 and 2 (TRFA1 and TRFA2), positive
topographic openness (PTO), topographic wetness index (TWI), stream power
index (SPI), and slope length factor (LS) were used for building the MLR models.
We only used TRPC1 and TRPC2 to represent topographic relief for MLR-PCA
development and TRFA1 and TRFA2 for MLR-FAn.

The MLR, MLR-PCA, and MLR-FAn models were developed based on topo-
graphic and soil property data at the two field sites (Table 3). The MLR models
showed the best simulations of SOC and SR rates with the highest R2

adj and NSE values
and the lowest RSR values over the three types of models. The two MLR models
contained more than 7 predictors. The MLR-PCA model had a slightly lower effi-
ciency than MLR-FAn model in simulating SOC density, but exhibited similar per-
formance compared to the MLR-FAn model in SR rate simulations. The predictors
included in the MLR-FAn were more than the MLR-PCA models. There were 6 and 5
factors included in MLR-FAn SOC and SR models, respectively; while only 4 and 5
components were contained in the MLR-PCA SOC and SR models, respectively.

Although the MLR showed the best simulation performance for the two field
sites, the MLR-PCA had the highest prediction efficiency when applying models to
predict the spatial patterns of SOC and SR rate over the watershed (Figure 7a). The
SOC predictions by MLR-PCA explained 60% of the variability in observed SOC in
the WCW. The NSE value was larger than 0.5 (0.591) and RSR value was <0.7
(0.639), which suggested a satisfactory performance of SOC prediction by the
MLR-PCA model. The prediction efficiencies of MLR and MLR-FAn models were
lower than the MLR-PCA model with correlation coefficients of 0.39 and 0.49,
respectively. Based on these results, the SOCmap over the watershed was generated
based on the MLR-PCA model (Figure 8). The derived SOC map captured the
majority spatial variability in SOC density as reflected by consistent spatial patterns
between observed and simulated SOC density. High values of SOC density were
observed in depressions and low values were found in ridges and sloping areas.
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Model Radj2 NSE RSR

MLR

SOC 2.98 + 0.071TRFA1 � 4.23G-
9.29G_Cur + 0.0004FPL + 0.030TRPC2 + 0.103Pl_Cur + 0.063DI†

0.723 0.727 0.522

SR 2.12 � 3.12G + 0.107DI + 0.019TRFA2 + 0.0002FPL + 0.915Upsl + 0.010TRFA1 � 0.002SPI-
1.53G_Cur

0.655 0.659 0.584

MLR-PCA

SOC 2.94 � 0.060TPC2 � 0.024TPC3 + 0.051TPC7 + 0.037TPC1 0.684 0.686 0.560

SR 2.11 + 0.013TPC1 + 0.032TPC7 � 0.028TPC2�0.016TPC3 � 0.010TPC6 0.625 0.629 0.609

MLR-FAn

SOC 2.92 � 0.101TFA1 + 0.074TFA4 + 0.045TFA7 + 0.026TFA8 + 0.037TFA2 � 0.027TFA3 0.706 0.710 0.538

SR 2.10�0.047TFA1 � 0.011TFA3 + 0.026TFA7 + 0.034TFA4 + 0.025TFA8 0.620 0.624 0.613

R2
adj is adjusted coefficient of determination; NSE is Nash-Sutcliffeefficiency; RSR is ratioof the root mean square error (RMSE) to the standard deviation of measured data. TPC is topographic principal

component; TFA is topographic factor; TRFA and TRPC are topographic relief factor and topographic relief component, respectively; G is slope gradient; Pl_Cur and G_Cur are plan curvature and general
curvature, respectively; FPL is flow path length; DI is downslope index; Upsl is upslope slope; SPI is stream power index.
†The order of predictors is based on the stepwise selection procedure.

Table 3.
Models of soil organic carbon (SOC) density and soil redistribution (SR) rate based on cropland field sites 1 and 2.
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Lower efficiencies were observed for SR rate than SOC density when compared
the model predictions in the WCW (Figure 7b). The MLR-PCA SR model showed
the highest correlation coefficient. However, the low NSE and high RSR values
indicated that the model could not well predict SR rates when applying a model
developed at field-scale for predictions at watershed-scale.

The better performance of MLR-PCA models relative to MRL models may be
due to the exclusion of multicollinearity by PCA. High correlations (|r| > 0.8) were
observed for some of topographic metrics, such as G and Upsl, and G_Cur and
Pl_Cur. Uncertainty increases due to the high collinearity because models can be
significantly influenced by small changes in the high collinearity predictors [159].
Thus, the MLR models were less stable with lower efficiencies in predicting SOC
density and SR rates when applying to different spatial scales. The use of PCA could
eliminate the multicollinearity and increase the stability of model since the PCA
converted the 15-dimension topographic dataset to eight mutually independent
combinations (TPCs) [159, 160].

Furthermore, by analysis of TPC loadings, hidden relationships between topo-
graphic metrics were uncovered, which could be another advantage of using the
PCA [160]. For example, in this study, we selected TPCs 1, 2, 3, 6, and 7 for model
development (Table 4). The high loading (|loading| > 0.35) topographic metric in
TPC1 was G_Cur (�0.353), and thus, this component was associated with runoff
divergence. G (0.475), TWI (�0.465), Upsl (0.419), and LS (0.396) were the high
loading metrics for TPC2, which indicated that TPC2 was associated with soil water
content. TPC3 were associated with runoff volume since the high loading metrics
were FA (0.482), SPI (0.460), and CA (0.400). TPCs 6 and 7 were associated with

Figure 7.
Comparison of (a) soil organic carbon (SOC) density (kg m�2) and (b) soil redistribution (SR) rate
(t ha�1 year�1) simulations to observations over the Walnut Creek watershed.

Figure 8.
Soil organic carbon (SOC) map obtained from the MLR-PCA model (a) within the Walnut Creek watershed
and (b) along two transects.
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runoff velocity and flow acceleration, respectively. Based on the TPCs, we can
obtain a better understanding of the controlling components for SOC distribution
and SR. For the low-relief agriculture watershed under study, the spatial patterns of
SOC and SR rate were mainly impacted by soil water content (TPC2) and runoff
divergence (TPC1), respectively, according to the priority of TPCs used in model
development. This conclusion is also consistent with findings by Fox and
Papanicolaou [161] that indicated flow divergence significantly influenced soil
erosion from uplands in a low-relief watershed.

The lower efficiencies of MLR-FAn than MLR-PCA may be because the latter
approach diminishes the risk of over-fitting the models. The difference between
PCA and FAn is that PCA considers all of the variance in the matrix, including
unique, error and shared variance; while FAn extracts and exhibits shared variance
only. Although some studies were preferable to FAn because of its ability to under-
stand the underlying structure by extracting latent shared variance [162, 163],
others also proved that there were almost no practical differences between the two
methods [164, 165]. In this study, we found that both methods had similar perfor-
mance during model calibration in small-scales. However, including more predic-
tors in MLR-FAn models may enhance the instability of models and increase
uncertainties during extrapolating prediction points over a large-scale [159, 166].

This case study demonstrated the importance of topography on soil properties in
the low-relief watershed. DTM-based models are feasible for SOC predictions at
different spatial scales. By combining MLR with PCA, the model efficiencies
increased during soil property prediction. The DTM-based mapping techniques can
be improved by further refinement remotely sensed data, improvement of the

TPC1(25%) TPC2(24%) TPC3(14%) TPC6(5%) TPC7(4%)

G 0.062 0.475 �0.035 �0.013 �0.183

P_Cur �0.290 0.000 0.346 �0.070 �0.002

Pl_Cur �0.283 0.107 �0.001 0.485 0.383

G_Cur �0.353 0.054 0.275 0.025 0.100

FA 0.297 �0.042 0.482 0.179 0.131

TRPC1 0.309 �0.193 �0.237 0.113 �0.116

TRPC2 0.234 0.266 �0.118 0.084 0.597

PTO �0.330 0.092 0.258 �0.292 0.217

Upsl 0.187 0.419 �0.143 �0.066 0.012

FPL 0.147 �0.168 �0.088 �0.703 0.407

DI 0.103 �0.220 �0.164 0.184 0.435

CA 0.326 �0.128 0.400 �0.160 �0.092

TWI 0.053 �0.465 �0.067 0.185 �0.047

SPI 0.345 �0.014 0.460 0.169 0.080

LS 0.256 0.396 0.050 0.011 �0.072

G is slope gradient; P_Cur, Pl_Cur, and G_Cur are profile curvature, plan curvature and general curvature,
respectively; TRPC1 and TRPC2 are topographic relief components 1 and 2, respectively; PTO is positive topographic
openness; Upsl is upslope slope; FPL is flow path length; DI is downslope index; CA is catchment area; TWI is
topographic wetness index; SPI is stream power index; and LS is slope length factor.
The values in bold indicate loadings > 0.35.

Table 4.
Loadings in the selected topographic principal components (TPCs) calculating based on topographic metrics at
the two field sites.
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topographic dataset, and development of modeling techniques such as including
Hybrid Regression and Artificial Intelligence techniques. The large-scale soil prop-
erty maps can provide a more sound scientific basis for understanding of the
mechanisms underlying the topographic impacts on soil movement in agricultural
landscapes and the fate of SOC at the watershed and regional scales.
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