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Chapter

The Recent Advances in
Magnetorheological Fluids-Based
Applications
Shahin Zareie and Abolghassem Zabihollah

Abstract

The magnetorheological fluids (MRF) are a generation of smart fluids with the
ability to alter their variable viscosity. Moreover, the state of the MRF can be
switched from the semisolid to the fluid phase and vice versa upon applying or
removing the magnetic field. The fast response and the controllability are the main
features of the MRF-based systems, which make them suitable for applications with
high sensitivity and controllability requirements. Nowadays, MRF-based systems
are rapidly growing and widely being used in many industries such as civil, aero-
space, and automotive. This study presents a comprehensive review to investigate
the fundamentals of MRF and manufacturing and applications of MRF-based
systems. According to the existing works and current and future demands for
MRF-based systems, the trend for future research in this field is recommended.

Keywords: magnetorheological fluids, variable viscosity, civil, aerospace,
automotive, MRF-based systems, applications

1. Introduction

The magnetorheological fluids (MRF) are a generation of smart fluids with the
ability to alter their viscosity. Moreover, the state of the MRF can be switched from
the semisolid to the fluid phase and vice versa upon applying or removing the
magnetic field. The fast response and the controllability are the main features of the
MRF-based systems, which make them suitable for applications with high sensitiv-
ity and controllability requirements. MRF-based systems are rapidly growing and
widely being used in many industries such as civil, aerospace, and automotive. This
chapter tends to review the fundamental concepts followed by the most recent
developments in MRF-based systems. The discovery of magnetorheological fluid
(MRF) goes back to 70 years ago by Rabinov [1] at the US National Bureau of
Standards. Since then, hundreds of patents and research articles have been
published every year.

MRF is a fluid composed of a carrier fluid, such as silicone oil and iron particles,
which are dispersed in the fluid [2, 3], with an ability to alter its basic characteristics
and viscosity, when subjected to the magnetic field. [4]. Upon applying a magnetic
field, the tiny polarizable particles in MRF make chains between two poles, as
shown in Figure 1 [6]. The chains resist movement up to a certain breaking point
(yielding point), which is a function of the strength of the magnetic field [6, 7].
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In other words, the response of MRF is similar to non-Newtonian fluids, as shown
in Figure 2.

2. Modeling and operational modes of MRF systems

The behavior of MRF may be described by the Bingham plasticity model [1, 2].
The model is expressed by:

τ < τyield ! y
:
¼ 0 (1)

τ≥ τyield ! τ ¼ τyield sgn y
:

ð Þ þ μ y
:

(2)

where τyield, τ, _y, and μ are the yielding stress, the shear stress, the strain rate,

and the viscosity, respectively [1].
MRF systems operate in three basic modes, valve mode, shear mode, and

squeeze mode, as shown in Figure 3.
In the following subsection, a brief description of each mode is provided.

2.1 MRF flow mode

The flow mode is the most common operational mode of MRF. Figure 4 shows a
simplified geometry of the flow mode. In order to obtain an in-depth understanding

Figure 1.
The effect of magnetic field on polarization of MRFs [5].

Figure 2.
The relation between shear stress and strain rate of Bingham fluid and Newtonian fluid [8].

Figure 3.
The operation modes: (1) flow mode, (2) direct shear mode, (3) squeeze mode [9].
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of the damping pressure supplied by MRF in this mode, one may relate the pressure
due to the fluid viscosity Pτð Þ and the controllable pressure Pη

� �

.
The total damping pressure can be calculated by [10]:

P ¼ Pη þ Pτ (3)

where Pτ and Pτ for a Newtonian fluid are expressed by [10]:

Pη ¼
12QηL

wg3

� �

Pτ ¼
C τyL

g
(4)

where L and w denote the length and width of parallel plates, respectively. The
term g is the gap between two plates. η and Q are the plastic viscosity and the fluid
flow, correspondingly. C is a constant value and τy is the field-dependent yield stress.

2.1.1 MRF shear mode

The total amount of force in the shear mode between the two plates (as
illustrated in Figure 5) is computed by [10]:

F ¼ Fη þ Fτ (5)

where the viscous shear force, Fη, and magnetic-dependent shear force, Fτð Þ, are
represented by [10]:

Fη ¼
ηSA

g
, Fτ ¼ τyLW (6)

where g, A, S, and η indicate the gap between the two plates, the area of the
plate, and the relative velocity between the plates, respectively. τy, L, andW denote
the field-dependent yield stress and the width and length of the upper plate.

2.2 MRF squeeze mode

The squeeze mode occurs in two cases: compression and tension. In this study,
the compressive mode of the MRF between the two plates is considered, and as a

Figure 4.
The valve mode of MRF [10].

Figure 5.
The shear mode of MRF [1].
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result, the fluid moves between the plates as displayed in Figure 6 [11]. The total
amount of force in the squeeze mode is estimated by [11]:

Fs ¼
�πR4

4

6μ _h

h3
þ
3ρ€h

5h
�
15ρ _h2

14h2

 !

(7)

where R, h, μ, €h, _h, and ρ are the plate radius, the distance between the two
parallel plates, the viscosity of the MRF, the gap acceleration, the gap speed, and the
density of the MRF, respectively.

3. MRF-based applications

Based on MRF characteristics, many devices have been developed. A summary
of MRF-based devices is presented in Figure 7.

3.1 MRF dampers

MRF devices exhibit outstanding properties, including the large force capacity,
the low voltage and the low electric current requirement, fast response, the simple
interaction between the electrical current, the damping force, the adaptive rheo-
logical properties, the high viscous damping coefficient, easy controllability, and

Figure 6.
The squeeze mode of the MRF [1].

Figure 7.
The summary of MRF devices.
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adaptive damping [12–16, 17–21]. MRF dampers are being used widely in the aero-
space industry [22], seismic protection [2, 23], and vehicle suspension systems [24].
The core idea of designing simplified MRF dampers derived from hydraulic cylinder
damper structures [10, 25]. MRF dampers have been developed based on the three
basic operational modes of MRF systems.

3.1.1 MRF damper in flow mode

The most common MRF dampers are the mono-tube, the twin-tube, and the
double-ended, as represented in Figures 8–10, respectively [26, 27]. The working
principle of the mono-tube MRF damper as illustrated in Figure 8 is based on
storing pressurized gas in an accumulator located at the bottom of the damper.

Figure 9 schematically shows the working principles of a twin-tube MRF
damper. The outer and inner cylinders are separated by two channels holding
pressurized gas. The outer cylinder acts as an accumulator. Contrast to the mono-
tube MRF damper, there are two valves: the control valve and foot valve. The
function of the foot valve is to control the flow of oil to pass into the gas chamber or
to extract the oil from the accumulator [10, 25, 28].

Figure 10 depicts the double-ended MRF damper, which is derived from the
mono-tube MRF damper [10, 29, 30]. Two equal diameter rods are connected from
the ends of the housing to the piston. It is worth noting that in double-ended MRF

Figure 8.
Schematic diagram of mono-tube MRF damper [9].

Figure 10.
Schematic diagram of the double-ended MR MRF damper [9].

Figure 9.
Schematic diagram of the twin-tube MRF damper [9].

5

The Recent Advances in Magnetorheological Fluids-Based Applications
DOI: http://dx.doi.org/10.5772/intechopen.86178



damper, the accumulator is not required as long as the volume in the cylinder
remains constant while the piston and rod are moving. However, sometimes a small
accumulator is used for thermal expansion [30, 31].

3.1.2 MRF dampers in shear mode

Shear mode-based dampers are less common than flow mode dampers [32].
They are mostly used to damp rotational vibration. Similar to the flow mode-based
MRF damper, these types of dampers work as a passive system in the absence of the
magnetic field. The system can be categorized into translational linear motion,
rotational disk motion, and rotational drum motion [32].

3.1.3 Linear damper

Figure 11 illustrates a linear shear mode damper which is composed of two
parallel plates: a fixed plate at the bottom and a moving one at the top. The two
plates are separated by a layer of MRF with thickness d [32]. The linear force Fð Þ
between the two plates can be approximated by:

F ¼ τLb (8)

where τ, L, and b are the shear stress, length, and width, respectively.

3.1.4 Rotary drum damper

The schematic diagram of a rotary drum damper is shown in Figure 12. The
system is made of two concentric cylinders where the outer cylinder is held
stationary and the inner cylinder rotates [32].

The damping torque Tð Þ is computed by [32]:

T ¼ 2πr2Lτrθ (9)

where L.r, and τrθ are the cylinder length, the radius coordinate, and the shear
stress tensor, respectively.

3.1.5 Rotary disk damper

A diagram of a rotary disk damper is shown in Figure 13 which is composed of
two disks: a fixed disk at the bottom and a rotating one at the top. The required
torque to rotate the top disk is calculated by [32]:

Figure 11.
The linear shear mode damper [32].
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T ¼ 2π

ð

R

0

r2τzθdr (10)

where R indicates the radius of the top disk and τzθ is the shear stress tensor in zθ
plane.

The MRF damper in the shear mode provides a relative small force. However,
the system prevents to form any solidification.

3.2 MRF damper in squeeze mode

Recently, due to the large force/displacement ratio, design and development of
MRF dampers based on the squeeze mode have been attracted by researchers [17].
Figure 14 shows the schematic diagram of a damper using the squeeze mode.

In contrast to the flow and the shear mode dampers, the research works in the
squeeze mode dampers are very rare [17]. The total force of the top disk is
calculated by [17]:

Figure 12.
The schematic diagram of rotary drum damper [32].

Figure 13.
The schematic diagram of rotary disk damper [32].
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F ¼ 2π

ð

R

R1

rp rð Þdr (11)

where r and p rð Þ are the radius of the cylindrical boundary condition and the
total pressure of the upper disk, respectively:

p rð Þ ¼ pη rð Þ þ pMR rð Þ (12)

where pη rð Þ and pMR rð Þ indicate the viscous pressure and the pressure consider-

ing the MRF effect, respectively. The supplied force is a function of the gap size, the
MRF type, and the magnetic field intensity [17]. This damper can generate consid-
erable damping forces while experiencing small displacements. The fundamental
behavior of the MRF squeeze mode dampers is not well understood and needs to be
more explored. In addition, cavitation effect needs to be considered carefully when
designing squeeze mode dampers, as presented in Table 1 [18].

3.3 MRF machining fixtures

Fixtures are important devices to precisely locate the parts during machining
[20]. To respond to the demands for holding free-form parts in place efficiently,
adaptive or modular fixtures have been developed. Practically, many fixtures may
be required to hold all arts in desired locations [20, 21, 33].

Recently, phase-changing materials, such as MRF, become of interest in devel-
oping flexible fixtures, due to their fast response and reversibility without temper-
ature change [20]. Due to the very low yield stress of MRF (�100 kPa), the highest
clamping forces are obtained in the squeeze mode configuration [20]. Figures 15
and 16 show two of MRF-based fixtures based on the squeeze mode developed for
turbine blades.

3.4 MRF clutches

Another important MRF application is intelligent clutches [35, 36] that provide a
wide torque transmissibility range upon the applied magnetic field. The long-term

Figure 14.
Schematic diagram of MRF damper in squeeze mode [19].
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stability, short reaction time, and good controllability are the main features of MRF
clutches [37]. They are promising candidates to be replaced with conventional
torque converters and hydraulic starting clutches to enhance the robustness [38].

There are two types of smart clutches as illustrated in Figure 17: disk MRF
clutches and bell MRF clutches. They are composed of a rotor, a shaft, a coil, MRF, a
small gap, and input and output components [35].

In the disk shape clutch, as in all other MRF devices, there are two states: the
semisolid state and the liquid state [37]. In the semisolid state, the maximum shear
stress is expressed by:

τr ¼ τy:s
r

R0
(13)

where τy, sr, and R are maximum shear stress, the radius of the shaft, and the
radius of the disk, respectively.

System Type Advantages Disadvantages

MRF damper

(flow mode)

Mono-tube

damper

Easy to manufacture Required accumulator, very

sensitive to any failure

Double-

ended

damper

Less sensitive to failure Required accumulator, more

complex to manufacture

Twin-tube

damper

No accumulator, less sensitive More complex to

manufacture

MRF damper (squeeze

mode)

Considerable damping force in small

displacement

Possible cavitation, not

common

MRF damper (shear mode) Prevent solidification of MRF Small relative force (torque)

MRF brake Rapid response, high torque or force High cost. Dependent upon

rotational speed

MRF clutch Disk MRC Wide torque transmissibility range Homogeneity of the MRF,

unpredictable behavior

Bell MRC Wide torque transmissibility range Homogeneity of the MRF,

unpredictable behavior

Multi-plate

MRC

Faster response time, less complex,

light and compact design

Self-heating, relatively high

energy consumption

MRF polishing Cause to polish surfaces smoothly Not much effective on hard

magnetic materials

MRF valve system Less friction, fast responses,

nonmoving parts, simple electrical

circuit

Required extra power

Pneumatic with MRF Stable and accurate motion control Required extra power

MRF seals Simple mechanism, high seal, and low

maintenance required

Not effective in high rotary

speed

MRF fixture Fixing irregular-shaped objective Not common

Composite with MRF Adaptable damping and stiffness Added extra weight and

required extra power

MRF polishing Cause to polish surfaces smoothly Not much effective on hard

magnetic materials

Table 1.
The summary of advantages and disadvantages of MRF-based system.
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Tmax,S ¼ πτy, s
R0

4 � R4

2R0
(14)

In the liquid state, shear stress is computed by:

τ rð Þ ¼ τy,d þ η ω2 � ω1ð Þ
r

s

� �

(15)

Figure 15.
The MRF-flexible-fixture prototype [34].

Figure 16.
The MRF-flexible-fixture prototype [20].

Figure 17.
Disk and bell MRF clutches [39].
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where τy,d, η, ω2, and ω1 represent the maximum shear stress, the dynamic

viscosity, the angular velocity in disk 2, and angular velocity of disk 1, respectively.
The maximum torque transmitted in the liquid state in a simplified format is

determined by:

Tmax,L ¼ πτy,d R3
0 � R3

i

� � 2

3
(16)

In the bell-shaped MRCs, the torque of the semisolid state can be given by:

Tmax,S ¼ π= 2Lτ y;sð Þ

� �� 	

Ri þ Roð Þ2 (17)

where L, R0, and Ri are the thickness of MRF, radius of input rotor, and radius of
output rotor, respectively.

In the liquid state, torque is described by [37]:

Tmax,L ¼ π= 2Lτ y;dð Þ

� �� 	

Ri þ Roð Þ2 (18)

The major problem in the development of this application is the difference of the
density between iron particles and the carrier oil [38]. Micron-sized ferrous
particles move outward faster under very high centrifugal forces. Therefore, the
homogeneity of the MRF is disturbed leading to an unpredictable behavior MRC
[38]. This effect has been studied by many researchers [40, 41]. In order to over-
come this problem, a MRF sponge has been introduced to enhance the homogeneity
of MRF in the MRC at high speeds [38].

A multi-plate MRC as shown in Figure 18 has been introduced by Kavlicoglu
et al. [42]. It is composed of 43 plates on the rotor to reduce misalignment and
distribute the MRF inside the MRC more accurately [42]. Experimental and
analytical works proved that the magnitude of the velocity did not affect the
performance of the MRC.

The disadvantage of MRF clutches are mainly the high power required to
activate the MRF and self-heating while transmitting torque from the drive side to
the power off side [35].

Briefly, the comparison between different clutches is conducted and presented.
It is observed that both Disk MRC and Bell MRC exhibit a wide range of torque
transmissibility. It is worth noting that MRF behavior is unpredictable and the
distribution of MRF is not uniform in these systems. However, multi-plate MRC is
easy to manufacture, and its response is notably fast.

Figure 18.
Multi-plate MRC [39].
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3.5 MRF polishing

Another application of MRFs is polishing or finishing based on the magnetic-
assisted hydrodynamic polishing [19]. This application can be applied to plastics,
optical glasses, ceramics, and complex optical devices, such as spheres. MRF
polishing typically provides less surface damage compared to the conventional
method [43].

Figures 19 and 20 depict the operational mechanism of theMRF polishing. As
shown, theMRF fills the small gap between theworkpiece and themoving wall. The
magnetic field changes the viscosity and transforms it into the semisolid state [19]. The
movingwall causes a profile of shear stress through theMRF layer resulting in polishing
the surface of the work piece [45]. The removal rate (R) can be expressed by [43]:

R ¼ KPV (19)

whereK, P, andV are the Preston coefficient, the pressure, and the velocity between
the work piece and theMR fluid and thematerials’ removal rate, respectively [46].

The positive and negative consequences of the MRF-based polishing systems are
shown inTable 1. It is found that the system can polish the sensitive surface smoothly.
However, the system is not effective for polishing the solid magnetic surface.

3.6 MRF valves

One of the novel applications of MRF is the MRF-based valves [47–49], particu-
larly small-size valves [50]. Figure 21 exhibits the MRF-based valve schematically
proposed by Imaduddin et al. [50].

Figure 19.
The schematic diagram of MRF polishing device [44].

Figure 20.
Schematic working mechanism of MRF polishing [19].
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Three structural configurations of MRF valves are annular, radial, and mixed
annular and radial gaps [50]. Figure 21 illustrates a mixed annular and radial gap
MRF valve. The pressure drop Δpð Þ of the MRF valve is expressed by [50]:

ΔP ¼ ΔPviscous þ ΔPyield (20)

The pressure drop has two parts: the pressure drop pviscous
� �

due to fluid viscosity

and pressure drop Δpyeild

� �

from field-dependent yield stress [50]. Δpviscous
� �

is

computed by:

ΔPviscous ¼
6ηQL

πRd3
(21)

where Q , L, d, and R represent the base fluid viscosity, the flow rate, the annular
channel length of the valve, the valve gaps, and the channel radius, respectively.

Δpyeild is computed by:

ΔPyeild ¼
cτ Bð ÞL

d
(22)

where the coefficient τ Bð Þð Þ represents the field-dependent yield stress value, L
is the annular channel length, and d is the gap size. The flow-velocity profile c is
written by [50]:

c ¼ 2:07 þ
12Qη

12Qηþ 0:8πRd2τ Bð Þ
(23)

The strengths and weaknesses of the MRF valve system are illustrated in
Table 1. It is observed that the MRF valves provide fast response, less friction, and
simple electrical circuit for actuation.

3.7 The MRF brake

MRFs are also used to develop the new type of the braking system and can be
replaced with conventional systems. The MRF brake has a high potential to decrease
the transmitted torque rapidly subjected to external magnetic fields [51]. In an MRF
brake system, the MRF is located between the outer cylinder and the inner rotating
cylinder [19]. By energizing solenoid coil, the MRF supplies the resistance shear

Figure 21.
Schematic diagram of the MRF valve with annular and radial gaps [50].
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force in milliseconds against the torque of the shaft. By removing the magnetic
field, the inner cylinder rotates freely [52]. The schematic diagram of the MRF
brake is presented in Figure 22. The MRF brakes are available in various different
shapes, such as drums, disks, and T-shaped rotors [19]. Recently, Sukhwani et al.
[53] proposed a new type of the brake based on MR grease. However, their pro-
posed brake provided lower breaking capacity than that of the existing MRF breaks.

The MRF brake system has the capability to supply a huge amount of force
(torque).

3.8 MRF seals

The sealing of machinery, such as vacuuming equipment, is a significant chal-
lenge in the industry [19, 44]. The MRF is considered as a potential technology for
sealing pressures up to 3300 kPa [54, 55]. Kanno et al. [54] suggested a one-step seal
for a rotary shaft, as illustrated in Figure 23 schematically. The system was tested at
a rotational speed of 1000 rpm with two different sizes of gaps (1–1.7, 0.06–
0.5 mm). The major benefits of the system are its ease of operation, good sealing
capacity, and low maintenance requirements. Kordonsky et al. [56] studied differ-
ent intensities of the magnetic fields for different shaft rotation speeds. The study
showed that critical pressure is proportionally related to the square of the applied
magnetic field strength. Fujita et al. [57] showed that the burst pressure of the seal is
a function of size and the volume fraction of MRFs.

As displayed in Table 1, the MRF seal needs the external electric power to be
actuated, and the performance is not efficient in the rotary movements. However,
the working mechanism of MRF seal is simple with a low maintenance.

3.9 Pneumatic motion control with the MRF technology

One of the major challenges in pneumatics systems is the accuracy of servo
motion control due to the high compression of air, as the working fluid [58]. There
are two conventional methods including the airflow regulation and the pneumatic
braking for motion control. However, the complexity of these systems is a major
challenge. Recently, MRF brakes are being used to enhance the motion control of
pneumatic actuators (PAMC), as displayed in Figure 24 [44]. The system is com-
posed of a pneumatic actuator in parallel with an MRF brake to improve the system
performance and functionality due to directional control and complexity of servo

Figure 22.
The typical MRF brake [51].
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mechanism [58]. Moreover, the MRF can be used as the pneumatic rotary actuator
to control rotary motion and velocities [44, 59–61, 74].

The pneumatic with MRF-based control movement provides higher accuracy.
However, the system needs the external power for activation.

3.10 MRFs embedded in composite structures

Composite structures are gaining interest in many industries, including civil,
transportation, and aerospace due to their excellent mechanical properties, particu-
larly the strength to weight ratio [62–68]. In many applications, the composite
structures are exposed to excessive vibration resulting to instability and
unpredicted failure. In order to suppress the vibration in composite structures,
different methods including passive, semi-active, and active vibration controls have
been developed [41, 69–72].

Naji et al. [73] studied the dynamic behavior of a laminate composite beam
integrated with an MRF layer, as shown in Figure 25. The study showed that
magnetic fields in the range of 0–1600 Gauss reduce the maximum displacement
and increase the natural frequency. The MRF composite has potential applications
in aerospace, civil infrastructures, and automobile industries to suppress the exces-
sive vibrations and\or control the sound propagation, as presented in Table 1 [69].

Figure 23.
Schematic diagram of one-step MRF seal [19].

Figure 24.
Schematic diagram of MRF pneumatic motion control [58].
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It is noted that adding MRF to laminated composite structures slightly increases the
weight of the element.

4. Chapter summary

In this paper, the basic knowledge of MRF and its spectacular characteristics
particularly the switching phases between the semisolid state and fluid state via
changing the viscosity of MRF has been concisely discussed.

According to the existing works, MRF has been found to be an excellent candi-
date to be replaced with the conventional fluid in the fluid-based systems. In brief,
MRF-based systems improve the performance and functionality of control systems
for many applications, particularly in the followings aspects:

1. Controllability: MRF-based systems provide precise output control due to the
variable viscosity of MRF and switching between the semisolid and the fluid
phases upon application of the magnetic field.

2. Fast response: reaction of MRF-based systems to the applied magnetic field is
in the scale of milliseconds, thus making them suitable candidates to be used
for real-time control applications.

3. Extensive applications: MRF-based control systems have found extensive
applications in a wide range of industries, including civil, aerospace, and
automobiles to enhance the performance and functionality of the systems to
achieve the desired outputs.
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