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Chapter

Polycyclic Aromatic Hydrocarbons 
(PAHs) and Their Influence to 
Some Aquatic Species
Ayoub Baali and Ahmed Yahyaoui

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pol-
lutants generated primarily during the incomplete combustion of organic materi-
als (e.g., coal, oil, petrol, and wood). Many PAHs have toxic, mutagenic, and/or 
carcinogenic functions. PAHs are highly lipid soluble which lead to a fast absorption 
by the gastrointestinal tract of marine mammals. They are immediately distributed 
in a vast variety of tissues with a notable tendency for localization in body fat. 
Metabolism of PAHs is obtained via the cytochrome P450-mediated mixed function 
oxidase system with oxidation or hydroxylation as the first step. PAHs are environ-
mental contaminants that pose significant risk to health of fish. The effect of PAHs 
on fish is a topic of rising attention in a lot of countries. Different studies using the 
bile metabolites separated by high-performance liquid chromatography with fluo-
rescence detection were presented. The aim is to compare the levels of PAH metabo-
lites in fish from different areas and fish species. The major metabolite present in 
all fish was 1-hydroxypyrene. The data confirm the importance of 1-hydroxypyrene 
as the key PAH metabolite in fish bile and suggest that the European eel is an ideal 
species for monitoring PAHs.

Keywords: PAHs, organic pollutants, metabolism, fish, 1-hydroxypyrene,  
European eel

1. Introduction

Aquatic ecosystems are susceptible to receiving and accumulating contami-
nants [1]. In particular, polycyclic aromatic hydrocarbons (PAHs) have been 
identified as general causes of the deterioration of aquatic ecosystems in recent 
decades [2].

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent environ-
mental contaminants found in sediments and associated waters of urbanized estu-
aries and coastal areas [3–5]. They are a class of compounds found in crude oil and 
are everywhere in the aquatic ecosystem [6–12]. PAHs are the most toxic pollutants 
of crude oil and are remembered by the United States Environmental Protection 
Agency (EPA) as priority toxic components because of its persistence in the envi-
ronment and are toxic to fishes [13, 14]; thus, PAHs are of special interest following 
oil spills and in environmental control. They come from natural and anthropogenic 
sources. The latter can be associated to pyrolysis and incomplete combustion of 
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organic element [15]. Wastewater, atmospheric deposition, and petroleum spillage 
are some of the most important PAH sources. PAHs and their intermediate deg-
radation products have the potential to generate toxic or mutagenic effects in fish 
[16–18] and humans [19]. PAH metabolites in the bile fluid are generally accepted as 
measures for PAH exposure in fish because of the rapid metabolism of PAH in most 
vertebrates [3]. Therefore, PAH metabolites in fish are recommended as monitoring 
parameters in European seas [20, 21].

In this chapter, we briefly review the origin, toxicity, and transformation 
of PAHs in the aquatic environment, highlighting their efficient metabolism in 
fish. We also review the presence of PAHs on fish bile and the works reported 
on that.

2. Organic contamination by polycyclic aromatic hydrocarbons (PAH)

2.1 PAH origin

PAHs are mainly formed during the incomplete combustion of organic matter 
and during the slow maturation of organic matter accumulated in deep sedimentary 
environments. These two origins present distinct formation mechanisms that are 
realized with different kinetics and induce variable molecular distributions (related 
to stability) [22].

2.1.1 Pyrolytic origin

Pyrolytic PAHs are generated by processes of incomplete combustion of organic 
matter at high temperatures. The mechanisms involved in their formation involve 
the production of free radicals by pyrolysis at high temperature (≥500°C) of the 
fossil material (oils, fuel oil, organic matter, etc.) under oxygen-deficient condi-
tions. PAHs of pyrolytic origin come from the combustion of automotive fuel, 
domestic combustion (coal, wood, etc.), industrial production (steelworks, alu-
minum smelters, etc.), and energy production (power stations operating on oil or 
coal) or incinerators [23].

2.1.2 Petrogenic origin

The process of diagenesis can give rise to petroleum and other fossil fuels con-
taining the so-called petrogenic PAHs. These PAHs are formed at low temperatures 
(150°C) over long periods of time. They result from exposure of organic matter to 
adequate conditions of temperature and pressure. The proportion of PAHs in oils 
varies according to their origin and level of refinement. In general, petrogenic PAH 
mixtures are marked by a predominance of low molecular weight PAHs, three cycles 
or less, and substituted PAHs [22].

PAHs represent between 20 and 40% by weight of crude oils which are mainly 
composed of saturated hydrocarbons. However, they are less than a few percent of 
the composition of refined gasoline (<0.5% by mass) or kerosene [24].

2.1.3 Biological origin

PAHs can also be formed by microorganisms from biogenic precursors such as 
diterpenes and triterpenes, steroids, pigments, or quinones in sediments or recent 
soils [25, 26]; these precursors can come from terrestrial or aquatic biological tissues 
(plants, animals, bacteria, macro- and microalgae) [27, 28].
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2.2 PAH toxicity

The toxicity of several PAHs is a phenomenon that is well-known. Research has 
been conducted by several environmental groups such as the US Environmental 
Protection Agency-Toxic Substances Control Act (US EPA-TSCA) and the 
International Agency for Research on Cancer (IARC). The toxicity of PAHs to 
aquatic species is affected by metabolism and photooxidation. They are generally 
harmful in the presence of ultraviolet light. PAHs have moderate to high acute toxic-
ity to aquatic organisms and birds. Mammals can absorb PAHs by various routes, 
e.g., dermal contact, inhalation, and ingestion [14, 29, 30]. The concentrations of 
PAHs found in fish are expected to be much higher than in the environment from 
which they were taken because of their bioaccumulation. Withal, metabolism of 
PAHs is sufficient to prevent biomagnifications [31, 32].

Teleost fish have an immense capacity to metabolize PAHs because of the 
enzymes cytochrome P450 in their tissues that oxidatively biotransform PAHs to 
hydroxylated metabolites [33].

The half-life times of PAHs in various biological tissues (bivalves, crustaceans, 
and fish) are of the order of a few days to 10 days and are about five times higher for 
heavy PAHs relative to lower PAHs.

The environmental matrices are moreover complex, containing numerous 
endogenous or exogenous, mineral or organic molecules between which interac-
tions can take place. Synergistic toxic effects have been observed in particular 
between metals and PAH quinones [34].

Indeed, the carcinogenic nature of some of these molecules alone or in mixtures 
is proven. Twelve of these are classified by the International Agency for Research on 
Cancer (IARC) as probably carcinogenic to humans [35]. After contamination by these 
substances, they are biotransformed in the liver into different (poly)hydroxy-PAHs.

The risks of PAHs to fish and other aquatic organisms in natural systems are 
highly uncertain due to the occurrence of complex, incompletely characterized 
mixtures of these chemicals, large spatial heterogeneity in exposure concentrations, 
incomplete understanding of the importance of UV-activated PAH toxicity, the 
biological and physical controls on fish exposure to UV light, and the bioaccumula-
tion of PAHs. These uncertainties are especially great for early-life-stage fish, which 
might be particularly susceptible to UV-activated because of their small size, lack of 
protective pigmentation and gill coverings, and ready accumulation of PAHs.

3. Transformations of PAHs in marine ecosystem

3.1 Physical and chemical degradation

Sediments contaminated with PAHs pose a real threat to all living organisms, 
even those that feed on the benthic prey.

PAHs with a low molecular weight can be found in all environmental matrices, 
since higher molecular weight compounds are more deeply associated (physically 
and chemically) with sediments/soils and particles than the other abiotic sample 
types. PAHs in air can be modified via chemical oxidation and photochemical 
processes [8], whereas in sediments/soils and the uppermost portion of the water 
column, degradation of PAHs, particularly lower molecular weight PAHs, occurs via 
photooxidation [6, 36]. In addition to parent PAHs, oxygenated PAH metabolites 
formed during these degradation processes can persist associating with sediments 
up to 6 months after initial addition to the water column and thus can endure in 
the environment for extended periods of time [37]. In water samples and sediment, 
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some microorganisms (e.g., fungi, bacteria) have been demonstrated to mineralize 
PAHs under aerobic conditions, particularly those compounds that contain two- 
and three-fused rings (e.g., fluorene, naphthalene), to their basic elements or to 
biodegrade these compounds to more polar degradation products [3, 8]. More infor-
mation on PAH microbial degradation pathways and identification of degradation 
can be found in Cerniglia and Heitkamp [38], Juhasz and Naidu [39], and Bamforth 
and Singleton [40]. Part of research studies have proved that pyrene can be mineral-
ized by certain strains of bacteria (e.g., Mycobacterium) under optimum growing 
conditions in the laboratory, but it is uncertain if this occurs in the natural environ-
ment [41, 42]. In contrast, other higher molecular weight PAHs (e.g., five- and 
six-ring compounds) are not readily degraded by microbes and thus are more likely 
to accumulate in these environmental media (particularly in fine-grained sediments 
with high organic carbon content) [3, 39]. Under anoxic conditions, PAHs persist in 
sediments, particularly in organic sediments [42].

3.2 Biotransformation in the aquatic food web

Pyrolytic PAHs are the most common in aquatic environments. After the 
emission of pyrolytic PAHs into the atmosphere, the molecules fall back and settle 
on the surface of the water or soil [23]. Under the action of soil leaching, PAHs are 
transported to water bodies. These hydrophobic molecules then associate with other 
particles of the column of water and accumulate in the sediment [23].

In aquatic organisms, exposure to PAHs can occur through dermal exposure, 
respiration, or consumption of contaminated prey (e.g., annelids, crustaceans) 
or sediment [43]. Biotransformation of PAHs in aquatic organisms occurs to 
varying degrees depending on a number of factors, including the rate of uptake, 
metabolic capability, physical condition, feeding strategy, and age [43, 44]. 
Invertebrates are capable of PAH uptake from their environment and have been 
shown to have varying levels of PAH-metabolizing capability [44]. Mollusks 
generally have lower PAH-metabolizing capability than certain species of poly-
chaetes, crustaceans, and fish [3].

PAH metabolism in fish is mainly conducted by inducible enzymes of the 
cytochrome P450 family, in particular CYP1A. These enzymes are localized in the 
membranes of the smooth endoplasmic reticulum, located mainly in the liver, but 
are also present in other organs. They are expressed and functional from the earliest 
stages of fish development. These enzymes catalyze the addition of an oxygen 
atom to the PAH molecule through an NADPH-dependent reaction. CYP1A protein 
is induced during exposure of the body to PAHs. CYP1A induction is rapid, and 
activity levels are often increased by a factor of 100 a few hours after exposure. 
These highly polar conjugated metabolites are then excreted into urine or the bile 
for rapid rejection over the gastrointestinal tract [14, 43, 45, 46]. Concerning the 
result of this rapid metabolism in fish, concentrations of parent PAHs are insignifi-
cant in muscle and other tissues. Thus, to determinate a recent exposure to PAHs 
in teleost fish, bile and urine are used, with the preference of bile because of its 
easy sampling. Otherwise, differences in the metabolism of benzo[a]pyrene (BaP), 
including differences in the types and proportions of metabolites formed, have been 
shown between two fish of freshwater [47, 48]. These differences could contribute 
to variations in susceptibility to these carcinogenic compounds among fish species. 
Differences in glutathione-S-transferases may also help explain differential suscep-
tibility to chemically induced carcinogenesis among fish species [46]. A number 
of analytical methods have been developed to measure PAH metabolites in fish 
bile and are reviewed in [14]. Oil spills, including the Deepwater Horizon (DWH) 
spill in the Gulf of Mexico in 2010, show the necessity of the need for additional 
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methods to determine PAH exposure in seafood or protected species (e.g., marine 
mammals) where species cannot be lethally collected. For example, a rapid, 
sensitive HPLC-fluorescence method was developed by the US Food and Drug 
Administration [49] during the DWH spill and was used by federal and Gulf state 
analytical laboratories as part of the seafood safety response [50]. The development 
of new analytical methods like those can provide important information on PAH 
exposure in aquatic organisms.

4. Effects of PAHs on aquatic species

PAHs are an important factor of contamination in the environment but also a 
risk to human health. In fact, the dangers related to PAHs vary according to their 
toxicity on the one hand and the many sources of exposure on the other. It has 
also been proven that carcinogenic and mutagenic effects related to a single com-
pound of PAHs were found. A large number of effects have been identified [51]. 
In fact, genotoxicity and tumorigenesis observed in fish are linked to the presence 
of metabolites. Beyond genotoxicity, there are many other effects observed, for 
example, in behavior, reproduction, and growth.

Benzo[a]pyrene, for example, which is highly studied, leads to a decrease in 
weight [52] and growth [53], an increase in the gonado-somatic index (GSI) in 
Japanese medaka (Oryzias latipes) [52], DNA breaks in oysters (Crassostrea gigas) 
[54], and DNA adducts in zebrafish and on human liver cells (HepG2) [55]. 
Teratogenic effects in particular on the heart of sardine (Clupea pallasii) [56] and 
zebrafish [57, 58] have been observed as well as anemia in scorpion fish (Sebastes 
schlegelii) [59]. Benzo[a]pyrene affects the reproduction of isopods (Oniscus asellus 
and Asellus porcellio scaber) [53] and accumulates in oocytes in catfish (Ictalurus 
punctatus) [60]; it disrupts the expression of the aromatase (enzyme necessary for 
the conversion of androgen such as estrogen isosterone) in female mummichog 
(Fundulus heteroclitus) [61] and inhibits the synthesis of testosterone and estradiol 
in flounder (Platichthys flesus L.) [62].

The toxicity of a compound can be enhanced or reduced by endogenous and 
exogenous factors. For example, in fish, hypoxia [63], geographical origin and fish 
life history [64], and/or the various PAH compounds [65] can cause variations. The 
penetration time in the fish embryo and the depuration time can vary considerably. 
In addition, the effects produced by these molecules, tested individually, do not 
necessarily follow a dose-effect relationship [52].

4.1 Effects of PAHs on the survival

Survival is a commonly used variable. This variable has made it possible to 
develop standardized tests in toxicology such as LD50 (lethal dose) or LC50 (lethal 
concentration) calculations. Although protected in their chorions, fish eggs and 
then larvae are particularly exposed because, in most cases, they are unable to flee 
contaminated areas during their early-life stages [66]. It is during development, 
during the establishment of all organs and systems, that contaminants can pass 
this barrier. They can affect the development and have long-term consequences. 
Exposure to PAHs can lead to decreased survival in aquatic organisms during acute 
exposures. For example, there has been a decrease in survival after early exposure 
of salmon (Oncorhynchus gorbuscha) to dissolve PAHs [67].

In the case of chronic exposure in the early stages, similar effects can be 
observed. Impairment in survival has been observed in salmon (Oncorhynchus 
gorbuscha) exposed to crude oil [68], in minnow (Pimephales promelas) exposed 
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to contaminated sediment [69], in Chanos chanos and capelin (Mallotus villosus) 
exposed to dissolved PAHs (anthracene, B[a]P, pyrene and heavy fuel oil) [66, 70], 
and in shrimp (Palaemonetes pugio) exposed to the pyrene feed which also shows 
reduced survival [71]. In other studies, survival is not affected by PAHs. This is the 
case, for example, in terrestrial isopods, where oral administration does not have 
significant effects on survival [53]. It is also not affected after exposure to BaP in 
mummichog (Fundulus heteroclitus) [72]. PAHs can affect survival in some cases 
and not in others. This extreme variable may not be the most sensitive for all species 
or all types of exposure.

4.2 Malformations and growth

PAHs induce malformations during development. They lead to a decrease 
in skeletal mineralization in bass (Dicentrarchus labrax) [73] and craniofacial 
deformities in scorpion fish (Sebastiscus marmoratus) [74]. Jaw malformations [75] 
in this same fish as well as in zebrafish [58] were also observed. The number of 
edemas is also increased in scorpion fish (Sebastes schlegelii), salmon (Oncorhynchus 
gorbuscha) [67, 76], and medaka (Oryzias latipes) [77], as well as the occurrence of 
hemorrhages in trout (Oncorhynchus mykiss) [78]. The impact of PAHs on growth 
is frequently reflected in a reduction in size and/or weight [67, 79, 80]. This reduc-
tion in growth is observed regardless of the mode of administration of PAHs, the 
concentrations used, and the duration of exposure [59, 70, 81]. Weight reduction is 
often proportional to contamination [81]. Unfortunately, these are not the only vis-
ible damage. A decrease in lipid reserves may be observed and result in a decrease in 
energy reserves [10, 79].

4.3 Metabolism and osmoregulation

In a PAH study, fish were exposed to the soluble fraction of a crude oil mixture. 
Structural lesions and morphological differences are noted on the gill [82]. These 
differences would be related to a metabolism aimed at reducing contact with the 
pollutant, which would reduce the gill surface and oxygen supply. A reduction in 
oxygen uptake could compromise the fish metabolism [82].

Osmoregulation problems following exposure of Sebastiscus marmoratus to 
dissolve PAHs have been observed [75]. PAHs would inhibit Na+/K+ activity in a 
dose-dependent manner and play a role in osmoregulation.

4.4 Effect on behavior

The behavioral response of an animal following exposure to stress and/or 
contaminant (s) is increasingly studied [83–87].

The behavior makes it possible to discriminate a large number of integrating 
variables from the changes induced by PAHs. Swimming activity can be assessed 
as well as other aspects such as lethargy, anxiety, social communication, eating 
behavior, flight response, learning, or reproductive behavior.

A reduced swimming activity in seabream (Sparus aurata) was observed follow-
ing a 4 days of exposure to dissolved PAHs [88, 89]: phenanthrene, fluorine, and 
pyrene [89]. An increase in lethargy and a reduction in the number of surface surges 
have also been observed following exposure to dissolved PAHs in this species [88, 89].

These variables can also be used to evaluate the neurotoxic effects of a contaminant. 
The reduction of social interactions following exposure to phenanthrene [89] is proven.

The escape response, in the presence of fluoranthene, has been demonstrated in 
control fish [90]. The fish are placed in a double flow aquarium. A flow of control 
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water and a flow of water containing fluoranthene are present. Fish that have never 
been exposed are fleeing fluoranthene. On the other hand, fish that have been 
previously exposed to a high dose of fluoranthene no longer leak the molecule [90].

Learning and exploration abilities are diminished after exposure to PAHs. For 
example, discrimination of a familiar object is altered in mice exposed to BaP. In the 
same vein, dietary exposure of the mother to a mixture containing the 16 priority 
PAHs of the USEPA leads to behavioral alteration in the next generation, especially in 
a new environment. The reproductive behavior can also be disturbed. The ability of a 
male to find a female can be altered, as is the case in amphipods, for example [91].

4.5 Effect on reproduction

PAHs are lipophilic molecules that are transported and found in the ovaries via 
vitellogenin and/or lipovitellin [60]. They can also result in inhibition of vitellogenin 
synthesis, as has already been shown in trout after exposure to β-naphthoflavone 
[92]. This exposure compromises the maturation of the ovaries and causes an 
increase in apoptosis in gonadal cells [91]. These pollutants lead, for example, to 
reproductive inhibition in shrimp exposed to pyrene [71]. A decrease in fecundity, 
number of breeding cycles, and larval survival is observed in different fish species. 
In mussels, gametes are deformed and are present in small numbers [91].

Females are not the only ones to be affected. Male sperm quality can also be 
altered after exposure to benzo[b]fluoranthene, as is the case in mice exposed via 
breast milk [59]. Sperm quality is reduced, and there is also an increase in testicular 
apoptosis.

5. PAHs in eels

High-performance liquid chromatography (HPLC) is generally used for the 
determination of PAH metabolites in considerable fish species [93–98] and has been 
covered by an intercalibration exercise [22].

Although bile metabolites have been measured in many species of fish [13], those 
selected for biomonitoring programs tend to be common, long-lived species at the 
top of the food chain, with relatively sedentary life styles and benthic habits [99]. 
Consequently, the common eel (Anguilla anguilla) has been used in studies of PAH 
contamination [100, 101]. Pleuronectid flatfish are also well-suited to biomonitoring, 
and the European flounder (Pleuronectes flesus), an abundant flatfish in most European 
estuaries, has been frequently chosen to assess PAH contamination [102, 103].

The study conducted by Ruddock et al. [104] in the Severn Estuary showed that 
from the six metabolites of polycyclic aromatic hydrocarbons (PAHs) identified and 
quantified from the bile of Anguilla anguilla, Pleuronectes flesus, and Conger conger 
collected during 1997, the main metabolite present in all fish was 1-hydroxypyrene 
with lower proportions of 1-hydroxychrysene and 1-hydroxyphenanthrene and 
small concentration of three benzo[a]pyrene derivatives. The results approve the 
importance of 1-hydroxypyrene as the important PAH metabolite in fish bile and 
suggest that the A. anguilla is an excellent species for monitoring PAHs in estuarine 
ecosystems. 1-Hydroxypyrene is invariably the major metabolite present in the bile 
of fish exposed to PAH-contaminated sediments [105], and this was confirmed by 
the results of this work for fish in the Severn Estuary. Pyrene is produced by many 
petrogenic and pyrolytic processes [43] and has been detected in significant number 
in sewage outfalls [106]. It is regarded the best general indicator of PAH exposure 
in fish [100, 107]. The contribution of 1-OH-Phen to the total metabolites detected 
ranged from approximately 2% in flounders and conger eels to 8% in common eels. 
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Phenanthrenes are released to the atmosphere during the combustion of fossil fuels, 
particularly coal, oil, and its refined products [43]. Like all PAHs with two to four 
benzene rings, phenanthrenes can remain suspended in airborne particles for long 
periods [108]. Compared to the other PAHs detected, BaP has a very low solubility 
in water and low bioavailability, but metabolites of BaP are especially important 
because of their potent mutagenic and carcinogenic properties [109–111].

A recent study conducted by Baali et al. [2] on bile metabolites of PAHs in 
18 European eels (Anguilla anguilla), 7 moray (Muraenidae), and 28 conger eels 
(Conger conger) from Moroccan waters (Moulay Bousselham lagoon and Boujdour) 
shows the presence of two polycyclic aromatic hydrocarbon (PAH) metabolites, 
1-hydroxypyrene (1-OH-Pyr) and 1-hydroxyphenanthrene (1-OH-Phen). The high-
performance liquid chromatography with fluorescence detection method was used 
to separate the bile metabolites.

The goals of the present study were to compare the levels of PAH metabolites in 
eels from the lagoon and sea and also to compare levels of PAH metabolites between 
the different eels.

In this study the PAH metabolites (1-OH-Pyr and 1-OH-Phen) were detected 
in all species. The results of this investigation show that the concentration of 
1-OH-Pyr was high for Anguilla anguilla than the other species (Figure 1). The 
conger eels represent the species with the lower concentration of 1-OH-Pyr. This 
result reflects the low degree of contamination in Boujdour coast (Figure 1). Thus, 
the presence of high concentration of 1-OH-Pyr and 1-OH-Phen in the bile of the 
European eels and morays reflects the high degree of contamination in the lagoon 
which is due to the anthropogenic activity in Moulay Bousselham lagoon. From the 
comparison between the contamination of the European eels and morays belong-
ing to Moulay Bousselham lagoon, the results show that the first species present 
a higher concentration of PAH metabolites than the second one (Figure 1). This 
conclusion confirms that the Anguilla anguilla is more suitable species for moni-
toring PAH contamination. The European eels spend most of their life in muddy 
sediment which usually present a high PAH concentration levels. The pollutants 
in sediment are easily accumulated [112–114]. Accordingly, it is recognized that 
sediment contamination has a particular interest with regard to aquatic ecosystem 
quality. Sediment is an important source of pollutants and the factor with the high 
impact on the deterioration of the water quality. Although the feeding habit of the 
European eels may result in higher exposure to PAHs whence the high concentra-
tion of 1-OH-Pyr and 1-OH-Phen in the bile of this species [115], the accumulation 
of PAHs from the surrounding water is considered more efficient than impacted 
food [116]. The level of PAH metabolites in fish bile varies according to the area. 
The results show that Boujdour Sea is not a polluted site [117]. Moulay Bousselham 
lagoon is a semi-closed area; the concentration of pollutants in this site is higher 
than Boujdour Sea because of its lower water circulation. In the lagoon PAHs are 
easily accumulated than that in the sea [112]. Our results confirm that 1-OH-Pyr is 
the major metabolite present in fish bile [104, 105] and the best indicator of PAH 
exposure in fish [100, 107]. It was found that 1-OH-Pyr is the dominant compound 
in eel bile [118–120]. The results show that the levels of PAHs in Morocco are lower 
than those obtained in the other regions. As a conclusion of this study, the possible 
health risk of PAH contamination in Boujdour coast and Moulay Bousselham lagoon 
might be low compared to the other European sites.

The concentration of 1-OH-Pyr varies significantly with length (p < 0.05) for 
each species. The results obtained in this study [2] show that the concentration of 
PAH metabolites does not always increase with the size; there are obviously factors 
which can affect the exposure of this pollutant such as species differences, age, sex, 
maturity, and diet.
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6. Conclusion

PAHs are originally organic compounds that are created from the partial com-
bustion of organic elements or pyrolysis of organic material. These compounds are 
associated to the treatment of wood, oil, coal, and gas in order to produce the energy.

PAHs are transferred in the air in gas or particle aspect, and they are accumu-
lated by wet and dry deposition. The transported elements play important role in 
the chemistry of the atmosphere. These particles also have significant impact in 
human health, because many PAHs are classified as probable human carcinogens.

The other faculty of PAHs is the capacity of degrading microorganism such as 
bacteria, fungi, and algae. It concerns the failure of organic compounds through 
biotransformation into less complex metabolites and through mineralization into 
inorganic minerals.

In this chapter, many effects on the biology of species following exposure to 
PAHs have been demonstrated. At the end of these organic studies on fish, it has 
been shown that the PAH biliary metabolites studied have the potential to describe 
the state of exposure of fish to organic pollutants (PAHs).

The study of a possible contamination of eels from different countries shows 
that 1-hydroxypyrene (1-OH-Pyr) is the dominant pollutant present in fish bile and 
is the best general indicator of PAH contamination.

Figure 1. 
Bile metabolite 1-hydroxypyrene (a) and 1-hydroxyphenanthrene (b) concentrations detected in European eels 
(Anguilla anguilla) collected from different areas and eels from Morocco (conger, moray, and European eel) as 
mean (triangles) and range (panels).



Biochemical Toxicology - Heavy Metals and Nanomaterials

10

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Author details

Ayoub Baali* and Ahmed Yahyaoui
Laboratory of Biodiversity, Ecology and Genome, Faculty of Science, Mohammed V 
University in Rabat, Rabat, Morocco

*Address all correspondence to: ayoubbaali22@gmail.com

Of the different eels investigated, European eels (Anguilla anguilla) contained 
the highest metabolite concentrations. This species looks like the most suitable for 
monitoring PAH contamination in the environment.

Using the studies conducted by several authors, we found that the rivers and 
lagoon contain PAH concentrations much higher than the coastal waters. These 
results appear normal in view that there is low water exchange in the rivers and 
lagoon ecosystems.

Finally we conclude that the quantification and identification of the metabolites 
in fish bile can give a rapid indication on the level of PAH contamination.
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