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1. Introduction 

In recent years, the concept of the fuzzy logic or artificial neural networks for control 
problems has grown into a popular research area [1]-[3]. The reason is that classical control 
theory usually requires a mathematical model for designing controllers. The inaccuracy of 
mathematical modeling of plants usually degrades the performance of the controllers, 
especially for nonlinear and complex control problems [4], [25]. Fuzzy logic has the ability to 
express the ambiguity of human thinking and translate expert knowledge into computable 
numerical data.  
A fuzzy system consists of a set of fuzzy IF-THEN rules that describe the input-output 
mapping relationship of the networks. Obviously, it is difficult for human experts to 
examine all the input-output data from a complex system to find proper rules for a fuzzy 
system. To cope with this difficulty, several approaches that are used to generate the fuzzy 
IF-THEN rules from numerical data have been proposed [5]-[8]. These methods were 
developed for supervised learning; i.e., the correct “target” output values are given for each 
input pattern to guide the learning of the network. However, most of the supervised 
learning algorithms for neuro-fuzzy networks require precise training data to tune the 
networks for various applications. For some real world applications, precise training data 
are usually difficult and expensive, if not impossible, to obtain. For this reason, there has 
been a growing interest in reinforcement learning algorithms for use in fuzzy [9]-[10] or 
neural controller [11]-[12] design. 
In the design of a fuzzy controller, adjusting the required parameters is important. To do 
this, back-propagation (BP) training was widely used in [11]-[12], [18]. It is a powerful 
training technique that can be applied to networks with a forward structure. Since the 
steepest descent technique is used in BP training to minimize the error function, the 
algorithms may reach the local minima very fast and never find the global solution. 
The development of genetic algorithms (GAs) has provided another approach for adjusting 
parameters in the design of controllers. GA is a parallel and global technique [9], [19]. 
Because it simultaneously evaluates many points in a search space, it is more likely to 
converge toward the global solution. Some researchers have developed methods to design 
and implement fuzzy controllers by using GAs. Karr [2] used a GA to generate membership 
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functions for a fuzzy system. In Karr’s work, a user needs to declare an exhaustive rule set 
and then use a GA to design only the membership functions. In [20], a fuzzy controller 
design method that used a GA to find the membership functions and the rule sets 
simultaneously was proposed. Lin [27] proposed a hybrid learning method which combines 
the GA and the least-squares estimate (LSE) method to construct a neuron-fuzzy controller. 
In [20] and [27], the input space was partitioned into a grid. The number of fuzzy rules (i.e., 
the length of each chromosome in the GA) increased exponentially as the dimension of the 
input space increased. To overcome this problem, Juang [26] adopted a flexible partition 
approach in the precondition part. The method has the admirable property of small network 
size and high learning accuracy. 
Recently, some researchers [9], [19], [28]-[29] applied GA methods to implement 
reinforcement learning in the design of fuzzy controllers. Lin and Jou [9] proposed GA-
based fuzzy reinforcement learning to control magnetic bearing systems. In [19], Juang and 
his colleagues proposed genetic reinforcement learning in designing fuzzy controllers. The 
GA adopted in [19] was based upon traditional symbiotic evolution which, when applied to 
fuzzy controller design, complements the local mapping property of a fuzzy rule. In [28], Er 
and Deng proposed dynamic Q-Learning for on-line tuning the fuzzy inference systems. 
Kaya and Alhajj [29] proposed a novel multiagent reinforcement learning approach based 
on fuzzy OLAP association rules mining. However, these approaches encountered one or 
more of the following major problems: 1) the initial values of the populations were 
generated randomly; 2) the mutational value was generated by the constant range while the 
mutation point is also generated randomly; 3) the population sizes always depend on the 
problem which is to be solved. 
In this chapter, we propose a reinforcement sequential-search-based genetic algorithm (R-
SSGA) method for solving above-mentioned problems. Unlike the traditional reinforcement 
learning, we formulate a number of time steps before failure occurs as the fitness function. 
The new sequential-search-based genetic algorithm (SSGA) is also proposed to perform 
parameter learning. Moreover, the SSGA method is different from traditional GA, which the 
better chromosomes will be initially generated while the better mutation points will be 
determined for performing efficient mutation. Compared with traditional genetic algorithm, 
the SSGA method generates initialize population efficiently and decides efficient mutation 
points to perform mutation. The advantages of the proposed R-SSGA method are 
summarized as follows: (1) The R-SSGA method can reduce the population sizes to a 
minimum size (4); (2) The chromosome which has the best performance will be chosen to 
perform the mutation operator in each generation. (3) The R-SSGA method converges more 
quickly than existing traditional genetic methods.  
This chapter is organized as follows. Section 2 introduces the sequential-search-based 
genetic algorithm. A reinforcement sequential-search-based genetic algorithm is presented 
in Section 3. In Section 4, the proposed R-SSGA method is evaluated using two different 
control problems, and its performances are benchmarked against other structures. Finally, 
conclusions on the proposed algorithm are summarized in the last section. 

2. The sequential-search-based genetic algorithm  

A new genetic learning algorithm, called sequential-search-based genetic algorithm (SSGA), 
is proposed to adjust the parameters for the desired outputs. The proposed SSGA method is 
different from a traditional genetic algorithm [9], [19]. The SSGA method generates initial 
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population efficiently and decides efficient mutation points to perform mutation. Like 
traditional genetic algorithm [9], [19], the proposed SSGA method consists of two major 
operators: reproduction, crossover. Before the details of these two operators are explained, 
coding, initialization and efficient mutation are discussed as follows:  
Coding step: The first step in the SSGA method is to code a neuro-fuzzy controller into a 
chromosome. We adopt a Takagi-Sugeno-Kang (TSK) type neuro-fuzzy controller [13] to be 
the structure of the proposed SSGA method. A TSK-type neuro-fuzzy controller employs 
different implication and aggregation methods than the standard Mamdani controller [1].  
Instead of using fuzzy sets the conclusion part of a rule, is a linear combination of the crisp 
inputs. 

IF x1 is A1j (m1j , σ1j )and x2 is A2j(m2j , σ2j )…and xn is Anj (mnj , σnj ) 

 THEN y’=w0+w1x1+…+wixi  (1) 

where ijm and ijσ  represent a Gaussian membership function with mean and deviation 

with ith dimension and jth rule node. A fuzzy rule in Fig. 1 is represented the form in Eq. 
(1). 
 

Rule1 Rule2 … Rulej … RuleR 

 

 

 

jm1  j1σ jm2 j2σ …. 
njm  njσ  0w  1w  …. 

nw  

Fig. 1. Coding a fuzzy controller into a chromosome in the SSGA method. 

Initialization step: Before the SSGA method is designed, individuals forming an initial 
population should be generated. Unlike traditional genetic algorithm, an initial population 
is generated randomly within a fixed range. In the SSGA method, the initial population is 
generated efficiently to ensure that chromosomes with good genes can be generated. The 
detailed steps of the initialization method are described as follows: 

• Step 0: The first chromosome that represents a TSK-type fuzzy controller will be 
generated initially. The following formulations show how to generate the 
chromosomes: 

 Deviation: Chrj[p]=random[ minσ , maxσ ] (2) 

where p=2, 4, 6, …, 2*n 

 Mean: Chrj[p]= random[ minm , maxm ] (3) 

where p=1, 3, 5, …, 2*n-1 

 Weight: Chrj[p]= random [ minw , maxw ] (4) 
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where p=2*n +1,…, 2*n +(1+n) 

where Chrj means chromosome in ith rule and p represent the pth gene in a Chrj; 

[ minσ , maxσ ],[ minm , maxm ], and [ minw , maxw ] represent the predefined ranges of 

deviation, mean, and weight. The ranges are determined by practical experimentation or 
trial-and-error tests.  

• Step 1: To generate the other chromosomes, we use the SSGA method to generate the 
new chromosomes. The search algorithm of the SSGA method is similar to the local 
search procedure in [14]. In the SSGA method, every gene in the previous chromosomes 
is selected using a sequential search and the gene’s value is updated to evaluate the 
performance based on the fitness value. The details of the SSGA method are as follows: 

(a) Sequentially search for a gene in the previous chromosome. 
(b) Update the chosen gene in (a) according to the following formula: 

 Chrj[p]=

⎩
⎨
⎧

<Δ−
>−Δ+

5.0),-][ Chr,_(][ Chr

5.0),][ Chr,_(][ Chr

minjj

jmaxj

ασ
ασ

ifpvaluefitnessp

ifpvaluefitnessp
 (5) 

 where p=2, 4, 6, …, 2*n  

 Chrj[p]= 

⎩
⎨
⎧

<Δ−
>Δ+

5.0),-][ Chr,_(][ Chr

5.0),][ Chr-,_(][ Chr

minjj

jmaxj

α
α

ifmpvaluefitnessp

ifpmvaluefitnessp
 (6) 

 where p=1, 3, 5, …, 2*n-1  

 Chrj[p]=

⎩
⎨
⎧

<Δ−
>−Δ+

5.0),-][ Chr,_(][ Chr

5.0),][ Chr,_(][ Chr

minjj

jmaxj

α
α

ifwpvaluefitnessp

ifpwvaluefitnessp
  (7) 

 where p=2*n +1,…, 2*n +(1+n)  

 where 
λλ )_/1(**),_( valuefitnessvvvaluefitness =Δ  (8) 

where [ ]1,0, ∈λα  are the random values; valuefitness _  is the fitness 

computed using Eq (11); p represents the pth gene in a chromosome; j represents the 

jth rule, respectively. The function ),_( vvaluefitnessΔ returns a value, such 

that ),_( vvaluefitnessΔ comes close to 0 as valuefitness _  increases. This 

property causes the mutation operator to search the space uniformly during the 

initial stage (when valuefitness _  is small) and locally during the later stages, 

thus increasing the probability of generating children closer to its successor than a 
random choice and reducing the number of generations. 

(c) If the new gene that is generated from (b) can improve the fitness value, then replace 
the old gene with the new gene in the chromosome. If not, recover the old gene in the 
chromosome. After this, go to (a) until every gene is selected. The pseudo code for 
the SSGA method is listed in Figure 2. The Chrk,j represents the kth chromosome and 
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jth rule in a fuzzy controller. And Nf denote the size of the population, 
fitness(Chrk,j_new) is a fitness function by Eq.(11) using the kth new chromosome. 

 

 

Fig. 2. The pseudo code for the SSGA method. 

• Step 2: If no genes are selected to improve the fitness value in step 1, than the new 
chromosome will be generated according to step 0. After the new chromosome is 
generated, the initialization method returns to step 1 until the total number of 
chromosomes is generated. 

The firing strength of a fuzzy rule is calculated by performing the “AND” operation on the 
truth values of each variable to its corresponding fuzzy sets, 

 
[ ]

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=∏

=
2

2)1(

1

exp
ij

iji
n

i

j

mu
u

σ
 (9) 

where ijm and ijσ are, respectively, the center and the width of the Gaussian membership 

function of the jth term of the ith input variable ix . The output of a fuzzy system is 

computed by 

Procedure Sequential-Search-Based Genetic Algorithm 

Begin 

Let p=0,i=0; 

Repeat 

k=k+1; 

Repeat  

   j=j+1; 

  Repeat  

  p=p+1; 

  Perform Chrk,j_new=inttialize(Chrk,j _old[p]);by(5)to(8); 

Evaluate fitness(Chrk,j _new) and fitness(Chrk,j _old) by(11); 

  If fitness(Chrk,j _new) >fitness(Chrk,j _old) Then 

Chrk,j _old = Chrk,j _new;; else Chrk,j _new = Chrk,j _old; 

Until p=2*n+(1+n); 

Until j=R; 

   Until k=Nf; 

End 
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xwu
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 (10) 

where the weight jw  is the output action strength associated with the jth rule and outu  is 

the output of the network. 
Efficient mutation step: Although reproduction and crossover will produce many new 
strings, they do not introduce any new information to the population at the site of an 
individual. Mutation is an operator that randomly alters the allele of a gene. We use an 
efficient mutation operation, which is unlike the traditional mutation, to mutate the 
chromosomes. In the SSGA method, we perform efficient mutation using the best fitness 
value chromosome of every generation. And we use the SSGA method to decide on the 
mutation points. When the mutation points are selected, we use Eqs. (5) to (7) to update the 
genes. The efficient mutation of an individual is shown in Fig. 3. 

 

Fig. 3. Efficient mutation operation using 3 mutation points with jth rule. 

Reproduction step: Reproduction is a process in which individual strings are copied 
according to their fitness value. In this study, we use the roulette-wheel selection method 
[15] – a simulated roulette is spun – for this reproduction process. The best performing 
individuals in the top half of the population [19] advances to the next generation. The other 
half is generated to perform crossover and mutation operations on individuals in the top 
half of the parent generation. 
Crossover step: Reproduction directs the search toward the best existing individuals but 
does not create any new individuals. In nature, an offspring has two parents and inherits 
genes from both. The main operator working on the parents is the crossover operator, the 
operation of which occurred for a selected pair with a crossover rate that was set to 0.5 in 
this study. The first step is to select the individuals from the population for the crossover. 
Tournament selection [15] is used to select the top-half of the best performing individuals 
[19]. The individuals are crossed and separated using a two-point crossover that is the new 
individuals are created by exchanging the site’s values between the selected sites of parents’ 
individual. After this operation, the individuals with poor performances are replaced by the 
newly produced offspring. 
The aforementioned steps are done repeatedly and stopped when the predetermined 
condition is achieved. 
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3. Reinforcement sequential-search-based genetic algorithm (R-SSGA) 

Unlike the supervised learning problem, in which the correct “target” output values are 
given for each input pattern to perform neuron-fuzzy controller learning, the reinforcement 
learning problem has only very simple “evaluative” or “critical” information, rather than 
“instructive” information, available for learning. In the extreme case, there is only a single 
bit of information to indicate whether the output is right or wrong. Figure 4 shows how the 
R-SSGA method and its training environment interact in a reinforcement learning problem. 
The environment supplies a time-varying input vector to the R-SSGA method, receives its 
time-varying output/action vectors and then provides a reinforcement signal. Therefore, the 
reinforcement signal indicates whether a success or a failure occurs.  
 

 

Fig. 4. The proposed R-SSGA method. 

As show in Fig. 4, the R-SSGA method consists of a TSK-type fuzzy controller which acts as 
the control network to determine a proper action according to the current input vector 
(environment state). The structure of the R-SSGA method is different from Barto and his 
colleagues’ actor-critic architecture [16]-[17]. Two neuron-like adaptive elements are 
integrated in this system [16]-[17]. They are the associative search element (ASE) used as a 
controller, and the adaptive critic element (ACE) used as a predictor. Temporal difference 
techniques and single-parameter stochastic exploration are used in [16]. The input to the R-
SSGA method is the state of the plant, and the output is a control action of the state, denoted 
by f. The only available feedback is a reinforcement signal that notifies the R-SSGA method 
only when a failure occurs. An accumulator plays a role which is a relative performance 
measure shown in Fig. 4. It accumulates the number of time steps before a failure occurs 
[30]. Thus, the feedback takes the form of an accumulator that determines how long the 
experiment is still a “success”; this is used as a relative measure of the fitness of the 
proposed R-SSGA method. That is, the accumulator will indicate the “fitness” of the current 
R-SSGA method. The key to this learning algorithm is formulating a number of time steps 
before failure occurs and using this formulation as the fitness function of the R-SSGA 
method. The advantage of the proposed method need not use the critical network as either a 
multi-step or single-step predictor. 
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Input Training Data

Forward Signal Propagation

(Fuzzy Controller)
Determine the Best Action

(Fuzzy Controller)
SSGA Learning Algorithm

R-SSGA method

 

Fig. 5. Flowchart of the R-SSGA method 

Figure 5 shows the flowchart of the R-SSGA method. The R-SSGA method runs in a 
feedforward fashion to control the environment (plant) until a failure occurs. Our relative 
measure of fitness function takes the form of an accumulator that determines how long the 
experiment is a “success”. In this way, according to a defined fitness function, a fitness value 
is assigned to each string in the population where high fitness values means good fit. Thus, 
we use a number of time steps before failure occurs to define the fitness function. The fitness 
function is defined by: 

  Fitness_Value (i) =TIME-STEP(i) (11) 

where TIME-STEP(i) represents how long the experiment is still a “success” about the ith 
population. Eq.(11) reflects the fact that long-time steps before failure occurs ( to keep the 
desired control goal longer) mean higher fitness of the R-SSGA method. 

4. Illustrative examples 

To verify the performance of the proposed R-SSGA method, two control examples—the cart-
pole balancing system and a water bath temperature control system—are presented in this 
section. For the two computer simulations, the initial parameters are given in Table 1 before 
training. 
In this example, we shall apply the R-SSGA method to the classic control problem of the 
cart-pole balancing. This problem is often used as an example of inherently unstable and 
dynamic systems to demonstrate both modern and classic control techniques [22]-[23] or 
reinforcement learning schemes [18]-[19], and is now used as a control benchmark. As 
shown in Fig. 6, the cart-pole balancing problem is the problem of learning how to balance 
an upright pole. The bottom of the pole is hinged to the left or right of a cart that travels 
along a finite-length track. Both the cart and the pole can move only in the vertical plane; 
that is, each has only one degree of freedom. 
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Table 1: The initial parameters before training

Parameters Value 

Population Size 4 

Crossover Rate 0.5 

Coding Type 

Real Number 

[ minσ , maxσ ] 

[0,1] 

[ minm , maxm ] 

[0,1] 

[ minw , maxw ] 

[-20,20] 

Example l. Cart-Pole Balancing System 

 

 

Fig. 6. The cart-pole balancing system. 

There are four state variables in the system:θ , the angle of the pole in an upright position 

(in degrees);θ& , the angular velocity of the pole (in degrees/seconds); x , the horizontal 

position of the cart's center (in meters); and x& , the velocity of the cart (in meters/seconds). 

The only control action is f, which is the amount of force (in Newtons) applied to the cart to 

move it left or right. The system fails when the pole falls past a certain angle (± 12o is used 
here) or when the cart runs into the boundary of the track (the distance is 2.4m from the 
center to each boundary of the track). The goal of this control problem is to determine a 
sequence of forces that, when applied to the cart, balance the pole so that it is upright. The 
motion equations that we used were: 
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where 

l = 0.5 m, the length of the pole; 

m = 1.1 kg, combined mass of the pole and the cart; 

mp = 0.1 kg, mass of the pole;  

 g = 9.8 m/s, acceleration due to the gravity; (16) 

cμ = 0.0005, coefficient of friction of the cart on the track, 

pμ = 0.000002, coefficient of friction of the pole on the cart, 

Δ  = 0.02(s), sampling interval. 

The constraints on the variables were
oo 1212 ≤≤− θ , -2.4m ≤≤ x 2.4m, and -

10N ≤≤ f 10N. A control strategy was deemed successful if it balanced a pole for 100,000 

time steps. 

The four input variables ),,,( xx &&θθ and the output ft are normalized between 0 and 1 over 
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the following ranges, θ ∈[-12,12], θ&∈ [-60,60], x ∈ [-2.4,2.4], x& ∈ [-3,3], ft ∈ [-10,10]. The 

fitness function in this example is defined in Eq.(11) to train the R-SSGA method where 
Eq.(11) is used to calculate how long it takes the cart-pole balancing system to fail and 

receives a penalty signal of -1 when the pole falls past a certain angle ( C°>12||θ ) and 

when the cart runs into the boundaries of the tracks falls( mx 4.2|| > ). In this experiment, 

the initial values were set to (0, 0, 0, 0). And we set four rules constitute a TSK-Type fuzzy 
controller.  
A total of five runs were performs. Each run started at same initial state. The simulation 
result in Fig.7 (a) shows that the R-SSGA method learned on average to balance the pole at 
the 16th generation. In this figure, each run indicates that the largest fitness value in the 
current generation was selected before the cart-pole balancing system failed. When the 
proposed R-SSGA learning method is stopped, we choose the best string in the population 
in the final generation and tested it on the cart-pole balancing system. The final fuzzy rules 
generated by the R-SSGA method are described as follows: 

 

Rule 1: IF x1 is A11(0.38,0.35) and x2 is A21(5.67,0.32) and x3 is A31(0.19,1.91) 

and x4 is A41(0.40,0.825)  

THEN y’=-2.94+0.42x1 -0.20 x2 -0.70 x3 +0.40x4 

 

Rule 2: IF x1 is A12(0.52,1.70) and x2 is A22(7.43,0.39) and x3 is A32(0.37,14.9) 

and x4 is A42(1.28,0.44)  

THEN y’=12.21+ 12.16x1 -0.25 x2 +0.32 x3 +4.66x4 

 

Rule 3: IF x1 is A13(0.52,6.66) and x2 is A23(12.1,0.39) and x3 is A33(0.37,9.64) 

and x4 is A43(1.28,0.44)  

THEN y’=11.93+ 9.63x1 -0.25 x2 +0.32 x3+ 9.64x4 

 

Rule 4: IF x1 is A14(0.52,17) and x2 is A24(9.29,0.39) and x3 is A34(0.37,3.98) 

and x4 is A44(1.28,0.44)  

THEN y’=11.93-3.98 x1 – 0.25x2 +0.32 x3+10.29 x4 
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(a) 

 

(b) 

 

(c) 

Fig. 7. The performance of (a) the R-SSGA method, (b) the SEFC method [19], and (c) the 
TGFC method [9] on the cart-pole balancing system. 

Figure 8(a) show the angular deviation of the pole when the cart-pole balancing system was 
controlled by the well-trained R-SSGA method starting at the initial 
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state: 0)0(,0)0(,0)0(,0)0( ==== θθ &&rr . The average angular deviation was 0.0060.  

 

(a) 

 

(b) 

 

(c) 

Fig. 8. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC 
method [19], and (c) the TGFC method [9]. 
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In the experiment, we compare the performance of our system with the symbiotic evolution 
fuzzy controller (SEFC) [19] and the traditional genetic fuzzy controller (TGFC) [9]. In the 
SEFC and TGFC, the population sizes were also set to 50, and the crossover and mutation 
probabilities were set to 0.5 and 0.3, respectively. Figures 7 (b) and (c) show that the SEFC 
method and the TGFC method learned on average to balance the pole at the 80th and 149th 
generation. In this example, we compare the CPU times of the R-SSGA method with the 
SEFC and the TGFC methods. Table 2 shows the CPU times of the three methods. As shown 
in Table 2, our method obtains shorter CPU times than the SEFC and the TGFC methods. 
Figures 8(b) and 8(c) show the angular deviation of the pole when the cart-pole balancing 
system was controlled by the [19] and [9] models. The average angular deviation of the [19] 
and [9] models were 0.060 and 0.10. We also try to control the cart-pole balancing system at a 

different initial state: 1)0(,3)0(,3.0)0(,6.0)0( ==== θθ &&rr . Figure 9 (a)-(c) shows 

the angular deviation of the pole when the cart-pole balancing system was controlled by the 
R-SSGA, the SEFC [19], and the TGFC [9] models at the initial 

state: 1)0(,3)0(,3.0)0(,6.0)0( ==== θθ &&rr . 

 

(a) 

 

(b) 
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(c) 

Fig. 9. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC 
method [19], and (c) the TGFC method [9] at the initial state: 

1)0(,3)0(,3.0)0(,6.0)0( ==== θθ &&rr . 

Table 3 shows the number of pole-balance trials (which reflects the number of training 
episodes required) measured. The GENITOR [24] and SANE (Symbiotic Adaptive Neuro-
Evolution) [21] were applied to the same control problem, and the simulation results are 
listed in Table 3. In GENITOR, the normal evolution algorithm was used to evolve the 
weights in a fully connected two-layer neural network, with additional connections from 
each input unit to the output layer. The network has five input units, five hidden units and 
one output unit. In SANE, the traditional symbiotic evolution algorithm was used to evolve 
a two-layer neural network with five input units, eight hidden units, and two output units. 
An individual in SANE represents a hidden unit with five specified connections to the input 
and output units. In Table 3 we can see that the proposed method is feasible and effective. 
And the proposed R-SSGA method only took 4 rules and the population size was 4. 

 

Method Mean (Sec) Best (Sec) Worst (Sec) 

R-SSGA 20 3 60 

SEFC [19] 36 4 236 

TGFC [9] 165 8 412 

 

Table 2. Performance comparison of the R-SSGA, the SEFC, and the TGFC methods. 
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Method Mean Best Worst 

GENITOR [24] 2578 415 12964 

SANE [21] 1691 46 4461 

TGFC [9] 80 26 200 

SEFC [19] 149 10 350 

R-SSGA 17 5 29 

 

Table 3. Performance comparison of various existing models in Example 1. 

In this example, to verify the performance of our proposed method, we use five different 
initial states for the R-SSGA, the SEFC, and the TGFC methods. The five different initial 
states are shown as follows: 

 

S1: 3)0(,8)0(,2.0)0(,8.0)0( ==== θθ &&rr  

S2: 0)0(,2)0(,1.0)0(,3.0)0( ==== θθ &&rr  

S3: 2)0(,4)0(,1.0)0(,5.0)0( ==== θθ &&rr  

S4: 3)0(,6)0(,4.0)0(,7.0)0( ==== θθ &&rr  

S5: 1)0(,2)0(,1.0)0(,2.0)0( ==== θθ &&rr  

 

Figure 10 (a)-(c) show that the R-SSGA, the SEFC, and the TGFC methods learned on 
average to balance the pole at the 78th, 105th, and 166th generation. Figure 11(a)-(c) show the 
angular deviation of the pole when the cart-pole balancing system was controlled by the R-
SSGA method, the SEFC method [19], and the TGFC method [9] that starting at the initial 

state: 0)0(,0)0(,0)0(,0)0( ==== θθ &&rr . The average angular deviations were 

0.010, 0.040, and 0.080. Table 4 shows the number of pole-balance trials measured of the R-
SSGA, the SEFC [19], and the TGFC [9] methods. In Table 4, we see that the proposed 
method obtains a better performance than some existing methods [9], [19]. 
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(a) 

 

(b) 

 

(c) 

Fig. 10. The performance of (a) the R-SSGA method, (b) the SEFC method [19], and (c) the 
TGFC method [9] on the cart-pole balancing system starting at five different initial states. 
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(a) 

 

(b) 

 

(c) 

Fig. 11. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC 
method [19], and (c) the TGFC method [9]. 
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Table 4: Performance comparison of existing models in Example 1. 

Method Mean Best Worst 

TGFC [9] 166 57 407 

SEFC [19] 105 47 189 

R-SSGA 78 24 165 

Example 2. Water Bath Temperature Control System  

The goal of this simulation was to control the temperature of a water bath system given by  

 
RC

tyY

C

tu

dt

tdy )()()( 0 −+=  (17) 

where y(t) is the system output temperature in C°  ; u(t) is the heat flowing into the system; 

0Y  is the room temperature; C is the equivalent system thermal capacity; and R is the 

equivalent thermal resistance between the system borders and the surroundings. 
Assuming that R and C are essentially constant, we rewrite the system in Eq.(17) into 
discrete-time form with some reasonable approximation. The system 
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is obtained, where ┙ and ┚ are constant values describing R and C. The system parameters 

used in this example were ┙=
40015.1 −e , ┚=

367973.8 −e , and 0Y =25.0( C° ), which were 

obtained from a real water bath plant in [3]. The input u(k) was limited to 0, and  the voltage 
was 5V. The sampling period was Ts=30. The system configuration is shown in Fig. 12, 
where yref was the desired temperature of the controlled plant. 
 

 

Fig. 12. Flow diagram of using the R-SSGA method for solving the temperature control 
problem. 
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In this example, yref and y(k) and the output u(k) were normalized between 0 and 1 over the 
following ranges: yref :[25,85], y(k):[25,85], and u(k):[0,5]. The values of floating-point 
numbers were initially assigned using the R-SSGA method initially. The fitness function was 
set for each reassigned regulation temperature T=35, 55, and 75, starting from the current 
temperature and again after 10 time steps. The control temperature error should be within 

± 1.5 C° ; otherwise failure occurs. In the R-SSGA method, we set five rules constitute a 

TSK-Type fuzzy controller using the proposed R-SSGA method. A total of five runs were 
performed. Each run started at same initial state. 
The simulation result in Fig. 13(a) shows that the R-SSGA method learned on average to 
success at the 25th generation. In this figure, each run indicates that the largest fitness value 
in the current generation was selected before the water bath temperature system failed. 
When the R-SSGA learning is stopped, we chose the best string in the population in the final 
generation and tested it with two different examples in the water bath temperature control 
system. The final fuzzy rules of a TSK-Type fuzzy controller by the R-SSGA method are 
described as follows: 

 

Rule 1: IF x1 is A11(1.23, 0.75) and x2 is A21(0.13, 0.81)  

THEN y’=7.09 +8.50 x1+1.51 x2 

 

Rule 2: IF x1 is A12(0.18, 0.352) and x2 is A22(1.09, 0.45)  

THEN y’=-19.41-14.051 x1 -16.81 x2 

 

Rule 3: IF x1 is A13(0.19, 0.36) and x2 is A23(1.10, 0.46) 

 THEN y’=-19.42 -14.05 x1 -16.80 x2 

 

Rule 4: IF x1 is A14(0.0001 1.27) and x2 is A24(1.09, 0.45) 

 THEN y’=5.40+ 8.47 x1 -16.81 x2  

 

Rule 5: IF x1 is A15(5.0, 0.66) and x2 is A25(0.14, 0.08)  

 THEN y’=-4.85-5.88 x1 +9.45 x2  

 

where ),( ijijij mA σ represents a Gaussian membership function with mean ijm and 

deviation ijσ  in ith input dimension and jth rule. In this example, as with example 1, we 

also compare the performance of our system with the SEFC method [19] and the TGFC 
method [9]. Figures 13 (b) and 10(c) show the performance of [19] and [9] methods. In this 
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figure we can see that the SEFC and TGFC methods learned on average to balance the pole 
at the 49th and 96th generation but in our model just take 25 generations. 

 

(a) 

 

(b) 

 

(c) 

Fig. 13. The performance of the water bath system for (a) the R-SSGA method, (b) the SEFC 
method [19] and, (c) the TGFC method [9]. 

For testing the controller system, we compare the three methods (the R-SSGA, SEFC, and 
TGFC methods). The three methods are applied to the water bath temperature control 
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system. The comparison performance measures included a set points regulation and a 
change of parameters. 
The first task was to control the simulated system to follow three set points  
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The regulation performance of the R-SSGA method is shown in Fig. 14(a). The error curves 
of the three methods are shown in Fig. 14(b). In this figure, the R-SSGA method obtains 
smaller errors than others. 

 

(a) 

 

(b) 

Fig. 14. (a) Final regulation performance of the R-SSGA method for water bath system. (b) 
The error curves of the R-SSGA method, the SEFC method and the TGFC method. 

In the second set of simulations, the tracking capability of the R-SSGA method with respect 
to ramp-reference signals is studied. We define  
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The tracking performance of the R-SSGA method is shown in Fig. 15(a). The corresponding 
errors of the three methods are shown in Fig. 15(b). The results show the good control and 
disturbance rejection capabilities of the trained R-SSGA method in the water bath system. 

 

(a) 

 

(b) 

Fig. 15. (a) The tracking of the R-SSGA method when a change occurs in the water bath 
system. (b) The error curves of the R-SSGA method, the SEFC method [19], and the TGFC 
method [9]. 

To test their regulation performance, a performance index, sum of absolute error (SAE), is 
defined by 
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∑ −=

k

ref kykySAE )()(

 (21) 

where )(kyref  and )(ky  are the reference output and the actual output of the simulated 
system, respectively. Table 5 shows the comparison the SAE among the R-SSGA method, the 
SEFC method, and the TGFC method. As show in Table 5, the proposed R-SSGA method 
has better performance than that of the others. And the proposed method only takes 5 rules 
and the populations’ size is minimized to 4.  

∑ −=
=

120

1

|)()(|
k

ref kykySAE  R-SSGA  SEFC [19] TGFC [9] 

Regulation Performance 360.04 370.12 400.12 

Tracking Performance 54.187 90.81 104.221 

Table 5: Performance comparison of various existing models in Example 2. 

5. Conclusions 

A novel reinforcement sequential-search-based genetic algorithm (R-SSGA) is proposed. The 
better chromosomes will be initially generated while the better mutation points will be 
determined for performing efficient mutation. We formulate a number of time steps before 
failure occurs as the fitness function. The proposed R-SSGA method makes the design of 
TSK-Type fuzzy controllers more practical for real-world applications, since it greatly 
lessens the quality and quantity requirements of the teaching signals. Two typical examples 
were presented to show the fundamental applications of the proposed R-SSGA method. 
Simulation results have shown that 1) the R-SSGA method converges quickly; 2) the R-SSGA 
method requires a small number of population sizes (only 4); 3) the R-SSGA method obtains 
a smaller average angular deviation than other methods. 
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