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Chapter

Contraction Mappings and
Applications
Nawab Hussain and Iram Iqbal

Abstract

The aim of the chapter is to find the existence results for the solution of non-
homogeneous Fredholm integral equations of the second kind and non-linear
matrix equations by using the fixed point theorems. Here, we derive fixed point
theorems for two different type of contractions. Firstly, we utilize the concept of
manageable functions to define multivalued α∗ � η∗ manageable contractions and
prove fixed point theorems for such contractions. After that, we use these fixed
point results to find the solution of non-homogeneous Fredholm integral equations
of the second kind. Secondly, we introduce weak F contractions named as α-
F -weak-contraction to prove fixed point results in the setting of metric spaces and
by using these results we find the solution for non-linear matrix equations.

Keywords: contraction mapping, fixed point, integral equations,
matrix equations, manageable function

1. Introduction

Let H nð Þ denote the set of all n� n Hermitian matrices, P nð Þ the set of all n� n
Hermitian positive definite matrices, S nð Þ the set of all n� n positive semidefinite
matrices. Instead of X ∈P nð Þ we will write X.0. Furthermore, X ≥0 means
X ∈ S nð Þ. Also we will use X ≥Y X ≤Yð Þ instead of X � Y ≥0 Y � X ≥0ð Þ. The sym-
bol k:k denotes the spectral norm, that is,

kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ A∗Að Þ

q
,

where λþ A∗Að Þ is the largest eigenvalue of A∗A. We denote by :k k1 the Ky Fan
norm defined by

Ak k1 ¼ ∑
n

i¼1
si Að Þ,

where si Að Þ, i ¼ 1,…, n, are the singular values of A. Also,

Ak k1 ¼ tr A∗Að Þ1=2
� �

,

which is tr Að Þ for (Hermitian) nonnegative matrices. Then the set H nð Þ
endowed with this norm is a complete metric space. Moreover, H nð Þ is a partially
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ordered set with partial order≼, where X ≼Y⇔Y ≼X. In this section, denote
d X;Yð Þ ¼ Y � Xk k1 ¼ tr Y � Xð Þ. Now, consider the non-linear matrix equation

X ¼ Q þ ∑
m

i¼1
A∗

i γ Xð ÞAi, (1)

where Q is a positive definite matrix, Ai, i ¼ 1,…, m, are arbitrary n� nmatrices
and γ is a mapping from H nð Þ to H nð Þ which maps P nð Þ into P nð Þ. Assume that γ is
an order-preserving mapping (γ is order preserving if A,B∈H nð Þ with A≼B
implies that γ Að Þ≼ γ Bð Þ). There are various kinds of problems in control theory,
dynamical programming, ladder networks, etc., where the matrix equations plays a
crucial role. Matrix Eq. (1) have been studied by many authors see [1–3].

At the same time, integral equations have been developed to solve boundary
value problems for both ordinary and partial differential equations and play a very
important role in nonlinear analysis. Many problems of mathematical physics, the-
ory of elasticity, viscodynamics fluid and mixed problems of mechanics of contin-
uous media reduce to the Fredholm integral Eq. A rich literature on existence of
solutions for nonlinear integral equations, which contain particular cases of impor-
tant integral and functional equations can be found, for example, see [4–14]. An
important technique to solve integral equations is to construct an iterative proce-
dure to generate approximate solutions and find their limit, a host of attractive
methods have been proposed for the approximate solutions of Fredholm integral
equations of the second kind, see [15–19]. We consider a non-homogeneous
Fredholm integral equation of second kind of the form

z rð Þ ¼

ðc

b
B r; s; z sð Þð Þdsþ g rð Þ, (2)

where t∈ b; c½ �, B : b; c½ � � b; c½ � � IRn ! IRn and g : IRn ! IRn.
An advancement in this direction is to find the solution of such mathematical

models by using fixed point theorems. In this technique, we generate a sequence by
iterative procedure for some self-map T and then look for a fixed point of T, that is
actually the solution of given mathematical model. The simplest case is when T is a
contraction mapping, that is a self-mapping satisfying

d Tx;Tyð Þ≤ kd x; yð Þ,

where k ∈ 0; 1½ Þ. The contraction mapping principle [20] guarantees that a con-
traction mapping of a complete metric space to itself has a unique fixed point which
may be obtained as the limit of an iteration scheme defined by repeated images
under the mapping of an arbitrary starting point in the space. The multivalued
version of contraction mapping principle can be found in [21]. In general, fixed
point theorems allow us to obtain existence theorems concerning investigated
functional-operator equations.

In this chapter, we prove the existence of solution for matrix Eq. (1) and integral
Eq. (2) by using newly developed fixed point theorems.

2. Background material from fixed point theory

Let X be a set of points, a distance function on X is a map d : X � X ! 0;∞½ Þ
that is symmetric, and satisfies d i; ið Þ ¼ 0 for all i ∈X . The distance is said to be a
metric if the triangle inequality holds, i.e.,
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d i; jð Þ≤ d i; kð Þ þ d k; jð Þ,

for all i, j, k∈X and X ; dð Þ is called metric space.

Denote by 2X , the family of all nonempty subsets of X , CL Xð Þ, the family of all
nonempty and closed subsets of X , CB Xð Þ, the family of all nonempty, closed, and
bounded subsets of X and K Xð Þ, the family of all nonempty compact subsets of X .

It is clear that, K Xð Þ⊆CB Xð Þ⊆CL Xð Þ⊆ 2X , let

H A;Bð Þ ¼ max sup
x∈A

D x;Bð Þ; sup
y∈B

D y;Að Þ

( )
,

where D x;Bð Þ ¼ inf d x; yð Þ : y∈Bf g. Then H is called generalized Pompeiu
Hausdorff distance on CL Xð Þ. It is well known thatH is a metric on CB Xð Þ, which is
called Pompeiu Hausdorff metric induced by d.

If T : X ! X is a single valued self-mapping on X , then T is said to have a fixed

point x if T x ¼ x and if T : X ! 2X is multivalued mapping, then T is said to
have a fixed point x if x∈ T x. We denote by Fix Tf g, the set of all fixed points of
mapping T.

Definition 2.1 [22] Let T : X ! 2X be a multivalued map on a metric space
X ; dð Þ, α, η : X � X ! IRþ be two functions where η is bounded, then T is an α∗-
admissible mapping with respect to η, if

α y; zð Þ≥ η y; zð Þ implies that α∗ T y; T zð Þ≥ η∗ T y; T zð Þ, y, z∈X ,

where

α∗ A;Bð Þ ¼ inf
y∈A, z∈B

α y; zð Þ, η∗ A;Bð Þ ¼ sup
y∈A, z∈B

η y; zð Þ:

Further, Definition 2.1 is generalized in the following way.

Definition 2.2 [23] Let T : X ! 2X be a multivalued map on a metric space
X ; dð Þ, α, η : X � X ! 0;∞½ Þ be two functions. We say that T is generalized α∗-
admissible mapping with respect to η, if

α y; zð Þ≥ η y; zð Þ implies that α u; vð Þ≥ η u; vð Þ, for all u∈Ty, v∈Tz:

If η y; zð Þ ¼ 1 for all y, z∈X , then T is said to be generalized α∗-admissible
mapping.

3. Some fixed point results

Consistent with Du and Khojasteh [24], we denote by dManðIRÞ, the set of all
manageable functions ϑ : IR� IR ! IR fulfilling the following conditions:

ϑ1ð Þ ϑ t; sð Þ, s� t for all s, t.0;
ϑ2ð Þ for any bounded sequence tnf g⊂ 0;þ∞ð Þ and any nondecreasing sequence

snf g⊂ 0;þ∞ð Þ, it holds that

lim
n!∞

sup
tn þ ϑ tn; snð Þ

sn
, 1: (3)

Example 3.1 [24] Let r∈ 0; 1½ Þ. Then ϑr : IR� IR ! IR defined by ϑr t; sð Þ ¼ rs� t is
a manageable function.
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Example 3.2 Let ϑ : IR� IR ! IR defined by

ϑ t; sð Þ ¼
ψ sð Þ � t if t; sð Þ∈ 0;þ∞½ Þ � 0;þ∞½ Þ,

f t; sð Þ otherwise,

�

where ψ : 0;þ∞½ Þ ! 0;þ∞½ Þ satisfying ∑∞
n¼1ψ

n tð Þ,þ∞ for all t.0 and

f : IR� IR ! IR is any function. Then ϑ t; sð Þ∈ dManðIRÞ. Indeed, by using Lemma 1 of
[25], we have for any s, t.0, ϑ t; sð Þ ¼ ψ sð Þ � t, s� t, so, ϑ1ð Þ holds. Let
tnf g⊂ 0;þ∞ð Þ be a bounded sequence and let snf g⊂ 0;þ∞ð Þ be a nonincreasing

sequence. Then limn!∞sn ¼ infn∈ INsn ¼ a for some a∈ 0;þ∞½ Þ, we get

lim
n!∞

sup
tn þ ϑ tn; snð Þ

sn
¼ lim

n!∞
sup

ψ snð Þ

snð Þ
, lim

n!∞

snð Þ

snð Þ
¼ 1,

so, ϑ2ð Þ is also satisfied.

Definition 3.3 Let X ; dð Þ be a metric space and T : X ! 2X be a closed valued

mapping. Let α, η : X � X ! IRþ be two functions and ϑ∈ dManðIRÞ. Then T is called
a multivalued α∗ � η∗-manageable contraction with respect to ϑ if for all y, z∈X

α∗ T y; T zð Þ≥ η∗ T y; T zð Þ implies ϑ H T y; T zð Þ; d y; zð Þð Þ≥0: (4)

Now we prove first result of this section.

Theorem 3.4 Let X ; dð Þ be a complete metric space and let T : X ! 2X be a closed
valued map satisfying following conditions:

1. T is α∗-admissible map with respect to η;

2.T is α∗ � η∗ manageable contraction with respect to ϑ;

3. there exists z0 ∈X and z1 ∈ T z0 such that α z0; z1ð Þ≥ η z0; z1ð Þ;

4. for a sequence znf g⊂X , limn!∞ znf g ¼ x and α zn; znþ1ð Þ≥ η zn; znþ1ð Þ for all
n∈ IN, implies α zn; xð Þ≥ η zn; xð Þ for all n∈ IN.

Then Fix Tf g 6¼ ∅.
Proof. Let z1 ∈ T z0 be such that α z0; z1ð Þ≥ η z0; z1ð Þ. Since T is α∗-admissible map

with respect to η, then α∗ T z0; T z1ð Þ≥ η∗ T z0; T z1ð Þ. Therefore, from (4) we have

ϑ H T z0; T z1ð Þ; d z0; z1ð Þð Þ≥0: (5)

If z1 ¼ z0, then z0 ∈ Fix Tf g, also if z1 ∈ T z1, then z1 ∈Fix Tf g. So, we adopt that
z0 6¼ z1 and z1 ∉ T z1. Thus 0, d z1; T z1ð Þ≤H T z0; T z1ð Þ. Define λ : IR� IR ! IR by

λ t; sð Þ ¼

tþ ϑ t; sð Þ

s
if t, s.0

0 otherwise:

8
<
: (6)

By ϑ1ð Þ, we know that

0, λ t; sð Þ, 1 for all t, s.0: (7)

Also note that if ϑ t; sð Þ≥0, then

4
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0, t≤ sλ t; sð Þ: (8)

So, from (5) and (7), we get

0, λ H T z0; T z1ð Þ; d z0; z1ð Þð Þ, 1: (9)

Let

ε1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ H T z0; T z1ð Þ; d z0; z1ð Þð Þ
p � 1

 !
d z1; T z1ð Þ: (10)

Since d z1; T z1ð Þ.0. So, by using (9), we get ε1.0 and

d z1; T z1ð Þ, d z1; T z1ð Þ þ ε1

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ H T z0; T z1ð Þ; dðz0; z1Þð Þ
p
 !

d z1; T z1ð Þ:
(11)

This implies that there exists z2 ∈ T z1 such that

d z1; z2ð Þ,
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ H T z0; T z1ð Þ; d z0; z1ð Þð Þ
p
 !

d z1; T z1ð Þ: (12)

By induction, we form a sequence znf g in X satisfying for each n∈ IN,
zn ∈ T zn�1, zn 6¼ zn�1, zn ∉ T zn, α∗ zn�1; znð Þ≥ η∗ zn�1; znð Þ,

0, d xn; T xnð Þ≤H T zn�1; T znð Þ, (13)

ϑ H T zn�1; T znð Þ; d zn�1; znð Þð Þ≥0, (14)

and

d zn; znþ1ð Þ ,
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ H T zn�1; T znð Þ; d zn�1; znð Þð Þ
p
 !

d zn; T znð Þ, (15)

by taking

εn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ H T zn�1; T znð Þ; d zn�1; znð Þð Þ
p � 1

 !
d zn; T znð Þ: (16)

By using (7), (8), (13), and (15), we get for each n∈ IN

d zn; T znð Þ≤ d zn�1; znð Þλ H T zn�1; T znð Þ; dðzn�1; znÞð Þ≤ d zn�1; znð Þ, (17)

this implies that d zn; T znð Þf gn∈ IN is a bounded sequence. By combining (15) and
(17), for each n∈ IN, we get

d zn; znþ1ð Þ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T zn�1; T znð Þ; dðzn�1; znÞð Þ

p� �
d zn�1; znð Þ: (18)

Which means that d zn�1; znð Þf gn∈ IN is a monotonically decreasing sequence of
non-negative reals and so it must be convergent. So, let limn!∞d zn; znþ1ð Þ ¼ c≥0.
From ϑ2ð Þ, we get
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lim
n!∞

supλ H T zn; T znð Þ; d zn�1; znð Þð Þ, 1: (19)

Now, if c.0, then by taking the limn!∞ sup in (18) and using (19), we have

c≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
n!∞

sup λ H T zn�1; T znð Þ; d zn�1; znð Þð Þ
q

c, c: (20)

This contradiction shows that c ¼ 0. Hence, limn!∞ d zn; znþ1ð Þ ¼ 0. Next, we
prove that znf gn∈ IN is a Cauchy sequence in X . Let, for each n∈ IN,

σn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ H T zn�1; T znð Þ; d zn�1; znð Þð Þ

p
, (21)

then from Eq. (9), we have σn ∈ 0; 1ð Þ. By (18), we obtain

d zn; znþ1ð Þ, σnd zn�1; znð Þ: (22)

(19) implies that limn!∞ σn, 1, so there exists γ ∈ 0; 1½ Þ and n0 ∈ IN, such that

σn ≤ γ for all n∈ IN, n≥ n0: (23)

For any n≥ n0, since σn ∈ 0; 1ð Þ for all n∈ IN and γ ∈ 0; 1½ Þ, (22, 23) implies that

d zn; znþ1ð Þ, σnd zn�1; znð Þ, σnσn�1d zn�2; zn�1ð Þ⋯≤ γn�n0þ1d z0; z1ð Þ: (24)

Put βn ¼
γn�n0þ1

1�γ

� �
d z0; z1ð Þ, n∈ IN. For m, n∈ IN with m. n≥ n0, we have from

(24) that

d zn; zmð Þ≤ ∑
m�1

j¼n
d zj; zjþ1

� �
, βn: (25)

Since γ ∈ 0; 1½ Þ, limn!∞βn ¼ 0. Hence limn!∞sup d zn; zmð Þ : m. nf g ¼ 0. This
shows that znf g is a Cauchy sequence in X . Completeness of X ensures the existence
of z∈X such that zn ! z as n ! ∞. Now, since α zn; zð Þ≥ η zn; zð Þ for all n∈ IN,
α∗ T zn; T zð Þ≥ η∗ T zn; T zð Þ, and so from (4), we have ϑ H T zn; T zð Þ; d zn; zð Þð Þ≥0.
Then from (7, 8), we have

H T zn; T zð Þ≤ λ H T zn; T zð Þ; dðzn; zÞð Þd zn; zð Þ, d zn; zð Þ: (26)

Since 0, d z; T zð Þ≤H T zn; T zð Þ þ d zn; zð Þ, so by using (26), we get

0, d z; T zð Þ, 2d zn; zð Þ: (27)

Letting limit n ! ∞ in above inequality, we get d z; T zð Þ ¼ 0. Hence z∈Fix Tf g.
□

Let Δ Fð Þ be the set of all functions F : IRþ ! IR satisfying following conditions:
F 1ð Þ F is strictly increasing;
F 2ð Þ for all sequence αnf g⊆Rþ, limn!∞ αn ¼ 0 if and only if

limn!∞F αnð Þ ¼ �∞;

F 3ð Þ there exist 0, k, 1 such that limn!0þαkF αð Þ ¼ 0,
Δ F∗ð Þ, if F also satisfies the following:
F4ð Þ F infAð Þ ¼ infF Að Þ for all A⊂ 0;∞ð Þ with inf  A.0,
Definition 3.5 [27] Let X ; dð Þ be a metric space. A mapping T : X ! X is said to

be F -contraction of there exists τ.0 such that
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d T x; T yð Þ.0 implies τ þ F d T x; T yð Þð Þ≤F d x; yð Þð Þ:

Theorem 3.6 [26] Let X ; dð Þ be a complete metric space and let T : X ! X be an
F-contraction. Then T has a unique fixed point x∗ ∈X and for every x0 ∈X a sequence
Tnx0n∈ IN is convergent to x∗.

Definition 3.7 ([27]). Let X ; dð Þ be a metric space and T : X ! CB Xð Þ be a
mapping. Then T is a multivalued F -contraction, if F ∈Δ Fð Þ and there exists τ.0
such that for all x, y∈X ,

H T x; T yð Þ.0 ) τ þ F H T x; T yð Þð Þ≤F d x; yð Þð Þ:

Theorem 3.8 ([27]). Let X ; dð Þ be a complete metric space and T : X ! K Xð Þ be a
multivalued F-contraction, then T has a fixed point in X .

Theorem 3.9 ([27]). Let X ; dð Þ be a complete metric space and T : X ! C Xð Þ be a
multivalued F-contraction. Suppose F ∈Δ F∗ð Þ, then T has a fixed point in X .

For more in this direction, see, [28–31]. Here, we give the concept of
multivalued α-F-weak-contractions and prove some fixed point results.

Definition 3.10 Let T : X ! 2X be a multivalued mapping on a metric space
X ; dð Þ, then T is said to be an multivalued α-F-weak-contraction on X , if there
exists σ.0, τ : 0;∞ð Þ ! σ;∞ð Þ, F ∈Δ Fð Þ and α : X � X ! 0;þ∞½ Þ such that for
all z∈X , y∈Fz

σ with D z; T zð Þ.0 satisfying

τ d z; yð Þð Þ þ F α z; yð ÞD y; T yð Þð Þ≤F M z; yð Þð Þ, (28)

where,

M z; yð Þ ¼ max d z; yð Þ;Dðz; T zÞ;Dðy; T yÞ;
D y; T zð Þ þD z; T yð Þ

2
;

�

D y; T yð Þ 1þD z; T zð Þ½ �

1þ d z; yð Þ
;
D y; T zð Þ 1þD z; T yð Þ½ �

1þ d z; yð Þ

�
: (29)

and

F
z
σ ¼ y∈ T z : F d z; yð Þð Þ≤F D z; T zð Þð Þ þ σf g:

Note that F z
σ 6¼ ∅ in both cases when F ∈Δ Fð Þ and F ∈Δ F∗ð Þ [32].

Definition 3.11 Let T : X ! P Xð Þ be a multivalued mapping on a metric space
X ; dð Þ, then T is said to be an multivalued α-F-contraction on X , if there exists
σ.0, τ : 0;∞ð Þ ! σ;∞ð Þ, F ∈Δ Fð Þ and α : X � X ! 0;þ∞½ Þ such that for all
z∈X , y∈Fz

σ with D z; T zð Þ.0 satisfying

τ d z; yð Þð Þ þ F α z; yð ÞD y; T yð Þð Þ≤F d x; yð Þð Þ, (30)

Theorem 3.12 Let X ; dð Þ be a complete metric space and T : X ! K Xð Þ be an
multivalued α-F-weak-contraction satisfying the following assertions:

1. T is multivalued α-orbital admissible mapping;

2. the map z ! D z; T zð Þ is lower semi-continuous;

3. there exists z0 ∈X and z1 ∈ T z0 such that α z0; z1ð Þ≥ 1;

4. τ satisfies limt!sþ infτ tð Þ. σ for all s≥0.
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Then T has a fixed point in X .
Proof. Let z0 ∈X , since T z∈K Xð Þ for every z∈X , the set Fz

σ is non-empty for
any σ.0, then there exists z1 ∈ Fz0

σ and by hypothesis α z0; z1ð Þ≥ 1. Assume that
z1 ∉ T z1, otherwise z1 is the fixed point of T . Then, since T z1 is closed,
D z1; T z1ð Þ.0, so, from (28), we have

τ d z0; z1ð Þð Þ þ F α z0; z1ð ÞD z1; T z1ð Þð Þ≤F M z0; z1ð Þð Þ, (31)

where

M z0; z1ð Þ ¼ max d z0; z1ð Þ;Dðz0; T z0Þ;Dðz1; T z1Þ;
D z1; T z0ð Þ þD z0; T z1ð Þ

2
;

�

D z1; T z1ð Þ 1þD z0; T z0ð Þ½ �

1þ d z0; z1ð Þ
;
D z1; T z0ð Þ 1þD z0; T z1ð Þ½ �

1þ d z0; z1ð Þ

�
: (32)

Since T z0 and T z1 are compact, so we have

M z0; z1ð Þ ¼ max d z0; z1ð Þ; dðz0; z1Þ; dðz1; z2Þ;
d z1; z1ð Þ þ d z0; z2ð Þ

2
;

�

d z1; z2ð Þ 1þ d z0; z1ð Þ½ �

1þ d z0; z1ð Þ
;
d z1; z1ð Þ 1þ d z0; z2ð Þ½ �

1þ d z0; z1ð Þ

�

¼ max d z0; z1ð Þ; dðz1; z2Þ;
d z0; z2ð Þ

2

� �
: (33)

Since d z0;z2ð Þ
2 ≤ d z0;z1ð Þþd z1;z2ð Þ

2 ≤max d z0; z1ð Þ; d z1; z2ð Þf g, it follows that

M z0; z1ð Þ≤max d z0; z1ð Þ; d z1; z2ð Þf g: (34)

Suppose that d z0; z1ð Þ, d z1; z2ð Þ, then (31) implies that

τ d z0; z1ð Þð Þ þ F D z1; T z1ð Þð Þ≤ τ d z0; z1ð Þð Þ þ F α z0; z1ð ÞD z1; T z1ð Þð Þ

≤F d z1; z2ð Þð Þ,
(35)

consequently,

τ d z0; z1ð Þð Þ þ F d z1; z2ð Þð Þ≤F d z1; z2ð Þð Þ, (36)

or, F d z1; z2ð Þð Þ≤F d z1; z2ð Þð Þ � τ d z0; z1ð Þð Þ, which is a contradiction. Hence
M d z0; z1ð Þð Þ≤ d z0; z1ð Þ, therefore by using F1ð Þ, (31) implies that

τ d z0; z1ð Þð Þ þ F α z0; z1ð Þd z1; z2ð Þð Þ≤F d z0; z1ð Þð Þ: (37)

On continuing recursively, we get a sequence znf gn∈ IN in X , where znþ1 ∈Fzn
σ ,

znþ1 ∉ T znþ1, α zn; znþ1ð Þ≥ 1, M zn; znþ1ð Þ≤ d zn; znþ1ð Þ and

τ d zn; znþ1ð Þð Þ þ F D znþ1; T znþ1ð Þð Þ≤F d zn; znþ1ð Þð Þ: (38)

Since znþ1 ∈Fzn
σ and T zn and T znþ1 are compact, we have

τ d zn; znþ1ð Þð Þ þ F d znþ1; znþ2ð Þð Þ≤F d zn; znþ1ð Þð Þ (39)

and

8
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F d zn; znþ1ð Þð Þ≤F d zn; znþ1ð Þð Þ þ σ: (40)

Combining (39) and (40) gives

F d znþ1; znþ2ð Þð Þ≤F d zn; znþ1ð Þð Þ þ σ � τ d zn; znþ1ð Þð Þ (41)

Let dn ¼ d zn; znþ1ð Þ for n∈ IN, then dn.0 and from (41) dnf g is decreasing.
Therefore, there exists δ≥0 such that limn!∞dn ¼ δ. Now let δ.0. From (41), we get

F dnþ1ð Þ≤F dnð Þ þ σ � τ dnð Þ≤F dn�1ð Þ þ 2σ � τ dnð Þ � τ dn�1ð Þ⋯

≤F d0ð Þ þ nσ � τ dnð Þ � τ dn�1ð Þ �⋯� τ d0ð Þ:
(42)

Let τ dpn
� �

¼ min τ d0ð Þ; τ d1ð Þ;⋯; τ dnð Þf g for all n∈ IN. From (42), we get

F dnþ1ð Þ≤F d0ð Þ þ n σ � τ dpn
� �� �

: (43)

From (38), we also get

F D znþ1; T znþ1ð Þð Þ≤F D z0; T z0ð Þð Þ þ n σ � τ dpn
� �� �

: (44)

Now consider the sequence τ dpn
� �	 


. We distinguish two cases.

Case 1. For each n∈ IN, there ism. n such that τ dpn
� �

. τ dpm
� �

. Then we obtain a

subsequence dpnk

n o
of dpn
	 


with τ dpnk

� �
. τ dpnkþ1

� �
for all k. Since dpnk

! δþ, we

deduce that limk!∞infτ dpnk

� �
. σ. Hence F dnk

� �
≤F d0ð Þ þ n σ � τ dpnk

� �� �
for all

k. Consequently, limk!∞F dnk
� �

¼ �∞ and by F 2ð Þ, we obtain limk!∞dpnk
Þ ¼ 0,

which contradicts that limn!∞dn.0.

Case 2. There is n0 ∈ IN such that τ dpn0

� �
. τ dpm
� �

for all m. n0. Then

F dmð Þ≤F d0ð Þ þm σ � τ dpn0

� �� �
for all m. n0. Hence limm!∞F dmð Þ ¼ �∞, so

limm!∞dm ¼ 0, which contradicts that limm!∞dm.0. Thus,

lim
n!∞

dn ¼ 0:

From F 3ð Þ, there exists 0, r, 1 such that limn!∞ dnð ÞrF dnð Þ ¼ 0. By (43), we
get for all n∈ IN

dnð ÞrF dnð Þ � dnð ÞrF d0ð Þ≤ dnð Þrn σ � τ d� pn
� �� �

≤0: (45)

Letting n ! ∞ in (45), we obtain limn!∞n dnð Þr ¼ 0. This implies that there exists
n1 ∈ IN such that n dnð Þr ≤ 1, or, dn ≤ 1

n1=r
, for all n. n1. Next, form. n≥ n1 we have

d zn; zmð Þ≤ ∑
m�1

i¼n
d zi; ziþ1ð Þ≤ ∑

m�1

i¼n

1

i1=k
,

since 0, k, 1,∑m�1
i¼n

1
i1=k

converges. Therefore, d zn; zmð Þ ! 0 asm, n ! ∞. Thus,

znf g is a Cauchy sequence. Since X is complete, there exists z∗ ∈X such that zn ! z∗

as n ! ∞. From Eqs. (44) and F2ð Þ, we have limn!∞D zn; T znð Þ ¼ 0. Since
z ! D z; T zð Þ is lower semi-continuous, then

0≤D z;Tzð Þ≤ lim
n!∞

inf  D zn; T znð Þ ¼ 0:
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Thus, T has a fixed point. □

In the following theorem we take C Xð Þ instead of K Xð Þ, then we need to take
F ∈Δ F∗ð Þ in Definition 3.10.

Theorem 3.13 Let X ; dð Þ be a complete metric space and T : X ! C Xð Þ be an
multivalued α-F-weak-contraction with F ∈Δ F∗ð Þ satisfying all the assertions of Theo-
rem 3.12. Then T has a fixed point in X .

Proof. Let z0 ∈X , since T z∈C Xð Þ for every z∈X and F ∈Δ F∗ð Þ, the set Fz
σ is

non-empty for any σ.0, then there exists z1 ∈Fz0
σ and by hypothesis α z0; z1ð Þ≥ 1.

Assume that z1 ∉ T z1, otherwise z1 is the fixed point of T . Then, since T z1 is closed,
D z1; T z1ð Þ.0, so, from (28), we have

τ d z0; z1ð Þð Þ þ α z0; z1ð ÞF D z1; T z1ð Þð Þ≤F M z0; z1ð Þð Þ, (46)

where

M z0; z1ð Þ ¼ max d z0; z1ð Þ;Dðz0; T z0Þ;Dðz1; T z1Þ;
D z1; T z0ð Þ þD z0; T z1ð Þ

2
;

�

D z1; T z1ð Þ 1þD z0; T z0ð Þ½ �

1þ d z0; z1ð Þ
;
D z1; T z0ð Þ 1þD z0; T z1ð Þ½ �

1þ d z0; z1ð Þ

�
: (47)

The rest of the proof can be completed as in the proof of Theorem 3.12 by
considering the closedness of T z, for all z∈X . □

Theorem 3.14 Let X ; dð Þ be a complete metric space, T : X ! K Xð Þ be a continu-
ous mapping and F ∈Δ Fð Þ. Assume that the following assertions hold:

1. T is generalized α∗-admissible mapping;

2. there exists z0 ∈X and z1 ∈ T z0 such that α z0; z1ð Þ≥ 1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z∈X with H T z; T yð Þ.0, there exist a function
α : X � X ! �∞f g∪ 0;þ∞ð Þ satisfying

τ d z; yð Þð Þ þ α z; yð ÞF H T z; T yð Þð Þ≤F M z; yð Þð Þ, (48)

where M z; yð Þ is defined in (29).
Then T has a fixed point in X .
Proof. By following the steps in the proof of Theorem 3.12, we get the required

result. □

Note that Theorem 3.14 cannot be obtained from Theorem 3.12, because in
Theorem 3.12, σ cannot be equal to zero.

Theorem 3.15 Let X ; dð Þ be a complete metric space, T : X ! C Xð Þ be a continuous
mapping and F ∈Δ F∗ð Þ satisfying all assertions of Theorem 3.14. Then T has a fixed
point in X .

From Theorems 3.14 and 3.15, we get the following fixed point result for single
valued mappings:

Theorem 3.16 Let X ; dð Þ be a complete metric space, T : X ! X be a continuous
mapping and F ∈Δ Fð Þ. Assume that the following assertions hold:

1. T is α-admissible mapping;
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2. there exists z0, z1 ∈X such that α z0; z1ð Þ≥ 1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z∈X with d T z; T yð Þ.0, there exist a function
α : X � X ! �∞f g∪ 0;þ∞ð Þ satisfying

τ d z; yð Þð Þ þ α z; yð ÞF d T z; T yð Þð Þ≤F m z; yð Þð Þ, (49)

where

m z; yð Þ ¼ max d z; yð Þ; dðz; T zÞ; dðy; T yÞ;
d y; T zð Þ þ d z; T yð Þ

2
;

�

d y; T yð Þ 1þ d z; T zð Þ½ �

1þ d z; yð Þ
;
d y; T zð Þ 1þ d z; T yð Þ½ �

1þ d z; yð Þ

�
: (50)

Then T has a fixed point in X .

Now, let X ; d; ≼ð Þ be a partially ordered metric space. Recall that T : X ! 2X is
monotone increasing if T y≼ T z for all y, z∈X , for which y≼ z (see [33]). There are
many applications in differential and integral equations of monotone mappings in
ordered metric spaces (see [34–36] and references therein).

Theorem 3.17 Let X ; d; ≼ð Þ be a complete partially ordered metric space and let

T : X ! 2X be a closed valued mapping satisfying the following assertions for all y, z∈X

with y≼ z:

1. T is monotone increasing;

2.ϑ H T y; T zð Þ; d y; zð Þð Þ≥0;

3. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

4.for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

Then Fix Tf g 6¼ ∅.
Proof. Define α, η : X � X ! 0;∞½ Þ by

α y; zð Þ ¼
1 y≼ z

0 otherwise
η y; zð Þ ¼

1

2
y≼ z

0 otherwise,

8
<
:

8
<
:

then for y, z∈X with y≼ z, α y; zð Þ≥ η y; zð Þ implies

α∗ T y; T zð Þ ¼ 1. 1
2 ¼ η∗ T y; T zð Þ and α∗ T y; T zð Þ ¼ η∗ T y; T zð Þ ¼ 0 otherwise. Thus,

all the conditions of Theorem 3.4 are satisfied and hence T has a fixed point. □

In case of single valued mapping Theorem 3.17 reduced to the following:
Theorem 3.18 Let X ; d; ≼ð Þ be a complete partially ordered metric space and let

T : X ! X be a self-map fulfilling the following assertions:

1. T is monotone increasing;
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2.ϑ d T y; T zð Þ; d y; zð Þð Þ≥0;

3. there exists z0 ∈X and z1 ¼ T z0 such that z0 ≼ z1;

4. for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

for all y, z∈X with y≼ z and ϑ∈ dManðIRÞ. Then Fix Tf g 6¼ ∅.

Definition 3.19 Let T : X ! 2X be a multivalued mapping on a partially ordered
metric space X ; d; ≼ð Þ, then T is said to be an ordered F -τ-contraction on X , if
there exists σ.0 and τ : 0;∞ð Þ ! σ;∞ð Þ, F ∈Δ Fð Þ such that for all z∈X , y∈F

z
σ

with z≼ y and D z; T zð Þ.0 satisfying

τ d z; yð Þð Þ þ F D y; T yð Þð Þ≤F M z; yð Þð Þ, (51)

where,

M z; yð Þ ¼ max d z; yð Þ;Dðz; T zÞ;Dðy; T yÞ;
D y; T zð Þ þD z; T yð Þ

2
;

�

D y; T yð Þ 1þD z; T zð Þ½ �

1þ d z; yð Þ
;
D y; T zð Þ 1þD z; T yð Þ½ �

1þ d z; yð Þ

�
: (52)

Theorem 3.20 Let X ; d; ≼ð Þ be a complete partially ordered metric space and
T : X ! K Xð Þ be an ordered F-τ-contraction satisfying the following assertions:

1. T is monotone increasing;

2. the map z ! D z; T zð Þ is lower semi-continuous;

3. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

4. τ satisfies

lim
t!sþ

inf  τ tð Þ. σ for all s≥0

Then T has a fixed point in X .
Proof. By using the similar arguments as in the proof of Theorem 3.17 and using

Theorem 3.12, we get the result. □

Theorem 3.21 Let X ; d; ≼ð Þ be a complete partially ordered metric space and
T : X ! C Xð Þ be an ordered F-τ-contraction with F ∈Δ F∗ð Þ satisfying all the asser-
tions of Theorem 3.20. Then T has a fixed point in X .

Theorem 3.22 Let X ; d; ≼ð Þ be a complete partially ordered metric space,
T : X ! K Xð Þ be a continuous mapping and F ∈Δ Fð Þ. Assume that the following
assertions hold:

1. T is monotone increasing;

2. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0
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and for all z, y∈X with z≼ y and H T z; T yð Þ.0 satisfying

τ d z; yð Þð Þ þ F H T z; T yð Þð Þ≤F M z; yð Þð Þ, (53)

where M z; yð Þ is defined in (52).
Then T has a fixed point in X .
Proof. By defining α : X � X ! 0;∞½ Þ as in the proof of Theorem 3.17 and by

using Theorem (3.14), we get the required result. □

Theorem 3.23 Let X ; d; ≼ð Þ be a complete partially ordered metric space,
T : X ! C Xð Þ be a continuous mapping and F ∈Δ F∗ð Þ satisfying all assertions of
Theorem 3.22. Then T has a fixed point in X .

From Theorems 3.22 and 3.23, we get the following fixed point result for single
valued mapping.

Theorem 3.24 Let X ; d; ≼ð Þ be a complete partially ordered metric space,
T : X ! X be a continuous mapping and F ∈Δ Fð Þ. Assume that the following asser-
tions hold:

1. T is monotone increasing;

2. there exists z0, z1 ∈X such that z0 ≼ z1;

3. there exists τ : 0;∞ð Þ ! 0;∞ð Þ such that

lim
t!sþ

inf  τ tð Þ.0 for all s≥0

and for all z, y∈X with z≼ y and d T z; T yð Þ.0 satisfying

τ d z; yð Þð Þ þ F d T z; T yð Þð Þ≤F m z; yð Þð Þ, (54)

where

m z; yð Þ ¼ max d z; yð Þ; dðz; T zÞ; dðy; T yÞ;
d y; T zð Þ þ d z; T yð Þ

2
;

�

d y; T yð Þ 1þ d z; T zð Þ½ �

1þ d z; yð Þ
;
d y; T zð Þ 1þ d z; T yð Þ½ �

1þ d z; yð Þ

�
: (55)

Then T has a fixed point in X .

4. Existence of solution

In this section, by using the fixed point results proved in the previous section,
we obtain the existence of the solution of integral Eq. (2) and matrix Eq. (1).

4.1 Solution of Fredholm integral equation of second kind

Let ≪ be a partial order relation on IRn. Define T : X ! X by

T z rð Þ ¼

ðc

b
B r; s; z sð Þð Þdsþ g rð Þ, r∈ a; b½ �: (56)

Theorem 4.1 Let X ¼ C b; c½ �; IRnð Þ with the usual spermium norm. Suppose that
1. B : b; c½ � � b; c½ � � IRn ! IRn and g : IRn ! IRn are continuous;
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2. there exists a continuous function p : b; c½ � � b; c½ � ! b; c½ � such that

B r; s; uð Þ � B r; s; vð Þj j≤ p r; sð Þ∣u� v∣, (57)

for each r, s∈ b; c½ � and u, v∈ IRn with u≪ v.

3. supr∈ b;c½ �

Ð c
b p r; sð Þds ¼ q≤ 1

4;

4. there exists z0 ∈X and z1 ∈ T z0 such that z0 ≼ z1;
5. for a sequence znf g⊂X , limn!∞ znf g ¼ z and zn ≼ znþ1 for all n∈ IN, we have
zn ≼ z for all n∈ IN.

Then the integral Eq. (2) has a solution in X .
Proof. Let X ¼ C b; c½ �; IRnð Þ and kzk ¼ maxr∈ b;c½ �∣z rð Þ∣, for z∈C a; b½ �ð Þ. Consider a

partial order defined on X by

y, z∈C b; c½ �; IRnð Þ, y≼ z if and only if y rð Þ≪ z rð Þ, for r∈ b; c½ �: (58)

Then X ; k:k; ≼ð Þ is a complete partial ordered metric space and for any increas-
ing sequence znf g in X converging to z∈X , we have zn rð Þ≪ z rð Þ for any r∈ b; c½ �

(see [36]). By using Eq. (56), conditions (2, 3) and taking ϑ r; sð Þ ¼ 1
2 s� r for all

y, z∈X with y≼ z, we obtain

∣T y rð Þ � T z rð Þ∣ ¼
Ð c
b Bðr; s; y sð ÞÞds�

Ð c
b Bðr; s; z sð ÞÞds

�� ��
≤
Ð c
b ∣B r; s; y sð Þð Þ � B r; s; z sð Þð Þ∣ds

≤
Ð c
b p r; sð Þ∣y sð Þ � z sð Þ∣ds

≤
1

4
ky� zk:

This implies that

1

2
ky� zk � kT y� T zk ≥

1

2
ky� zk �

1

4
ky� zk ¼

1

4
ky� zk:

So ϑ d T y; T zð Þ; d y; zð Þð Þ≥0 for all y, z∈X with y≼ z. Hence all the conditions of
Theorem 3.18 are satisfied. Therefore T has a fixed point, consequently, integral
Eq. (2) has a solution in X . □

4.2 Solution of non-linear matrix equation

Theorem 4.2 Let γ : H nð Þ ! H nð Þ be an order-preserving mapping which maps
P nð Þ into P nð Þ and Q ∈P nð Þ. Assume that there exists a positive number N for which
∑m

i¼1AiA
∗
i ≺NIn and ∑m

i¼1A
∗
i γ Qð ÞAi≻0 such that for all X ≼Y we have

d γ Xð Þ; γ Yð Þð Þ≤
1

N
m Y;Xð Þe

�
2þd X;Yð Þ
2d X;Yð Þ

� �
, (59)

where

m X;Yð Þ ¼ max d X;Yð Þ; dðX; T XÞ; dðY; T YÞ;
d Y; T Yð Þ þ d X; T Xð Þ

2
;

�

d Y; T Yð Þ 1þ d X; T Xð Þ½ �

1þ d X;Yð Þ
;
d Y; T Xð Þ 1þ d X; T Yð Þ½ �

1þ d X;Yð Þ

�
:

Then (1) has a solution in P nð Þ.
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Proof. Define T : H nð Þ ! H nð Þ and F : IRþ ! IR by

T Xð Þ ¼ Q þ ∑
m

i¼1
A∗

i γ Xð ÞAi (60)

and F rð Þ ¼ ln r respectively. Then a fixed point of T is a solution of (1). Let
X, Y ∈H nð Þ with X ≼Y, then γ Xð Þ≼ γ yð Þ. So, for d X;Yð Þ.0 and τ tð Þ ¼ 1

t þ
1
2, we

have

d TX;TYð Þ ¼ T Y � T Xk k1
¼ tr T Y � T Xð Þ

¼ ∑
m

i¼1
tr AiA

∗
i γ Yð Þ � γ Xð Þð Þ

� �

¼ tr ∑
m

i¼1
AiA

∗
i

� 

γ Yð Þ � γ Xð Þð Þ

� 


≤ ∑
m

i¼1
AiA

∗
i

����
����

����
���� γ Yð Þ � γ Xð Þk k1

≤

∑
m

i¼1
AiA

∗
i

����
����

����
����

N
m Y;Xð Þe

�
2þ Y�Xk k1
2 Y�Xk k1

� �

,m Y;Xð Þe
�

2þ Y�Xk k1
2 Y�Xk k1

� �
,

and so,

ln T Y � T Xk k1
� �

, ln m Y;Xð Þe
�

2þ Y�Xk k1
2 Y�Xk k1

� � !
¼ ln m X;Yð Þð Þ �

2þ Y � Xk k1
2 Y � Xk k1

:

This implies that

1

Y � Xk k1
þ

1

2
þ ln T Y � T Xk k1

� �
, ln m X;Yð Þð Þ:

Consequently,

τ d X;Yð Þð Þ þ F d TX;TYð Þð Þ,F m X;Yð Þð Þ:

Also, from ∑m
i¼1A

∗
i γ Qð ÞAi≻0, we have Q ≼ T Qð Þ. Thus, by using Theorem 3.24,

we conclude that T has a fixed point and hence (1) has a solution in P nð Þ. □
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