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Abstract

Mapping subsurface clay minerals is an important issue because they have 
particular behaviors in terms of mechanics and hydrology that directly affects 
assets laid at the surface such as buildings, houses, etc. They have a direct impact 
in ground stability due to their swelling capacities, constraining infiltration 
processes during flooding, especially when moisture is important. So detecting 
and characterizing clay mineral in soils serve urban planning issues and improve 
the risk reduction by predicting impacts of subsidence on houses and infrastruc-
tures. High-resolution clay maps are thus needed with accurate indications on 
mineral species and abundances. Clay minerals, known as phyllosilicates, are 
divided in three main species: smectite, illite, and kaolinite. The smectite group 
highly contributes to the swelling behavior of soils, and because geotechnical 
soil analyses are expensive and time-consuming, it is urgent to develop new 
approaches for mapping clays’ spatial distribution by using new technologies, 
e.g., ground spectrometer or remote hyperspectral cameras [0.4–2.5 μm]. These 
technics constitute efficient alternatives to conventional methods. We present in 
this chapter some recent results we got for characterizing clay species and their 
abundances from spectrometry, used either from a ground spectrometer or from 
hyperspectral cameras.

Keywords: clays, hyperspectral, spectroscopy, processing, unmixing

1. Introduction

Soils represent a complex environment, spatially and temporally dynamic 
in their structure as in their composition [1]. They provide essential services to 
humanity such as water storage and filtration, agriculture support, storage carbon 
to regulate the climate, and physical support of buildings. So, soil knowledge, in 
particular their clay mineral composition and their mapping, is necessary for the 
decision-making on the management of many human activities. The study of clay 
minerals is most of the time motivated by the assessment of the risk associated to 
shrinkage-swelling phenomenon that affects building; sometimes, they are also 
taken into consideration in flooding/infiltrating effects and in the evaluation of the 
vehicles’ mobility. It is important to specify that the term “clay” may correspond 
to two distinct definitions in geology. From a physical point of view, clay minerals 
correspond to a texture class, e.g., a classification defined by the size of minerals in 
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soils. In that classification, gravels are defined as elements larger than 2 mm, sands 
have a grain size of between 2 mm and 50 μm, silts have grain size between 50 and 
2 μm, and clays have grain size lower than 2 μm.

From a mineralogical point of view, montmorillonite (i.e., the smectite group), 
illite, kaolinite, and interstratified minerals are the most common clay species that 
are commonly involved in swelling and shrinking processes. In the following, clays 
refer to this last mineralogical definition.

The shrinkage-swelling effect of soils is a phenomenon causing numerous 
damages on houses when built on soils containing smectite minerals. Indeed, 
these so-called swelling clays are sensitive to soil moisture content, since they 
shrink during periods of drought and swell after rain. The presence of water 
variations causes changes in volumes producing cracks in the soil structures and 
therefore vertical differential movements at the surface. In France, these dam-
ages reach 38% of natural disaster compensation costs after the floods. For the 
period 1990–2014, this overall cost represents a little more than 9 billion euros or 
370 million euros per year [2]. In Great Britain, the association of insurers British 
estimated the cost of shrinkage-swelling to more than 400 million pounds each 
year [3]. In the USA, the economic cost of these claims is $15 billion annually [4]. 
As far as we know, population increase as well as projections of climate change 
should increase this risk at temperate latitudes, which in the future will affect 
areas previously untouched by drought. Identification of soils impacted by this 
phenomenon is currently based on specific mineral identifications, e.g., using 
X-ray diffraction (XRD) techniques, carried out on soil samples and difficult to 
implement at large scale. At the same time, some hazard maps (1:50000) were 
produced from geological data to identify clayed formations [5]. Unfortunately, 
these maps cannot consider local spatial heterogeneities, from one to hundreds 
of meters. In addition, mapping clay texture is not sufficient to evaluate the 
swelling capacity of clayed soils. To solve this issue, in situ and/or proximal sen-
sors can be used.

Several authors have successfully quantified mineral clays in soils [6–8] 
by field spectroscopy and laboratory spectral measurements. In these stud-
ies, measurements were generally carried out on dry soils for avoiding spectral 
perturbations due to moisture, and under ideal conditions of illumination, away 
from real cases contexts found in the field. Airborne hyperspectral imagery has 
also been successfully used to detect clays [9–11], despite low spatial resolution 
offered by sensors and low signal-to-noise ratio in the spectral range affected by 
clays (1000–2500 nm). Recent advances in UAV-type platforms for hyperspectral 
imaging are expected to remove some of these limitations by a better spatial 
resolution of acquired images, moving from meters for airborne to centimeters 
for UAV [12, 13]. These advances must offer more pixels of pure soils and thus 
improve the quantification of clay minerals. Indeed, quantifying clay species from 
spectral data needs taking into account mixing spectral signatures of minerals, 
simply because they are mixed in the soil. Some studies hypothesize a linear mix-
ture of soil mineral spectra (or “patchwork”). That means each component will 
have its spectral signature mixed in proportion to its abundance in the soil [6–8], 
which is an approximation because the diffusion of light induces nonlinearities 
on the spectral behavior of the reflectance present in an intimate mixture [14]. 
The impact of this phenomenon needs to be clearly assessed in order to correctly 
quantify clay species.

In the following, we propose a review on these different issues and describe the 
different approaches able to quantify clay species from hyperspectral data. This 
overview is based on different pieces of works realized in lab but also on the field, 
with different instrumental devices and several processing techniques.
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2. Spectrometry experiments and data processing

The principle of spectrometry is based on the measurement of the interaction 
between an electromagnetic radiation and a given material at different frequencies. 
Applied to mineral characterization, this technique gives crystallo-chemical infor-
mation on the material from its interaction with the incident radiation. Depending 
on the selected frequency of the radiation (ultraviolet, visible, infrared, etc.), the 
interaction produces various types of energy. This response is represented as a 
spectrum that is an intrinsic characteristic of the material [15]. The infrared radia-
tion (IR) is an electromagnetic radiation, corresponding to the spectrum between 
12,800 and 10 cm−1 (0.78–1000 μm). Figure 1 shows the infrared electromagnetic 
spectrum that can be decomposed in three parts: the near, the middle, and the far 
IR. For mineral characterization, the domains of interest are the near-infrared 
(NIR) and the shortwave infrared (SWIR), which extend, respectively, from 0.75 to 
1 μm and from 1 to 2.5 μm.

When an IR radiation interacts with a molecule, it can absorb partially and 
selectively this radiation, leading to modifications of the vibrational and rotational 
energy of the molecule. These energy losses lead to the presence of absorption 
bands at specific wavelengths corresponding to the frequencies at which the 
molecule is excited. The absorbed energy is therefore characteristic of each of the 
chemical bonds of the molecule. In the case of clay minerals, absorption bands are 
mostly visible in the SWIR domain. The complexity of working with absorption 
bands comes from the presence of water that also produces numerous absorption 
phenomena masking large parts of the spectrum (Figure 2). To predict soil proper-
ties related to the presence of clay minerals, intensive research has been carried out 
in reflectance spectroscopy in the visible near-infrared (VNIR; 300–1100 nm) and 
SWIR wavelength domains [16].

Interpreting correctly the spectrums resulting from interactions between SWIR 
irradiations and clayed soils is thus no straightforward, due to the noise coming 
from atmosphere, the presence of water molecules and the complexity of soils 
mineralogical composition.

Various approaches can be used to predict the clay mineralogical compositions 
of soils from measured spectra when the sample number is sufficiently high, e.g., 

Figure 1. 
Infrared domains expressed in terms of wavelengths.
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multivariable regression analysis (MRA) or partial least square regression (PLSR). 
For example, [17] have successfully estimated the smectite content of soils in the 
Colorado Front range by using a PLSR analysis of second derivative reflectance 
spectra measured in the field. MRA was also successfully used to quantify clay 
content in soil, independently of the nature of clay minerals [18, 19]. However, 
such approaches required a large number of observation samples to carry out the 
analysis but also to validate the regression accuracy. They are also site dependent, 
meaning that the calibration-validation processes need to be performed specifi-
cally for the studied sites. To tackle this issue with minimal uncertainties, we 
propose to start with simple experimental setups by analyzing in the laboratory 
the spectral responses of pure clays and mixtures of two or three species of clays.

2.1  Making and testing a spectral database from synthetic mixtures and a 
spectrometer

The objective of this first approach consists in preparing simple mixtures 
composed by pure clay minerals. They were prepared by [20] using the most com-
mon clays: montmorillonite, illite, and kaolinite, each of them provided by material 
sellers. The particle sizes of the minerals were measured with a VASCO-2 laser grain 
size analyzer and estimated to be about ~450 nm for the illite and the kaolinite and 
about ~475 nm for the smectite. The pure clay minerals were mixed using an agate 
mortar to produce mixed powders. A total of 27 binary mixtures of 10/90, 20/80, 
30/70, 40/60, 50/50, 60/40, 70/30, 80/20, and 90/10 mass-percent ratios of kaolin-
ite/illite, illite/montmorillonite, and montmorillonite/kaolinite were produced, as 
well as 19 ternary mixtures of kaolinite/illite/montmorillonite [20] (Figure 3).

All samples were dried and brought to humidity conditions of the laboratory. 
The reflectance spectra were measured in the laboratory using an ASD FieldSpec 
Pro. This spectrometer is portable and able to probe from 350 to 2500 nm in the 
electromagnetic spectrum. Its spectral resolution ranges from 10 nm with a 2 nm 
sampling interval in the SWIR. The mixtures were placed into Petri boxes, in 
contact with the probing system. A standard white Spectralon (Labsphere) was 
used to calibrate the reflectance reference. To increase the signal-to-noise ratio, the 
resulting spectrum was computed as the average of 10 spectral measurements [6].

As soon as the spectra are available for all the mixtures, a comparative analysis is 
used to relate a set of parametric observables derived from the spectrum morphology 

Figure 2. 
Atmosphere and water absorption bands affecting the irradiated spectrum.
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and the mineralogical composition of mixtures. Before this step, and in order to 
remove the large wavelength effects from each spectrum, a continuum-removal is 
applied as shown in Figure 4 [14]. This processing leads to normalize the reflec-
tance spectra and highlights absorption bands. The principle consists in connecting 
local maxima of the spectrum to obtain a good fit across the 350–2500 nm spectral 
domain [19]. After this processing, the continuum-removed spectrum has values 
ranging between 0 and 1 [18]. After this step, various geometrical parameters can 
be measured on the spectral curve as suggested by [21]. Indeed, this approach has 
the advantage to manipulate a few set of value to characterize a specific absorption 
band rather that considering overall values of the curve. The considered geometrical 
parameters are the following:

• The wavelength position corresponding to the minimum reflectance of the 
absorption band. In Figure 4, it corresponds to values around 1400 nm 
(P1400), 1900 nm (P1900), and 2200 nm (P2200).

• The depth, which is the length of the absorbing pattern along the reflectance 
axis. In Figure 4, the depth is estimated around 1400 nm (D1400), 1900 nm 
(D1900), and 2200 nm (D2200).

• The asymmetry of absorption band, calculated from the ratio between the 
right width and the left width measured at the half depth of the absorp-
tion band. In Figure 4, the asymmetry is about 1400 nm (A1400), 1900 nm 
(A1900), and 2200 nm (A2200).

• The width of the absorption band, measured at half depth. In Figure 4, the 
width is estimated to be around 1400 nm (W1400), 1900 nm (W1900), and 
2200 nm (W2200).

As already mentioned by [21] or [22], the geometry of absorption bands around 
1900 or 2200 nm is directly linked to the clay mineralogical composition. In par-
ticular, these studies show that the depth parameter can be efficiently used to assess 

Figure 3. 
Ternary diagram of kaolinite-illite-montmorillonite synthetic mixtures, modified from [20].



Geospatial Analyses of Earth Observation (EO) Data

6

the clay composition. If we plot the distribution of mixtures along 3 axes represent-
ing the depth parameter for 1400, 1900, and 2200 nm positions, we can identify 
regions where kaolinite, illite, and montmorillonite are particularly predominant, 
forming 3 corners of a triangular 3D shape. Elsewhere, kaolinite, illite, and mont-
morillonite contents in the mixtures decrease from their corner toward the opposite 
sides of the triangular shape [6] (Figure 5).

Even if these results are promising, they are not enough accurate to be exploited 
in real conditions. In particular, the development of a methodology able to sta-
tistically invert the abundance of clay species composing the mixtures from the 
absorption band parameters still needs to be tested. Such a study was carried out by 
[23], working with a higher complexity in preprocessing spectral data and trying to 
identify a robust unmixing method to estimate the clay abundances in the mixtures.

2.2  Processing laboratory hyperspectral images of synthetic mixtures, 
unmixing issues

To have a statistical assessment of the spectral response measured on the 
mixtures, the spectrometer was replaced by a hyperspectral optical sensor. This 
device is similar to that used by [24], with two cameras, located 1 m from the 
sample, and a lamp for each camera inclined to 35°. The reflected signal is recorded 
by two hyperspectral cameras (HySpex—Norsk Elektro Optikk—VNIR-1600 and 
SWIR-320 m-e). Only SWIR camera data is used, with 256 spectral bands and a 
spectral resolution of 6 nm in the range 1000–2500 nm. The camera has a measur-
ing field of 240 mm (FOV 13.5°) and a spatial resolution of 0.75 mm. Between 
measurements, a white reference Spectralon R® is used to overcome any possible 
drift of instruments. Raw images highlight a nonuniformity of the illumination 
due to side effects. Experimental variograms realized on each band of reflectance 
images allowed to analyze this effect and to propose a masking protocol to remove 

Figure 4. 
Continuum-removal applied to a mixture spectrum of 30% montmorillonite and 70% illite. (a) spectrum 
before Continuum-removal, (b) Geometrical parameters used to characterize the absorption bands: location of 
the minimum (black circles), depth (blue line), left width at half depth (green line), and right width at half 
depth (red line).
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pixels too far from the homogeneous behavior observed at the center of images. The 
following methodological chain is based on (i) spectral preprocessing to transform 
reflectance spectra in a standardized form and (ii) linear and nonlinear unmixing 
algorithms to derive mineral abundance for each mixture (Figure 6). Preprocessing 
techniques were selected from the literature and concern:

• Standard normal variate (SNV) consists in applying a translation and a 
homothety of the spectrum using its mean and standard deviation [25].

• Continuum-removal (CR) deletes the continuum to normalize the reflectance 
spectrum [26].

• Continuous wavelet transform (CWT) splits the signal into a wavelet sum 
of Gaussian function (e.g., “Mexican Hat”). The signal is broken down into 
10 scales, the first one (corresponding to the noise) and scales higher than 5 
(global variations of the spectrum-continuum) are suppressed [27].

• Hapke’s model [28] estimates the single diffusion albedo considering that the 
medium is an isotropic mixture with the same particle size for all components.

• First derivative (1St SGD) calculated according to [29].

Figure 5. 
3D-diagram showing the distribution of the synthetic mixtures according to the depth parameter. From [6].
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• Transformation into pseudo-absorbance (Log (1/R)) based on the correlation 
between the bands of spectral absorption and concentration of compounds [25].

Once spectra are preprocessed, several unmixing techniques can be tested to 
determine abundances. Before, it is necessary to compare observed spectrum to 
reference spectrum, i.e., spectrum of pure minerals (end-members) present in 
the mixture. On the one hand, if all the minerals present are known, one can use 
spectral libraries existing in the literature. Otherwise, algorithms able to determine 
in the observed data those which represent the most pure end-members can be used 
such as SISAL [30] or minimum volume [31]. Four linear and nonlinear unmix-
ing algorithms were used to estimate abundances in clay minerals from mixtures 
described in the previous chapter (Figure 7):

• FCLS is the most popular linear unmixing method and has nonnegativity 
constraints (abundances must be equal or higher than 0), and the sum of 
abundances of each end-member must equal to one [32].

• MESMA, similar to FCLS, takes into account the intra-class variability of each 
mixing pole.

• The GBM method [33] can take into account nonlinear effects by the way of an 
additional parameter.

• The multilinear model (MLM) method [34] uses a parameter to manage 
nonlinearity; for zero, the model becomes linear.

The results show that the unmixing method performance depends on the 
mineralogy of the mixture, the difficulty arising when clay species have very similar 
spectrum in the considered wavelengths. We can also note that the linear and 
nonlinear methods have similar performances on these mixtures, the recommended 
method being in fact the simplest to use, i.e., FCLS. Finally, the benefit brought by 

Figure 6. 
Mean spectra of hyperspectral images after continuum-removal correction for different montmorillonite/
kaolinite abundances.
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spectral preprocessing is very important. CWT and first SGD give one of the best 
performances on unmixing quality by decreasing the intra-sample variability [35].

2.3 From lab measurements to field observations

A good example of validation and comparison between lab models and field 
observations is given by [36]. The sampling area is located close to Orleans city 
(France) along the Loire River. The fluvial deposits are mainly composed of sandy 
materials contained in a clay matrix, containing also pebbles and boulders. In 
this study, 332 samples of soil were collected, spread over the various geological 
formations where swelling risk is present. As in [6], spectrum where decomposed 
in geometrical parameters, more suitable for quantitative analyses. As shown in 
Figure 8a, the ratios of the depth parameters for different absorption bands (D1400 
over D2200 vs. D1900 over D2200) demonstrate that the montmorillonite and illite 
end-members appear in the scattered plot. This approach could be used to roughly 
evaluate the content of these clay species in the soil samples.

Figure 7. 
Variability of abundances predictions decreases with MESMA and FCLS, where I stands for illite, K for 
kaolinite, and M for montmorillonite.

Figure 8. 
(a) Scattered plot of studied samples represented according to two ratios of depth parameters; (b) correlation 
between montmorillonite content measured from XRD and estimated from spectroscopy [36].
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To evaluate the uncertainties related to this approach, 31 samples of the dataset 
were analyzed using X-ray diffraction, and comparison were carried out between 
montmorillonite content measured from XRD and montmorillonite content 
estimated from spectroscopy. Although the distribution of points presents a certain 
dispersion, the correlation ratio, close to 0.84, confirms the potential of using geo-
metrical characteristics of spectra to assess the abundance of clay species.

3. Conclusion

The geotechnical issues raised by swelling clays need to be addressed to evaluate 
the vulnerability of buildings and houses lying on clayed soils geological environ-
ment. To reduce costs of analyses, classically consisting in lab measurements (e.g., 
XRD), methodologies based on spectroscopy can be used. This chapter shows last 
advances in evaluating clay species abundances, in particular for montmorillonite, 
from spectroscopy or hyperspectral approaches in the SWIR domain.

A first step was the development of metrics to discriminate clay minerals from 
their spectral response. For this purpose, mixtures were realized from pure clay 
minerals, and their spectra were systematically analyzed using geometrical param-
eter such as the depth of the different absorbing band patterns. From this database, 
we showed that a discrimination was possible, at least to have a qualitative estima-
tion of the swelling capacities of concerned soils. This result was validated from 
the field by comparing the abundances estimated coming from spectroscopy and 
from XRD techniques. Another approach based on hyperspectral image processing 
was presented. Different preprocessing algorithms and unmixing techniques were 
applied to the mixture dataset for performance evaluation. The results are also 
very conclusive since RMS values between estimated and observed abundances are 
satisfactory.

This overview gives important perspective in the domain. If spectroscopy can 
evaluate clay mineral abundances in soils and in particular those who have swelling 
capacities, the possibility to use remote hyperspectral camera for this purpose could 
be considered. The next perspective are thus to test this probing technique to field 
data in real condition. The heterogeneous solar lightning; the presence of vegeta-
tion, calcite, or quartz pebbles; and possibility of moisture variations in soils are, 
for instance, the next issues to work on. Due to recent developments in UAV, new 
possibilities could be found for carrying hyperspectral cameras in SWIR domain 
and reaching information with higher signal-to-noise ratio and better resolution. 
These advances should open new perspectives for accurate and less expensive 
productions of clay maps.
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