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Abstract

The drug discovery and development pipeline have more and more relied on 
in vitro testing and in silico predictions to reduce investments and optimize lead 
compounds. A comprehensive set of in vitro assays is available to determine key 
parameters of absorption, distribution, metabolism, and excretion, for example, 
lipophilicity, solubility, and plasma stability. Such test systems aid the evaluation 
of the pharmacological properties of a compound and serve as surrogates before 
entering in vivo testing and clinical trials. Nowadays, computer-aided techniques 
are employed not just in the discovery of new lead compounds but embedded as 
part of the entire drug development process where the ADME profiling and big data 
analyses add a new layer of complexity to those systems. Herein, we give a short 
overview of the history of the drug development pipeline presenting state-of-the-
art ADME in vitro assays as established in academia and industry. We will further 
introduce the underlying good practices and give an example of the compound 
development pipeline. In the next step, recent advances at in silico techniques will 
be highlighted with special emphasis on how pharmacogenomics and in silico PK 
profiling can enhance drug monitoring and individualization of drug therapy.

Keywords: ADME, drug discovery, in silico prediction, pharmacokinetics prediction, 
QSAR

1. Introduction

Drug discovery and development grew into a wide interdisciplinary field 
during the last decades and many factors played and play an important role in 
the successful evolution from a bioactive compound, or so-called new molecular 
entity (NME), into a potential drug [1]. Herein, we discuss the drug discovery 
and development (DDD) process where the pharmacokinetic profiling in terms of 
ADME assessment is concerned. Therefore, we provide a short overview of the in 
vitro, ex vivo, and in vivo state-of-the-art techniques used in academy and industry 
with special emphasis on how recent advances in computer science paved the 
path for in silico prediction in the DDD process for small molecules. However, the 
discussion of the whole topic is out of the scope of this review, which only aims to 
give insights into the principle process of (computer-aided) drug discovery and 
development.
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The current state of pharmaceutical DDD estimates that only up to ten com-
pounds out of thousand screened hits would result in optimized leads and enter 
preclinical testing, with a chance of 9.6% to pass the clinical testing phase [1, 2]. 
Additionally, the drug approval process is estimated to last in average 15 years, with 
major expenses in phases II and III of clinical trials, which highlights the drawback 
a failure in (pre-) clinical testing causes [3–6], where the overall DDD cost for each 
drug can reach as high as ~$2.56 billion preapproval rising to $2.87 billion including 
postapproval investments [6–8]. From the initial small molecule screened as hit to 
the optimized lead, a variety of in vitro tests are performed to guarantee efficacy 
and safety, but also to find structure-activity relationships (SAR), which can then 
be connected to specific physicochemical properties of the compound and further 
aid in the lead optimization phase [8–10].

The drug development phase starts with preclinical testing followed by the clini-
cal stage comprising phase I–III human trials. Each of the phases aims to answer 
a specific question. Initially, preclinical trials are conducted in animals and can 
provide information about whether a drug is toxic or not. Compounds that show no 
toxicity in animals then advance to phase I trials, which will study whether the drug 
is also safe in healthy humans and provide an initial idea for appropriate dosage. 
In phase II, the efficacy of the drug is examined in parallel to potential side effects 
to answer the question if it principally meets the expected performance. Phase II 
presents the biggest hurdle with a transition success rate as low as 30%. Ultimately, 
drug candidates enter clinical phase III in which the preliminary results found so far 
need to be proofed and any adverse reactions monitored to make sure that the drug 
really helps treating the disease [2, 11].

Starting from the generation of a lead compound assessment, and optimiza-
tion of pharmacokinetic properties and correlation to pharmacodynamic effects 
increases in importance as one of the three major attrition causes among toxicity 
and efficacy [8, 12]. In this sense, it is not surprising that the period between lead 
and the clinical candidate is sometimes referred to as “valley of death” due to the 
often occurring failures and dead ends during this time of the DDD process, which 
results in high costs and missing deadlines [13].

2. Role of computer-aided techniques in drug discovery

In a long ongoing effort, more and more in silico techniques are being integrated 
into several points of DDD with different purposes. In silico techniques can ease the 
process of SAR assessment as well as the generation of compound series by guiding 
combinatorial chemistry since they allow fast and easy evaluation of compounds 
prior to synthesis from big libraries. For instance, combinatorial chemistry offered 
an option to readily produce a broad range of potentially pharmaceutical active 
small molecules in a short time, while SAR data in combination with complex math-
ematical algorithms, such as regression analyses based or machine-learning–based 
approaches, allow to determine the potential effects of the analogues and deriva-
tive’s structures a priori [8].

Latter approach can save time and resources by eliminating in early stages 
molecules that have predicted low efficacy against the target or to suggest the 
next round of chemical modifications [14, 15]. Still, lead generation and/or 
optimization will eventually also include in vivo testing after no toxic side effect 
was shown in vitro. In vivo efficacy testing will be carried out as proof of concept 
followed by PK assessment and ultimately animal models of human disease to 
find correlations between preliminary data and potential performance later on in 
humans [12].
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In silico ADME prediction aims to generate tools and models based on experi-
mental data to calculate in vivo behavior of compounds by finding quantitative 
structure-property relationships (QSPRs), which connect structural information 
to physical and chemical characteristics or even biological behavior (quantita-
tive structure-activity relationship; QSAR). Gained empirical data are then 
related to descriptors/properties thereby supporting the process of hit-to-lead 
 optimization [10, 16].

When using in silico methods for prediction, it is important to keep in mind that 
algorithms and tools applied are only models thus being only as good as the data 
and idea they are based on. That implies a continuous experimental validation and 
improvement as a basic principle that is supported by an interdisciplinary team. In 
this sense, frequently used models include QSPR predictors, matched molecular 
pair (MMP), and data trend analysis since they allow comparably easy application 
and are based on a high amount of (end) point data. For instance, some experi-
ments offer highly convenient data but do not contribute much to model design, 
whereas others show high variability but lead to impactful models. Considering 
the nature of data, it is important to know which type can be used as input from 
different sources (low variability biological and activity data or homogeneously cal-
culated chemical descriptors) in contrast to data that should only be used from one 
source (Caco-2, MDCK). A sophisticated approach to generate reliable data or to 
determine differences between individual experiments is to use assays with control 
compounds [10]. The target property must be obtained under the same experimen-
tal condition and, in the best scenario, obtained from the same laboratory aiming to 
avoid interlaboratory and interpersonal data noise [17].

Furthermore, the choice of the number and type of molecular descriptors has a 
high impact, since it influences the accuracy and interpretability of the model. One 
would expect that using the maximum number of descriptors would be beneficial, 
but in reality, the risk of overfitting the data or losing the interpretability is a trade-
off. This leads to the point that it is fundamental for a “good” model to find the per-
fect compromise between quality and quantity. Nevertheless, it is crucial to test and 
train a model and to evaluate its predictability by different means, such as statistical 
measures and internal and external validation as recommended by organizations as 
OECD [18], and also includes outlier analysis to reduce the noise in the model. An 
extensive review of different adequate validation methods is discussed in [19].

As a result of newly achieved advances in computational capability, more com-
plex models and algorithms can now be applied. Despite this, it is still a challenge 
to create a model for the pharmacokinetic and pharmacodynamic phenomena and 
interactions within an organism as complex as a mammal, let alone humans [10]. 
Finally, notwithstanding the apparent linearity, the development of a new chemical 
entity into a drug is an iterative process, even more, where modeling is concerned, 
with data from failed attempts being integrated into the new predictions [13].

3. How specific parameters shape the pharmacology studies

Pharmacology is a major part of the DDD process and describes the interaction 
of an organism and the drug. It can be divided into two main branches: while phar-
macodynamics (PD) describes what the drug does to the body, pharmacokinetics 
(PK) is interested in what the body does to the drug [20]. The main processes of PK 
are absorption, distribution, metabolism, and excretion (ADME), finally comple-
mented by toxicity (ADMET). While ADME tries to maximize the pharmacological 
performance of a small molecule, toxicology aims to ensure that it causes no harm 
in any kind of side effect [21].



Drug Discovery and Development - New Advances

4

The big hurdle to overcome is to combine appropriate physicochemical proper-
ties of the drug, which would drive its interaction with the organism and show 
biological activity [22]. Or according to Hodgson: “A chemical cannot be a drug, no 
matter how active nor how specific its action, unless it is also taken appropriately 
into the body (absorption), distributed to the right parts of the body, metabolized 
in a way that does not instantly remove its activity, and eliminated in a suitable 
manner—a drug must get in, move about, hang around, and then get out” [21].

As already reviewed [23] and suggested by the FDA, PK/PD assessment is 
one of the main focuses for optimization in the drug development process. This 
is apparently an idea that was shared among many: whereas ADME evaluation 
was previously addressed in the late stages of preclinical development, currently 
it became a major concern throughout the whole DDD process, starting from 
the very beginnings in drug discovery approaches until the very last steps in lead 
optimization [21, 24].

For each step in the drug’s path through the body, several parameters determine 
the destination of the drug. In respect to this, each of those parameters would be 
addressed directly and individually. Unfortunately, to address experimentally each 
potential parameter is timely unviable, due to the complexity of the human body 
where all those parameters influence each other. This is not only restricted to mecha-
nisms within the body between different compartments but also extends to interper-
sonal variations introduced through gender, age, genetic state, disease, etc. To find 
an approximation, most of the important variables are indirectly evaluated by either 
models or surrogates (Table 1). In an approach to characterize the properties of 
compounds, facilitate calculations, and allow standardization between experiments, 
descriptors are introduced as numerical representations encoding aspects of the 
chemical information of a molecule. Examples of descriptors and properties include 
molecular weight and H-bond donors/acceptors and they can be directly obtained 
from experimental or generated by computational techniques [25].

In vitro Ex vivo/cells In vivo In silico

Absorption Physicochemical 
properties
Dissolution and 
solubility
Cell monolayers
Artificial membranes

MDCK
Caco-2
Transfected cells

Mouse model
Knock-out/
down mice
Humanized 
mice

QSPR/QSAR
pKa
logP, logD

Binding and 
expression of 
transporters
Inhibition of efflux 
pumps

Distribution PAMPA
IAM
HAS-coupled (RP-) 
HPLC

Plasma/tissue 
binding

Vd
Plasma 
protein 
binding

Vd
Plasma protein 
binding
Activity and 
expression of 
transporters

Metabolism S9 fraction
Liver microsomes
Recombinant enzymes

Hepatocytes 
(HepG2)
Isolated tissue
Isolated organ

Humanized 
animals

Half-life
Activity and 
expression of 
transporters

Excretion Isolated tissue
Isolated organ
Transfected cells

Urine analysis Half-life prediction

Table 1. 
Tools for ADME evaluation.
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For instance, although the perfect approach of PK profiling would also reflect 
the kinetics of drug administration and concentration at the site of action, most in 
vivo systems rely on plasma sampling as a medium of drug equilibrium since it is 
easily accessible. As a consequence, results are highly influenced by intrinsic and 
extrinsic factors such as interpersonal variances as already stated above [20].

Each compound possesses individual physicochemical properties, such as solu-
bility or lipophilicity, which are influenced by biochemical properties of the body 
as the different pH of tissues. Although they can be similar, each compound will 
behave differently, and it is futile to address in vivo behavior without any prelimi-
nary knowledge of the basic PK parameters in vitro [26].

Furthermore, every PK assessment varies depending on the route of admin-
istration and requires different models and assays. While some routes depend on 
absorption mechanisms like oral and transdermal administration, others (i.e., 
intravenous) directly target the bloodstream and the bioavailability is essentially 
equal to 100%. Hereafter, we will discuss oral administration parameters of small 
molecules as the most common form due to many advantages like reliability, safety, 
price, their experimental approaches, and most common prediction modes [27, 28].

Passive transport across membranes is defined as permeability, which is depen-
dent on lipophilicity, since biological membranes are virtually lipid bilayers, and is 
by far the most important transport for small molecules, especially in oral absorp-
tion [8, 24, 29]. Nonlipophilic compounds normally do not traverse membranes 
passively, while highly lipophilic molecules run the risk to get stuck within the 
membranes [30].

Properties utilized for measuring lipophilicity are the logarithm of the partition 
coefficient (logP) and the distribution coefficient (logD) with the first not dif-
ferentiating between ionized and nonionized species. Both are normally applied for 
n-octanol/water representing an organic and aqueous phase, respectively [21, 26].

Ionizability and lipophilicity provide a strong indication if a compound is likely 
to be orally absorbed or not [21].

Ultimately, also the molecular size of the compound is involved in successful 
absorption due to the aforementioned effects on permeability and solubility [31]. 
Usually, increasing molecular weight by adding new chemical moieties leads to 
decreased solubility in aqueous solutions [32] and while big lipophilic compounds 
partition passively along membranes (transcellular), small charged molecules can 
also cross membranes via tight junctions (paracellular) [26]. For oral absorption in 
terms of permeability, Lipinski and collaborators already proposed in 1997 [33, 34] 
that orally active compounds should fit at least three of observed four parameters: 
molecular weight < 500 g mol−1, logP < 5; number of hydrogen bond acceptors <10; 
number of hydrogen bond donors <10; the well-known Lipinski’s rule of 5 (Ro5). 
In other words, Ro5 stated a physicochemical space in which molecules outside its 
domain has a low probability to become orally active. Other rules, as Veber rules 
[35], Daina and Zoete [36], Egan and collaborators [37], Lovering et al. [38], and 
Ritchie and colleagues’ [39] works for example, also included other properties as the 
sum of hydrogen bond acceptor and donors, rotatable bonds count, polar surface 
area, number of aromatic rings, and fraction of sp3 carbon atoms.

Despite the criticism and overinterpretation of Lipinski and derived rules, the 
influence of physicochemical parameters on oral bioavailability and related param-
eters (as logP and aqueous solubility) is notable. Moreover, these rules are still being 
employed nowadays in virtual screening campaigns aiming to reduce the number 
of compounds from massively large available libraries (e.g., ZINC, which contains 
more than 750 millions of compounds) [40–42]. Furthermore, those initial steps 
instigate the generation of more complex models to predict not just oral bioavail-
ability but other PK-related parameters as Caco-2 permeability, aqueous solubility, 
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and logP as indirectly related properties as well as other direct parameters as 
intestinal absorption, metabolism, clearance, etc.

3.1 Aqueous solubility and lipophilicity

As already mentioned, ionizability is one of the most important properties in 
PK, thus making pKa the physicochemical property with the highest impact.

Early attempts to increase the efficiency of pKa evaluation were reported by 
Morgan and colleagues by scaling down the classical titration and spectrophotomet-
ric methods introducing microscale versions [43].

These alterations, however, could not overcome the principle demands of each 
technique, which are moderate precision and frequent calibration (potentiometric), 
and the need for a chromophore within the analyte (spectrophotometric) [44]. 
Starting in 1998, capillary electrophoresis (CE) was effectively used to determine 
pKa of many compounds and was further upgraded from Pfizer by implementing 
pressure-assisted capillary electrophoresis (PACE) as a standard method, which is 
nowadays readily applied in industry settings showing superior features compared 
to the aforementioned methods [44, 45]. Other variants such as vacuum-assisted 
multiplexed capillary electrophoresis also exist (VAMCE) [46]. A different approach 
better suited for HTS is called pH gradient titration offered from Sirius Analytical 
Instruments but is still limited due to the UV spectroscopy technology [30].

It is well established that solubility in aqueous media is one of the most impor-
tant physicochemical properties to be evaluated in oral administration. It is not only 
necessary for absorption in the GI tract but also a requirement for almost all in vitro 
and in vivo assays, which depend on a solved compound. Poor solubility can affect 
the reproducibility of assay results by introducing high variability and further 
increase development costs of leads with low solubility [26, 47]. Traditionally, 
solubility measurements were conducted via labor-intensive potentiometric tech-
niques [48] or equilibrium solubility (thermodynamic; e.g., shake flask) [26]. HTS 
alternatives comprise laser nephelometric scans (kinetic) [47] and LC-MS/HPLC 
techniques, which can also be performed with DMSO solutions of the compound—
the standard for HTS applications [47, 49]. It should be noted, though, that aqueous 
solubility, as described above, is not an optimal model for GI solubility since it does 
not consider the composition of the GI fluids [49].

On the other hand, generally speaking, lipophilicity is the ability of a compound 
to dissolve in lipids and/or organic solvents thus being able to pass biological 
membranes. Descriptors for lipophilicity are the logarithm of the partition coef-
ficient (logP) or distribution coefficient (logD). Classically, logP was determined 
using the shake flask method applying n-octanol/water phases. Later, UV spectros-
copy became the standard, which unfortunately is not applicable for compounds 
without absorption in the UV range [50]. Today, RP-HPLC methods are frequently 
in use due to superior properties [25, 51]. As with many methods, comparison of 
results obtained under different conditions and in different laboratories proves to 
be difficult with RP-HPLC. A solution offers the implementation of a standardized 
lipophilicity value, for example, the chromatographic hydrophobicity index (CHI).

In recent years, a great effort has been made to improve the ability of in silico 
models to accurately predict aqueous solubility. One of the most developed model is 
Yalkowsky and Jain’s [52] general solubility equation (GSE), which is based on the 
melting point (m.p. °C − 25) and logP (the octanol-water partition coefficient of 
the un-ionized molecule) of a chemical substance (Eq. (1)), with a relevant predic-
tion power as represented by the coefficient of determination (R2) = 0.96 and root-
mean-square error (RMSE) = 0.53 in a dataset of 1026 organic compounds [53].

General solubility equation as proposed by Yalkowsky and Jain’s [52]:
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  logS = 0.5 − 0.01 (m . p .      °  C − 25) –logP  (1)

Modifications in terms of the GSE have been proposed, for instance with the 
SCRATCH model, which replaces the melting point by molar aqueous activity 
coefficient, with comparable accuracy (R2 = 0.956, RMSE = 0.859 in a dataset of 
883 compounds) [54]. Ali and collaborators suggested replacing the melting point 
descriptor of the GSE with TPSA, aiming to overcome the issues with compounds 
with high melting points and also to explicitly take into account the effect of polar 
and polarizable atoms on the aqueous solubility [55].

The argument that real drugs are actually more soluble than drug-like molecules, 
filtered by Lipinski’s rule of five [56], pointed out the studies in the direction of more 
complex models. Indeed, nowadays, the quantitative structure-property relationship 
(QSPR) models correlating the aqueous solubility with various molecular descriptors 
are often employed. As an example, Chevillard et al. reported the use of a random 
forest protocol to select the most accurate model among several available, both in 
commercial or free software packages, for each compound [57]. They report that the 
multimodel approach can enlarge the applicability domain given that more accurate 
results for solubility prediction were obtained in comparison to using individual 
models. This approach agrees with other reports that consensus of local QSAR 
models can generate predictive workflows, especially for datasets with large struc-
tural diversity [58, 59]. It is worth noting that Lipinski himself recently revisited his 
own rules [60], in vision of new potential classes of drugs, such as natural products, 
peptide-like, and fragments, which, despite the validated effect, would defy the 
original Ro5 limits.

3.2 Ionization state and pKa prediction

Early pKa measurement proves beneficial in lipophilicity assessment since logD 
values at any pH can be calculated from the pKa and logP values [25, 50]. Although 
octanol/water logP is similar to most components in the body, not all biological 
partition processes (i.e., blood-brain barrier and gastrointestinal absorption) can be 
easily modeled by it [25].

The prediction of ionization state of compounds, which is indicated by the pKa 
value, is relevant to derive several other physicochemical and ADME properties of 
drugs, including solubility, lipophilicity, and pharmacokinetic profile. The use of 
pKa prediction can be placed in two different stages along the DDD, in the begin-
ning with fast models for larger libraries, intending to generate all possible state 
populations of particular compounds, and/or later on with more refined semiem-
pirical and, computationally expensive, the density functional theory (DFT), in 
which more accurate ionization states can be accessed. Examples of fast prediction 
methods for ionization states, which are available as computer programs, are 
SPARC [61], MoKa [62], and Epik, which use the Hammett and Taft approaches for 
the pKa prediction [63]. On the other hand, once smaller subsets of molecules are 
being addressed, the use of semiempirical or density functional theory (DFT) with 
more computationally expensive models was reported to accurately incorporate the 
structural features and diversity into the pKa prediction [64, 65].

3.3 Permeability and the use of cellular and noncellular models

As already seen, lipophilicity (logP, logD) is highly involved in membrane 
permeability. Apart from the already described in vitro methods for logP and logD 
determination, systems for ex vivo/in situ but also in vivo assessment exist as “direct 
empirical” determination of permeability. When talking about permeability, the 
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difference between passive diffusion and transporter-mediated active transport 
needs to be considered.

Cell culture methods have been applied to study intestinal absorption for several 
decades already [66]. Finding the correct model or cell line is crucial to assess the 
desired parameters such as passive or active transport. In general, it cannot be 
distinguished between the different transport mechanisms when using cell culture 
approaches, but several models exist to shift the focus on one of the parameters.

Two main cell lines are in use as models for intestinal absorption: Caco-2 and 
MDCK cells. Caco-2 cells are derived from a human colorectal carcinoma and 
possess many of the typical properties of the small intestine, therefore represent-
ing a well-established and validated assay system for absorption, permeability, 
and secretion studies [21, 67]. This assay is mainly used for rank ordering of 
compounds in terms of oral absorption and permeability in early phases of drug 
design. Unfortunately, results obtained in different batches and laboratories vary 
heavily due to several reasons, which make control compound usage necessary and 
represent a drawback of the technique [26]. Additional disadvantages include long 
preparation times (about 3 weeks) and no specific permeation mechanism evalua-
tion. Caco-2 assays are usually used as a primary assay followed and complemented 
by other in vitro and ex vivo methods [68]. Recently, a 3D version of the Caco-2 
assay, “Caco-2 3D spheroid permeability assay” was reported, increasing the overall 
performance and correlation to a human in vivo data [69].

As already stated above, transcellular permeation either occurs passively via 
diffusion of lipophilic molecules or is driven by membrane transporters. Important 
transporter includes ATP-dependent efflux transporter such as MRP2, BCRP, and 
P-gp and the organic solute transporter and the multidrug resistance protein 3 
(MRP3) on the luminal and basolateral membranes, respectively [26].

Madin-Darby canine kidney (MDCK) cells are an alternative to Caco-2 
cell-based assays and the next most common cell line for passive permeability 
assessment as well as drug-receptor interaction [70]. MDCK cells also are ideal for 
transfection and overexpression experiments with human transporters and recep-
tors due to the lack of P-glycoprotein [68, 71]. For instance, the MDCK-MDR1 cell 
line overexpresses the multidrug resistance protein 1 (MDR1, P-glycoprotein) and 
can be used in concert with other cell-based assays to specifically address the influ-
ence of MDR1 in drug efflux [72].

Immobilized artificial membranes (IAMs) were already used very early on for lipo-
philicity determination and are gaining interest again in recent years for direct perme-
ability measures [25]. IAMs are also intensively used in the measurement of the volume 
of distribution to mimic in vivo binding to phospholipids and phospholipid bilayers 
(membranes). Therefore, IAMs are discussed in more detail in the following section.

The parallel artificial membrane permeability assay (PAMPA) [73] is a cheap 
and fast in vitro alternative to cellular-based assay systems. A very comprehensive 
review of recent PAMPA methodologies and applications is available [74]. In prin-
ciple, PAMPA was developed to overcome cellular-based systems (Caco-2, MDCK, 
etc.) for passive permeability evaluation, which are error-prone, more difficult, 
and labor and time intensive and tend to report false negatives. Another advantage 
of PAMPA over conventional cell-based assays is the ability to selectively measure 
passive permeability, while in cell-based systems influence of membrane transport-
ers cannot be left out. PAMPA assays can be readily applied in high throughput 
processes or scales and different variants exist to address ionic and H-bonding with 
membranes that influence permeability and complement the use of Caco-2 and 
other cell assays [73]. Bermejo and colleagues also showed a significant correlation 
between Caco-2, in situ rat perfusion, and PAMPA assay data underlining applica-
bility of the method for ADME assessment [75].
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Although high-throughput applications of newly developed and standardized 
techniques allow gathering of an exorbitant amount of data, it is crucial to also 
(cor)relate the physicochemical and biomimetic properties to structural features 
of the compound. This will facilitate the development of QSPRs and allows the 
construction of in silico models ultimately guiding the medicinal chemistry 
efforts [25].

When dealing with oral administration, it is important to note that the drug is 
not only confronted with the hurdles of solubility and permeability in the absorp-
tion process but is also facing metabolizing mechanisms (i.e., enzymes) in the 
gastrointestinal tract, which are referred to as first-pass metabolism [24, 76]. These 
include but are not limited to P-glycoproteins, uridine diphosphate glucuronosyl-
transferase, and mainly cytochrome P450s (CYP450) [24]. This will be discussed 
more deeply in the Metabolism section.

Permeability has a direct influence on the drug absorption rate and, as dis-
cussed, despite the several in vitro cellular models available (e.g., Caco-2, PAMPA, 
and MDCK), the high costs justify the use of in silico prediction. Further, QSPR 
study developed using a large compound dataset of Caco-2 permeability data (1272 
compounds) presented good apparent permeability prediction accuracy (R2 = 0.81 
for the test set) using the polar volume, number hydrogen bond donors, and the 
surface area as main descriptors [77].

However, we are far from a model that can predict overall permeability and, the 
current status, rather focuses on individual compartments and tissues, such as the 
gastrointestinal (GI) tract, skin, buccal membrane, and the blood-brain barrier 
(BBB). Since the first BBB permeability correlations with logP in 1977 [78], models 
to predict BBB permeability, particularly logBB (Eq. (2)), have greatly advanced. 
Current models using an array of machine-learning methods such as multilinear 
regression, support vector machine (SVM), and artificial neural network (ANN) 
against a dataset of 320 unique compounds had good predictive power (R2 = 0.89) 
[79]. The work of Shen et al. developed SVM models using 1593 compounds (1283 
BBB+ and 310 BBB−) by using different pattern selection methods and obtained the 
overall accuracy of 98.2% [80]. Both methods have the limitation of unbalanced 
datasets (where the number of BBB+ is higher than the BBB− within the training 
set), which was addressed on the work of Wang et al. by using resampling meth-
ods coupled with the machine-learning techniques, to achieve accuracy rates of 
0.919 in external test data [81]. Wang and collaborators compiled a dataset of 439 
unique molecules, which were employed to generate a diverse set of QSAR models 
and consensus (R2 = 0.504 for external dataset prediction). They also reported the 
use of transporter profiles as additional biological descriptors to develop hybrid 
QSAR BBB models, with an improved correlation coefficient R2 = 0.526 for external 
validation [82].

LogBB can be calculated by the log of the ratio between the concentration within 
the brain (Cbrain) by the bloodstream concentration (Cblood) of the determined 
chemical entitiy

  logBB = log  (   C  brain   _____ 
 C  blood  

  )   (2)

Finally, beyond the usual ADME parameters of interest in DDD, there are 
several other unusual ones that also can be predicted; as examples, we here point 
the permeability of the models for skin permeability, which evolved from simple 
diffusion models based on molecular weight and n-octanol/water partition coef-
ficient [83, 84], until more sophisticated models, such as (non)-linear QSPR models 
and even molecular dynamics simulation (as extensively reviewed by [85, 86]).
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4. ADME properties: experimental approaches and in silico models

4.1 Absorption

Oral bioavailability is defined as the amount of drug that reaches the site of 
action after oral administration and is influenced by factors like drug solubility and 
dissolution, chemical and enzymatic stability in the gastric and intestinal lumen, 
interacting luminal contents (food), gastrointestinal transit time, enterocyte per-
meability, and intestinal and hepatic metabolism [24]. Recently, bioavailability has 
been also described as the rate and speed of the drug to reach systemic bloodstream, 
considering the initial formulation as the starting point.

Oral administration includes a pharmaceutical phase—prior to PK and PD 
phases—that comprises disintegration and dissolution of the dosage form. When 
using oral dosage forms, the shape and chemical composition (e.g., tablets) play 
an important role since they contribute to the time needed for disintegration and 
dissolution.

Following the pharmaceutical phase, absorption is the first step in the phar-
macokinetic phase and is defined as the movement of the drug from the site of 
administration to the bloodstream. The main properties determining the rate of oral 
absorption for small molecules are permeability and solubility [87].

As such, the rate of dissolution and ionization, which are described by the 
Noyes-Whitney and Henderson-Hasselbalch equation, respectively, is the key fac-
tors in lead optimization for oral administration and is complemented by lipophilic-
ity as an additional factor influencing membrane permeation and solubility of the 
compound [31].

Dissolution can be expressed by a function of the aqueous solubility of a com-
pound, the surface area of the administered tablet (or the particles in other solid 
formulation), and a specific dissolution rate constant. Altering any of these param-
eters directly affects the dissolution profile [26]. While solubility is an endpoint 
value indicating the amount of a compound that is soluble in a solvent, dissolution 
describes the kinetic process of a compound being solved in a solvent [88].

On the other hand, ionization reflects if a compound is present in the charged 
or uncharged state and is at least influenced by two major parameters. The physico-
chemical property responsible for ionization is the pKa and describes the ionization 
state of that entity at a given pH. It is also referred to as aqueous ionization constant 
[30]. Thereby, it is directly influenced by the pH of the environment, the second 
parameter, which drastically changes on the way through the GI tract, from about 
pH 1 to 8 in the stomach and ileum, respectively.

The determination of the ionization state of a compound in the gastrointestinal 
system (stomach, jejunum, ileum, and colon) is crucial for absorption since it 
not only influences the solubility of a compound but also the lipophilicity and 
permeability [26, 30, 89]. About 60–70% of all drugs (effective 1999) are ioniz-
able, which underlines the role that ionization plays in ADME assessment [30, 90]. 
While charged molecules easily dissolve in aqueous systems (GI tract), they do 
not permeate membranes via passive diffusion and are reliant on active transport. 
The contrary is true for uncharged molecules, which pass biological membranes 
passively but show low solubility in aqueous solutions. Mechanisms of drug absorp-
tion include passive diffusion, active transport, and receptor-mediated endocy-
tosis, which are influenced by different factors and can themselves influence the 
bioavailability.

Similar to model and prediction, the absorption of a drug is a complex process, 
which is influenced not only by the physicochemical properties of drugs themselves 
but also by the physiological state of the tissue in question. As such, there are a large 



11

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

number of prediction models available, which were generated based on the physico-
chemical properties involved in the absorption process, such as membrane perme-
ability and drug solubility. These models can help formulation scientists to optimize 
drugs with poor absorption due to low aqueous solubility.

Initial absorption models can be separated into dispersion and compartmental 
models [91]. While dispersion models treat the GI as a continuous system, with 
variable pH and surface area, compartmental models take into account physi-
ological factors such as transporters. The compartmental absorption transit (CAT) 
was one of the first models to regard distinct physiological properties, such as the 
minimal absorption in the stomach and colon, while assuming some mathemati-
cal simplifications, such as the instant dissolution of the drug and linear kinetics 
[92]. CAT was further modified as advanced CAT (ACAT), by including nonlinear 
absorption kinetics and the effects of the first-pass metabolism. ACAT also consid-
ers the gastrointestinal tract as nine subsections, each with unique physicochemical 
properties, such as pH, allowed solubility, particle size, and permeability [93]. 
Novel developments have included other absorption routes other than the GI, 
which have been recently included in commercially available software, such as oral 
absorption for the development of sublingual zolpidem tablets [94]. The absorption 
constant (Ka, expressed in terms of h−1 min−1), or also called first-order absorp-
tion rate constant (to not be confounded with pKa), is employed in most of the 
aforementioned models and is determined as a result from the changes in mass of 
absorbable drug over time at the site of administration. Ka can be derived from the 
decrease in the drug amount of absorbable present at the site of administration over 
time; however, it is often indirectly determined by the drug amounts measured in 
the blood and/or urine.

Along physicochemical models, which have a global application, machine-learning 
techniques were extensively employed to model absorption (as comprehensively 
reviewed by Kumar et al. [95]) and are inclined to be local models, since they are 
mostly based on a small, homogeneous dataset that influences their applicability 
domain.

4.2 Distribution and the role of plasma-binding proteins

After being absorbed and entering the circulatory system, the drug moves 
reversibly between different compartments within the body, which is described 
as distribution and influenced by several physicochemical properties of the 
drug and biological factors of the body. One of the most important properties is 
lipophilicity, and as such logP/logD, since it reflects the ability of the compound 
to pass biological membranes to reach other sites, tissues, and organs within the 
body [25]. Additional factors include phospholipid and (plasma) protein binding, 
which reduces the free drug concentration within the body, can prevent the migra-
tion to the receptor side/side of action, and causes drug-drug interactions [25, 
96]. Interestingly, binding to plasma proteins can also prolong the drug action by 
releasing the drug over a longer period of time. It is also important to note that the 
influence of lipophilicity on plasma protein binding is hypothesized to be higher for 
acidic compounds than for bases, meaning that negative charges contribute highly 
to plasma protein binding and prevent tissue binding, which leads to diminished 
volumes of distribution (Vd, Eq. (3)). The Vd is the amount of drug that is freely 
available in the blood, thus not bound to plasma proteins or other components [25, 
97, 98]. Vd is an apparent volume that increases proportionally to the extravascular 
drug binding and not an anatomically defined volume. Consequently, exten-
sive drug binding outside the bloodstream leads to increasing values of volume 
distribution.
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Volume distribution (Vd) is defined by the ratio between the amount of drug in 
the body (A) and the drug concentration in plasma (C, comprising both free drug 
and protein-bound drug):

  Vd =   A __ 
C

    (3)

The parameter describing protein binding is the plasma protein affinity con-
stant Ki. Many efforts to determine distribution led to chromatography-based meth-
ods, such as (RP-)HPLC to mimic n-octanol/water logP or lipophilicity to measure 
distribution. In general, chromatographic methods are believed to resemble biologi-
cal partition processes more than octanol/water partition [25]. In the beginning, 
stationary phases in (RP-)HPLC were either silica-based or polymer-based but both 
had difficulties to reproduce logP and logD values despite several additives in the 
mobile phases [99]. The introduction of biomimetic (stationary) phases coated with 
human serum albumin (HAS), α1 acid glycoprotein (AGP), or immobilized artificial 
membranes (IAM) revolutionized the methodology since they allowed a better 
approximation of the biological system [25, 100].

A method to address plasma protein binding is the use of HSA and other plasma 
proteins (e.g., α1 acid glycoprotein) coupled with RP-HPLC [25, 101]. On the other 
hand, HPLC combined with IAMs is a popularly accepted technique for phospho-
lipid interaction and partition and several IAM columns are commercially available 
for DDD projects. Both techniques represent good assay systems to model in vivo Vd 
in high-throughput scale [98]. Problems with HPLC techniques, which are also true 
for biomimetic phases, include the lack of a gold standard that is needed to calibrate 
and later standardize results to make a comparison possible [25].

In vitro standard methods for unbound plasma fraction calculation include equi-
librium dialysis and ultrafiltration among several others as the two most commonly 
used methods and are considered the gold standard for binding assessment [26].

To calculate the Vd “a priori”/nonexperimentally, plasma protein binding, 
experimental logD and pKa are necessary. Then again, based on the Vd, the half-life 
(t1/2) of a compound can be calculated [102]. Apart from protein binding, tissue 
binding is also involved in the distribution of the compound. Generally, “tissue” 
here comprises several components of the human body such as lipids, DNA, or RNA 
and is also referred to as nonspecific binding [26].

In silico models to predict the Vd are often based on lipophilicity and solubility 
descriptors, which correlate with the fractions of the drugs that are either bound to 
plasma proteins or freely available. The work of del Amo et al. not just accurately 
predicts Vd and unbound drug fraction but also compares the model’s performance 
against the commercially available software VolSurf+ with comparable accuracy 
(R2 = 0.70 and 0.71, respectively) [103].

Expanding these studies, the work of Lombardo and Jing generated a set of 
models to predict the Vd in the steady state (Vss), using a dataset of 1096 diverse 
compounds [104]. They compared models generated by linear (PLS) with nonlinear 
(Random Forest) models, recommending the latter, with 33 descriptors, as the 
optimal method for Vss prediction.

The Vd of drugs is greatly influenced by binding to plasma proteins with 
several machine-learning–based models generated to predict this interaction. 
Protein-protein interaction (PPI) information derived from molecular docking 
was employed to derive a PPI-QSAR model for a small dataset of antibiotics (65 
unique compounds), which resulted in an accurate model (R2 = 0.86 for the test set) 
[105]. Additionally, global quantitative models using an array of classification and 
regression models using physicochemical and molecular descriptors derived from 
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a dataset of 794 compounds were shown to correctly classify the binding status of 
the test set compounds and could be used as a prescreening [106]. Another recent 
QSAR study using an extensively curated training set of 967 diverse pharmaceuti-
cals aimed to predict plasma protein-bound fractions (fb) using models generated 
by six machine-learning algorithms with 26 molecular descriptors [107]. This study 
is particularly interesting where the applicability domain is concerned allowing to 
differentiate whether the classification derives from (un-)favorable regions.

del Amo et al. recently reported one of the first QSPR models to predict intra-
vitreal volume of distribution and clearance of small molecules [108]; the model 
relies on the LogD and hydrogen bond capacity to understand phenomena such as 
intraocular pressure and guide drug discovery. Complementarily, the prediction of 
the drug passage through the blood-ocular barrier was described to be an important 
factor to evaluate volume distribution in this organ [109].

Recently, as a novel approach bridging the animal experiments with human 
results, it was shown that in PXB mice, a chimeric mice linage with a humanized 
liver, plasma concentration-time profiles could be used to infer human’s compound 
half-life [110].

Volume of distribution is also closely related to half-life and clearance param-
eters. As the Vd is a relative measurement of the free concentration of drug in the 
blood, this same amount could be excreted by kidneys in the glomerular filtration 
(clearance). Consecutively, the rate of clearance (discussed below in Excretion sec-
tion) directly influences the amount of available drug. Naturally, the concentration 
of free drug that can bind its molecular target is related to the therapeutic dosage 
and the half-life of the administered drug (as seen in Eq. (4)).

Half-life definition. Half-life is calculated by a ratio between the Napierian 
logarithm multiplied by the volume of distribution (Vd) and renal clearance (CL):

  t1 / 2 =    Ln2 . Vd _______ 
CL

    (4)

4.3 Metabolism

Drug metabolism normally involves enzymatic modification or degradation of 
the compound to facilitate excretion via one of the major clearance organs: liver, 
kidney, spleen, or bile. While phase I enzymatic reactions include modifications 
such as oxidation, hydrolysis, and reduction to either introduce a functional group 
to the molecule or make it accessible, phase II reactions are conjugation mechanisms 
(e.g., methylation, acetylation, glutathione conjugation, amino acid conjugation, 
and others) that result in polar products that can be actively effluxed [26]. Thus, 
isozymes of the CYP450 family and efflux transporters such as P-glycoprotein and 
members of the multidrug resistance transporter MRP family are highly involved 
in the metabolism of drugs as well as drug-drug interactions, which are a major 
attrition cause. For instance, CYP3A4, CYP2C9, and CYP2D6 together catalyze the 
hepatic metabolism of about 50% of drugs, which underlines the importance of the 
superfamily. Interestingly, when CYP3A4 is expressed, usually P-glycoprotein is as 
well [8, 10, 14, 24, 111]. An approximation for metabolic behavior analysis is the use 
of either liver microsomes or S9 fractions although also recombinantly expressed 
proteins are partially in use [24, 26].

When available, the 3D structure of those proteins could be employed in 
molecular docking and molecular dynamics simulations aiming to predict the bind-
ing affinity of drugs or drug candidates aiming the estimation of a PK profile [112]. 
The metabolism prediction combines mathematical models to predict whether 
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the target compound could be a substrate of a specific enzyme in combination 
with metabolism site predictions. Usually, those initial predictions are followed 
by molecular docking simulations and quantum mechanics simulations due to the 
dependency of electronics structure from both substrate and enzyme in catalyzed 
reaction [113, 114].

Nowadays, several attempts have been made to develop in silico models for 
predicting drug metabolism, specifically site-of-metabolism (SOM), and quite 
often are also converted into online server prediction tools for general use, for 
instance, the FAst MEtabolizer (FAME) model, which was generated from a diverse 
chemical datasets of more than 20,000 molecules and their respective experimen-
tally determined metabolism sites. FAME prediction rates were comparable to other 
metabolism site predictors focused on specific enzyme families, despite using only 
seven chemical descriptors [115]. Similarly, SMARTCyp server, which initially 
relied on the 2D structure of the molecule, without considering electronic proper-
ties or generating 3D structures, to predict CYP2D6 [116], was later expanded for 
other CYP isoforms. A more refined version was later updated to include the atomic 
solvent accessible surface area, which is independent of 3D coordinates, slightingly 
improving the overall prediction accuracy for different CYP isoforms [117]. The 
newest SMARTCyp version (3.0) uses the activation energies calculated by  
the density functional theory (DFT), meaning the difference between the energy  
of the transition state and the reactant complex, to predict SOMs of molecular frag-
ments of the query in an unsupervised fashion. SMARTCyp 3.0 also calculates the 
similarity between the query molecule and the model fragment [118].

IDSite approach aims to overcome the ligand-based bias of SOM prediction by 
using it as a part of a large framework, more precisely by combining it with molecu-
lar docking, where an atom can be considered a significant SOM by a P450 enzyme 
when accessible to the reactive heme iron center, and/or quantum calculations, 
where the candidate atom must have some degree of reactivity in the absence of the 
enzyme [119]. Similarly, the work of Kingsley et al. combined different approaches 
into a framework to predict CYP2C9 substrates. They validated the predictions 
from SMARTCyp in an ensemble docking, followed by a QSAR model to account for 
influences of both the inherent reactivity of each atom and the physical structure 
of the CYP2C9 binding site [120]. This combined approach resulted in 88% of true 
SOMs accurately predicted among the top ranked sites.

4.4 Excretion

Excretion is guided by one of the major clearance organs, and the assessment 
of clearance behavior sometimes involves isolated organs or tissues [24]. Humans 
rely on the kidney clearance as a major route for xenobiotic excretion, despite other 
available routes such as feces, bile, sweat, and breath. The excretion pathways 
directly impact the concentration of available drugs and are often measured in 
terms of half-life and the initial administered dose.

The renal clearance of a drug is another important parameter, which is usually 
employed to predict drug excretion. Experimentally, clearance is defined by the 
drug concentration drug along a defined time of renal excretion by a linear equa-
tion (Eq. (5)).

Equation for renal clearance. m is the substance’s mass generation rate, K is the 
clearance and C is the concentration at the time, and V is the volume where the drug 
is distributed, or for systemic approaches the total body water.

  V .   dC ___ 
dt

   = − K . C + m  (5)
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Gombar et al. developed SVM- and MLR-based QSAR models to predict both 
systemic clearance and apparent volume of distribution from intravenous data 
[121] using as input structural fingerprints and electro-topological states (so-called 
E-states), respectively. The model performed with high accuracy, despite the highly 
diverse initial dataset employed for its generation, which points the importance of 
those models in early steps of the drug-discovery pipeline.

Also, the work of Kusama et al. established a chemoinformatic-based classifica-
tion model to predict the major clearance pathways of 141 approved drugs based 
on four physicochemical parameters: charge, molecular weight, lipophilicity, and 
protein unbound fraction in plasma, resulting in a final model with an accuracy 
of 88% [122]. This model approach was further refined by using support vector 
machine and increasing the number of relevant descriptors [123]. In order to better 
model the biotransformation processes, often the major triggers of excretion, 
the work of Berellini et al. used ELASTICO (Enhanced Leave Analog-Structural, 
Therapeutic, Ionization Class Out) to provide an appropriate sampling during the 
validation process. Their partial least-square models resulted in a highly accurate 
model derived from 754 compounds [124].

On another topic, ABCB1, also known as P-glycoprotein (P-gp or MDR1), is 
a membrane protein member of the ATP-binding cassette (ABC) transporters 
superfamily. Together with the hERG channel and CYP3A4, P-gp is one of the most 
widely studied antitarget, where its inhibition could bring consequences for several 
processes, such as the absorption, distribution, and excretion of drugs. Classical 
studies used chemometric methods to describe bioavailability in terms of P-gp 
and CYP enzyme activities, generating QSAR models based on 805 unique drug 
molecules with high accuracy (R2 = 0.80 for the test set) [125]. Alternatively, an 
approach to predict P-glycoprotein inhibition using molecular interaction fields, 
derived from a literature collection of more than 1200 structures, generated a 
pharmacophore model for competitive P-gp inhibition [126].

The most recent reported studies involving prediction of drug clearance, both 
from human and rat hepatic in vitro systems, were based on microsomes, with a 
recent emphasis on the use of hepatocytes. Wood et al. discuss the inherent limita-
tion of using human hepatocyte predictions, due to underprediction when com-
pared to in vivo clearance data, and the comments on the potential causes for those 
divergences [127].

As the pinnacle of ADME in silico approaches, the holistic physiologically based 
pharmacokinetic (PBPK) modeling was initially conceptualized by Teorell [128], 
aiming to enable the prediction of drugs’ pharmacokinetic behavior in humans using 
preclinical data. Recent PBPK models benefit from the large amount of available 
ADME data not only to aid the drug discovery process and dose regiment selection 
but also to guide the risk assessment for regulatory reviews [129]. PBPK models are 
compartmentalized representations of the different organs, and each compartment 
can be described by a specific tissue volume and blood flow rate, which communi-
cates with the blood (venous and arterial). Each organ/tissue has a unique volume, 
permeability, and eliminating anatomical constants and terms, which are deter-
mined independently from the studied drug, while other physiological drug-specific 
parameters are later incorporated, such as affinity toward plasma proteins, tissue-to-
plasma distribution rate, and even on target activity (Km, Vmax, or binding kinetics).

One of PBPK models’ important features is the perspective for the mechanistic 
and prospective prediction of a drug’s pharmacokinetic profiles. The use of drug-
dependent parameters includes, but is not limited to, physicochemical properties, 
solubility and permeability values, and also the role of individual enzymes and 
transporters in the metabolism. Those parameters can be determined in vitro 
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or calculated from the compound structure with other in silico approaches, 
which allows the early use of PBPK in the DDD (the bottom-up approach). 
Concurrently, it is also noteworthy that the model construction and parameter 
fine-tuning are a source of knowledge for the hit development, where the predic-
tions from the ongoing model can help to understand the model’s accuracy itself 
along the way (called as middle-out approach) and then prospectively be applied 
to simulate unstudied scenarios. Currently, there are several free-to-use and com-
mercially available PBPK and ADME prediction options (Table 2), which are also 
extensively reviewed and discussed by the works of Madden et al. [130].

Name Description Link/reference

ADME prediction

vNN-ADMET Public web server for ADMET property 
prediction based on 15 nearest neighbor 
models.

https://vnnadmet.bhsai.org/
[132]

Swiss-ADME Public web server for ADME property 
prediction. It has a very unique LogP 
calculation (i.LogP) based on free energy.

http://www.swissadme.ch
[133]

pkCSM ADME web server based on chemical 
fragment similarity (the so-called 
graph-based signatures).

http://biosig.unimelb.edu.au/pkcsm/
[134]

ADMETlab Web server using similarity-based 
ADME calculator models and drug-
likeness analyses.

http://admet.scbdd.com/home/index/
[135]

Schrodinger—
QikProp

Calculates pKa; LogP; water 
solubility—Schrodinger also offers 
other tools for property calculation.

https://www.schrodinger.com/
QikProp, Schrödinger, LLC, NY, 2019

DDI-Predictor DDI-Predictor is able to make 
quantitative predictions of drug 
exposure even in cases where the 
interaction has not been studied yet.

https://www.ddi-predictor.org

PBPK models and platforms

GastroPlus Comprises 10 different modules 
including PBPK modeling and in 

vitro vs. in vivo correlation, can be 
parameterized for different disease 
states and age groups.

www.simulations-plus.com

PKSIM PBK modeling tool with integrated 
database of anatomical and 
physiological parameters for humans, 
mouse, rat, dog, and monkey. Can 
model different scenarios depending on 
the chosen building blocks.

www.system sbiology.com/products/
pk-sim.html

Simcyp Incorporates databases of genetic, 
physiological, and epidemiological 
information to enable simulation of 
different populations and species, 
ultimately is able to predict ADME 
parameters.

www.simcyp.com

ADMEWORKS 
DDI Simulator

As a differential is able to predict 
drug-drug interactions using nonlinear 
models.

http://www.fqs.pl/chemistry_ 
materials_life_science/products/
ddi_simulator

Table 2. 
Tools for ADME prediction and PBPK modeling.
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Early PBPK models, such as the work of Varma et al., described another layer of 
complexity by including drug-drug interactions (DDI). The dosing time-dependent 
model considering the interaction between repaglinide with rifampicin was able to pre-
dict repaglinide plasma concentrations along a day. The model also predicted the drug 
interaction with other CYP3A4 and OATP1B1 inhibitors, which could result in further 
DDIs. Reports of DDI leading to complications in patients with particular genotype 
stimulated studies such as the one performed by Fermier et al. [131], where the effects 
of polymorphic cytochromes provided the basis for a more accurate DDI prediction.

5. Biological (large) molecules

During recent years, larger molecules (LM) have gained in significance and 
popularity, due to achievements and approvals, as new molecular entities. These 
“biologics” are normally biotechnologically synthesized or recombinantly pro-
duced compounds of biological origin such as peptides, antibodies, and nucleic 
acids [136]. From a historical perspective, drug discovery and development of 
LMs are heavily delayed in comparison to SMs with their first approved entity 
happening in the 1980s [137]. At about the same time, two major inventions 
allowed huge progress in pharmacokinetics assessment of small molecules, 
contributing to smaller drop-out rates in later DDD stages [136]. One of them was 
the improved understanding of CYP450 mechanism and the other, the invention 
of (HP)LC-MS technology, fueled the assessment of the ADME parameters. LMs’ 
discovery and development face many challenges, which demand high efforts 
to overcome but also offer unique opportunities in comparison to those of small 
molecules [138, 139].

The main differences between small and large molecules, despite the molecular 
weight, the number of heavy atoms, and torsions, can be found in the physicochem-
ical properties, such as permeability, oral bioavailability, stability, specificity, and 
immunogenicity [138, 139]. New parameters, unique for large molecules, are also of 
interest, such as the physical particle size and the hydrodynamic radius, which has 
a dramatic effect on the absorption. Both parameters are related to the overall shape 
and correlate well with MW for globular proteins, but not necessarily for unstruc-
tured or highly modified entities. As a result, biologics are normally administered 
parenterally, only targeting extracellular structures; they are also more likely to trig-
ger an immune response; and their production costs are considerably higher [139]. 
Interestingly, with the exception of the costs, these disadvantages can potentially 
be circumvented by appropriate delivery systems, for example, nanoparticle-based 
delivery to facilitate membrane permeation.

Other parameters, such as charges, which were previously modeled by pKa 
in case of small molecules, are heavily heterogeneous in LMs. The charge can be 
represented by the use of isoelectric points (pI), which are calculated from the 
available amino-acid sequence, and surface charge, which can use individual pKa’s 
and structural information to be inferred. Overall protein charge often influences 
the biologic excretion [140], since negatively charged molecules undergo less renal 
filtration disregarding size effect [141].

While representing difficulties in the development of new molecular entities, 
the aforementioned properties also offer special advantages that small molecules 
cannot cover. As such, LMs normally have longer t1/2, slower clearance, and higher 
selectivity; are multifunctional; and rarely expose drug interactions [139]. Apart 
from those, it was suggested that only 2–5% of the human genes can be targeted by 
small molecules, offering a niche for LMs’ application against several diseases [138].
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The increasing effort and development of new technologies, driven by the belief 
in higher success rates, enabled the latest advances in the field [138]. For instance, 
currently, peptide drugs only account for ~2% of the drug market but are in use in 
a wide range of diseases such as acromegaly and multiple sclerosis, together with 
different cancer types such as prostate and breast cancer.

Several other biologics are currently in use, namely monoclonal antibodies 
(mAbs) and bispecific antibodies (bsAbs), as example agents that activate or 
enhance the immunologic response. Of special interest in cancer therapy is a sub-
class of bsAbs, so-called bispecific T-cell engager (BiTEs), which can recruit CD3 
cells at the tumor site by binding to both cell types thereby directing the immuno-
logical response [142].

Other interesting examples for biologics comprise hormones (e.g., insulin), 
cytokines (such as erythropoietin, EPO; IL-1; IL-2; IL-6) [143], nucleic acids such 
as siRNA (ONPATTRO) [144], and aptamers (Pegaptanib) [145]. While such a 
broad spectrum of molecule classes offers also a wide range of treatments, at the 
same time, it exacerbates the need for new developments since every molecule type 
exhibits different properties. In the field of predicting the biologics activity against 
specific targets, classical modeling tools, such as Monte Carlo sampling, genetic algo-
rithms, docking, and molecular dynamics simulation, were adapted or even devel-
oped anew to accommodate the specifics (as extensively reviewed by [146, 147]).

On the other hand, the absence of standard techniques to assess ADME proper-
ties hampers the PK profiling and thus further development [136]. In fact, the 
current knowledge of LM pharmacokinetics is even impaired compared to the basic 
knowledge of ADME principles for small molecules in the 1980s [136]. Although 
the basic PK principles are similar between SMs and LMs, the specific mechanisms 
influencing each step of ADME are different. To begin with, the route of adminis-
tration between them can differ, which leads to different mechanisms of absorption 
and first-pass metabolism. Furthermore, LMs are not metabolized by CYPs but can 
still trigger the release of pro-inflammatory cytokines leading to heavy side effects 
known as cytokine storm [136, 139]. Also, other modifications play a role in biolog-
ics ADME, namely glycosylation, PEGylation, and neonatal Fc receptor (FcRn) 
interactions [139, 148]. Unfortunately, up until now, most of the evaluation of those 
factors is only addressed on in vivo level systems, which are not suited for HTS, are 
expensive and labor intensive, and require longer bioethics evaluation.

In this regard, the development of in vitro and in silico methods to evaluate 
ADME should be a high-profile goal. One of the main challenges will be to find 
a way to integrate as many of the biologics into the process in order to facilitate 
ADME assessment and guide large molecules’ DDD as already implemented for 
their smaller counterparts.

6. Conclusions

The main difficulties in PK profiling lie in the high costs and comparable low 
throughput of in vivo models. The extensive use of animals in DDD also raises ethi-
cal issues and is further affected since animal models not always translate readily to 
the humans, especially in terms of metabolism [149, 150]. Furthermore, the advent 
of combinatorial chemistry coupled with HTS for efficacy evaluation leads to an 
explosion in the number to an extent that the classical PK assays could not compen-
sate [29, 47]. In vitro PK screens are supposed to offer a solution to the problem by 
complementing in vivo assessment to reduce costs while increasing efficiency, but 
they also suffer from shortcomings. In general, one must distinguish between two 
main forms of in vitro systems: static and dynamic models. Only dynamic models 
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are suited for PK evaluation because they allow variation of compound concentra-
tions, a key factor in pharmacokinetics. In this sense, diffusion-based dynamic in 
vitro models offer a solution but still are quite limited in terms of high throughput 
and costs. An alternative was presented by Lockwood and colleagues in the form 
of a 3D-printed fluidic device utilizing trans-well technique generating dynamic in 
vitro PK profiles also applicable for HTS infrastructure [149].

What distinguishes the DDD “then” and “now” is principally two main changes. 
First, in the past, pharmaceutical companies as well as academic laboratories were not 
that concerned with ADMET assessment in the early stages of drug discovery (hit and 
lead generation) and only addressed PK from preclinical stages on forward. Instead, 
HTS/HCS, genomics, and computational chemistry were high-profile areas. Today, 
almost all pharmaceutical big-players have shifted pharmacokinetic profiling to dis-
covery phases. However, only the future will tell whether those changes will yield fruit.

Second, CADD became more and more part of the DDD pipeline in dif-
ferent stages facilitating fast screening of compounds in silico and supporting 
QSAR. Although bioinformatics techniques already substituted many in vitro tests, 
basically all of them require in vitro and/or in vivo validation and standardization 
to guarantee trustable predictions. Another important aspect, recently addressed 
by the work of Ferreria and Andricopulo [151], is the importance of translating 
those models into well-structured and user-friendly (online) platforms that can be 
accessed and used by the drug discovery community. Still, the efficacy and reli-
ability of computer simulations increase permanently and drastically, and many see 
a future of solely virtual drug discovery. Thankfully, these failures resulted in the 
consequence of addressing safety and efficacy concern earlier in the drug discovery 
process, for instance, via in vitro screens to assess metabolic stability and absorption 
properties and diminish failure rates later on [13].
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