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FPGA Based Acceleration  
for Image Processing Applications 

Griselda Saldaña-González and Miguel Arias-Estrada 
Computer Science Department 

National Institute for Astrophysics, Optics and Electronics (INAOE) 
Puebla, Mexico 

1. Introduction     

Image processing is considered to be one of the most rapidly evolving areas of information 
technology, with growing applications in all fields of knowledge. It constitutes a core area of 
research within the computer science and engineering disciplines given the interest of 
potential applications ranging from image enhancing, to automatic image understanding, 
robotics and computer vision. The performance requirements of image processing 
applications have continuously increased the demands on computing power, especially 
when there are real time constraints. Image processing applications may consist of several 
low level algorithms applied in a processing chain to a stream of input images. In order to 
accelerate image processing, there are different alternatives ranging from parallel computers 
to specialized ASIC architectures. The computing paradigm using reconfigurable 
architectures based on Field Programmable Gate Arrays (FPGAs) promises an intermediate 
trade-off between flexibility and performance (Benkrid et al., 2001). 
The present chapter is focused on how a well defined architecture can deliver high 
performance computing in a single chip, for image processing algorithms, in particular 
those based on window processing, i.e. convolution. The core architecture is a parallel 
processors array that can be the basis for processing several image algorithms based on 
window processing. The architecture is targeted to a single medium size FPGA device 
following the reconfigurable computing paradigm. The idea is to propose a platform that 
allows the acceleration of the computationally demanding part of a family of image 
processing algorithms. 
The architecture introduces a new schema based on the use of local storage buffers to reduce 
the number of access to data memories and router elements to handle data movement 
among different structures inside the same architecture. These two components interact to 
provide the capability of processes chaining and to add flexibility to generalize the 
architecture functionality in order to constitute a versatile and scalable hardware platform. 
The architecture copes with window-based image processing algorithms due to the fact that 
higher level algorithms use the low-level results as primitives to pursue cognitive level 
goals.  
The contribution shows several variations of the architecture for convolution, 2D-filtering 
and motion computation. The motion computation correlation based algorithm and 

Source: Image Processing, Book edited by: Yung-Sheng Chen,  
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architecture are further detailed in order to show the flexibility on one of the most 
computational demanding algorithms in image processing.  
The obtained results show the benefits that can be provided by a system implemented with 
FPGA technology and reconfigurable computing, since a high degree of parallelism and a 
considerable hardware resource reutilization is reached. Furthermore, with a standard 
medium size FPGA, a peak performance of 9 GOPS can be achieved, which implies 
operation in video rate speed.  
Finally in this chapter some conclusions are presented emphasizing the key aspects of this 
approach to exploit both spatial and temporal parallelism inherent in image processing 
applications. The contribution concludes with some guidelines learned from the architecture 
design exploration. New opportunities, recommendations and future work are discussed. 

2. Low-level image operators 

Low-level image processing operators can be classified as point operators, window 
operators and global operators, with respect to the way the output pixels are computed 
from the input pixels (Umbaugh, 1998). 
A window-based image operator is performed when a window with an area of w×w pixels 
is extracted from the input image and it is transformed according to a window mask or 
kernel, and a mathematical function produces an output result (Li & Kunieda, 1999). The 
window mask is the same size as the image window and their values are constant through 
the entire image processing. The values used in the window mask depend on the specific 
type of features to be detected or recognized. Usually a single output data is produced by 
each window operation and it is stored in the corresponding central position of the window 
as shown in Fig. 1. 
 

 

Fig. 1. Schematic representation of a window based operation 

Window-based operations can be formalized mathematically as follows. Let I be an M×N 
input image, Y the output image, and W a w×w window mask. A window operation can be 
defined by Equation (1): 
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Where wij represents a coefficient from the window mask W, Ir+i, c+j represents a pixel from a 
w×w window around the (r, c) pixel in the input image, f defines a scalar function, and F 
defines the local reduction function.  
Window-based operators are characterized because the same scalar function is applied on a 
pixel by pixel way to each individual pixel of one or more input images to produce a partial 
result. Common scalar functions include relational operations, arithmetic operations, and 
logical operations. The local reduction function reduces the window of intermediate results, 
computed by the scalar function, to a single output result. Some common local reduction 
functions employed are accumulation, maximum, and absolute value. Scalar and local 
reduction functions form the image algebra to construct window-based image applications. 
In order to implement a flexible architecture these functions are considered (Torres-Huitzil 
& Arias-Estrada, 2005); (Ballard & Brown, 1982); (Bouridane et al., 1999). 

3. Architecture description 

The rectangular structure of an image intuitively suggests that image processing algorithms 
map efficiently to a 2D processors array, therefore the proposed architecture consists of a 
main module based on 2D, customizable systolic array of w×w Processing Elements (PEs) as 
can be observed in Fig. 2 diagram. 
The main purpose of the architecture is to allow processes chaining, therefore the basic 

scheme shown in Fig. 2, can be replicated inside the same FPGA several times in order to 

process different algorithms independently. This processes chaining scheme provides the 

advantage of using a reduced bandwidth for communication between processing blocks 

since all of them are inside the same FPGA. 

 

 

Fig. 2. Block diagram of the architecture 
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The simplified block diagram of the architecture shown in Fig. 2 comprises six main blocks: 

• A high level control unit  

• An external main memory   

• A dedicated processor array  

• Routers  

• Image buffers  

• Internal buses 
High Level Control Unit: This unit could be placed in a host PC or embedded in the FPGA. 
The main purpose of the control unit is to manage the data flow and synchronize the 
different operations performed in the architecture. The high level controller starts and stops 
the operation in the system, furthermore, it is responsible of image capturing and 
displaying. From the PC it is possible to choose a particular operation that can be performed 
by the PEs in the systolic array, to coordinate operations and to manage bidirectional data 
flows between the architecture and the PC. From this unit, the user can select configuration 
parameters to customize the architecture functionality; the parameters include the size of the 
images to be processed, the coefficients for the mask to be used during processing and the 
kind of arithmetic to be employed between integers or fixed-point. 
Main Memory: The memory in the architecture is a standard RAM memory for storing data 
involved in the computations. The data in the memory are accessed by supplying a memory 
address. The use of these addresses limits the bandwidth to access the data in the memory, 
and constrains the data to be accessed through only one memory port. Furthermore, the 
time to access the data is relatively long, therefore a buffer memory is included to store the 
data accessed from memory and to feed the processor array at a much higher rate. The 
buffers are used to re-circulate the data back to the processors, and they reduce the demand 
on main memory. An important issue to be solved is the allocation of area to implement 
data buffers. To obtain good performance one of the issues in the architecture design is, 
therefore, how to schedule the computations such that the total amount of data accesses to 
main memory is bounded. 
Processor Array: The processor array is the core of the architecture where the PEs are 
organized in a 2-D systolic approach; and where the algorithms are executed. The processor 
array obtains image pixels from the buffers, and mask coefficients from memory to start a 
computation cycle. The processing array achieves a high performance due to a pipelined 
processing schema and local connections without long signal delays. The array organization 
with a small number of boundary (I/O) processors reduces the bandwidth between the 
array and the external memory units. The control unit specifies and synchronizes the actions 
to be performed in the PEs.  
Routers: The Router unit is responsible for all data transfers in and out of the systolic array 
as well of interfacing processing modules to external memories. The data streams routers 
take data from/to input/output image memories and make explicit the data parallelism 
usually found in the image processing. The incoming data is stored in external memory 
RAM and data is brought into a set of internal buffers prior to be processed in parallel. The 
processed data by a processing block can be stored and then transmitted to an external 
memory output using a router. 
Buffers: The purpose of the buffers is to supply data to the processors array and mask the 
long main memory latencies. The buffers have a fixed amount of storage to keep some rows 
of the input image or the intermediate data from a processing module. The storage buffers 
are organized in a First-Input, First-Output (FIFO) style. In each clock cycle, the data present 
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at the buffers are sent to the processors array or to the main memory. Address decoding for 
the buffer is carried out using pointers that make reference to the buffer row that is being 
processed or being filled.  These pointers allow a circular pattern in data movement inside 
the buffers. The buffer basically performs the following operations: 

• Pre-fetches data from the main memory into its rows to hide the memory latency 

• Reorders the information according to the processing needs of the algorithm to increase 
parallelism 

• Stores intermediate information for its reutilization in subsequent processing blocks 
Internal Buses: The global bus interconnects architecture elements to interchange back and 
forward control or configuration information, i.e. mask coefficients. In addition, this bus is 
connected to the high level control unit placed in a Host processor which is in charge of data 
and parameters transfer via Direct Memory Access (DMA) with the processor. 
This architecture schema resembles a high level pipeline representation, formed of memory 
units and computing units. The architecture is intended for data communication among 
processes using data buffers abstraction. With these elements it is possible to chain 
processes since different processing blocks inside the same FPGA can carry out a different 
window-operator over the same data set. The results obtained by each block can be stored in 
the output image buffers and reused by subsequent processing blocks. This structure of 
cascading interconnection is a key feature of the architecture since it supplies generality to 
the array of processors, providing enough flexibility to run a variety of low-level processing 
algorithms and constitutes a platform to pursue the implementation of higher complexity 
algorithms. 

3.1 Systolic array 
The processor block of the architecture is shown in Fig. 3. In our implementation, the 
systolic array is a 7×7 set of configurable PEs. A window mask corresponds to the whole 
array, with every PE representing a pixel from the input image. The PEs array is vertically 
pipelined, PEs are activated progressively every clock cycle as shown in Fig. 4. 
At every clock cycle all PEs in an array column receive the same column of image pixels but 
mask coefficients are shifted from left to right between the array columns to calculate the 
window operation. Partial results are shifted to a Local Data Collector (LDC) in charge of 
accumulate results located in the same column of the array and the captured results are sent 
to the Global Data Collector (GDC). The GDC stores the result of a window processed and 
sends it to the output memory buffer.  
After a short latency period, all PEs in the array are performing a computation according to 
a control word. From that moment on, each new column of pixels sent to the array shifts the 
window mask to a new adjacent position until the whole image has been visited in the 
horizontal direction. 
If reading image pixels from the buffer one row below, it is possible to cross the image in the 
vertical direction. The image buffer is updated during PEs operation, in a circular pipeline 
schema. 
This image buffer was implemented with two port BlockRAM memories, where image 
pixels are stored as neighboring elements. 
Routers take data from the input image memories and transfer them to the input buffers that 
store as many rows as the number of rows in the mask used for processing a window. An 
additional row is added to the buffer to be filled with new image data in parallel with the 
rows being processed; in this way the memory access time is hidden. Each time a window is  
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Fig. 3. 2D systolic array implementation 

 

Fig. 4. PEs activation schema 

slid in the vertical direction, a new row in the buffer is chosen to be refreshed with input 
image data, following a FIFO style. When the buffer end is reached, the first buffer row is 
reused following in this way the circular pattern as is represented in Fig. 5. 
The coefficients of the window mask are stored inside the architecture in a memory bank 
that is able to shift data from one element to its neighbor. A shift register bank is distributed 
on internal registers of the processing elements to delay the mask coefficients. 
In a similar way to the one used to read the input data, the memory containing the 
coefficients of the window mask of a window operator is read in a column-based scan. Fig.6 
shows the reading process of the mask coefficients as time progresses. The coefficients are 
read sequentially and their values are transmitted to different window processors when an 
image is being processed. 
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Fig. 5. Circular pipeline in the buffer memory 

 

Fig. 6. Reading pattern for window mask 

The reading process of the window mask coefficients and input image pixels requires a 
synchronization mechanism to match the operations sequence. 
For simplicity the control unit for the systolic array has not been show in Fig. 2. This module 
is in charge of generating all the control and synchronization signals for the elements of the 
architecture. 
The control unit synchronizes external memory, input and output buffers banks, and 
systolic array computations. The control unit indicates which processors execute an 
operation and when a result must be sent to the output storage elements. The control unit 
has been decomposed into local and simpler control circuits which are synchronized 
through a restricted set of signals. Therefore several distributed control sub-units exist in the 
systolic array to manage data flow in the PEs, to generate output memory addresses, and 
systolic array computations.  

3.2 Processing element 

Each PE has been specially designed to support the operations involved in most window-
based operators in image processing: Multiplication, addition, subtraction, accumulation, 
maximum, minimum, and absolute value. 
One processing element comprises one arithmetic processor (ALU) and a local reduction 
module (Accumulator) and can be configured by a control word selected by the user as can 
be observed in Fig. 7. 
The PE has two operational inputs, incoming pixels from the input image (p) and 

coefficients from the window mask (w). Each PE has two output signals, the partial result of 

the window operation and a delayed value of a window coefficient (wd) that is transmitted 

to its neighbor PE. For every clock cycle, each PE executes three different operations in parallel: 

Rows been 
processed

Row been 
refreshed 

T0 TN
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Fig. 7. Processing element implementation 

• Computes the pixel by pixel value to be passed to the next computation cycle 

• Integrates the contents of the outputs registers calculated at the previous clock cycle, 
with the new value produced in the arithmetic processor (ALU). 

• Reads a new mask coefficient and stores it into the register. Then, transmits the 
previous coefficient to the next PE. 

When the systolic pipeline is full a window output is obtained every cycle providing a 
throughput of 1. 

4. Extension to the architecture for motion computation 

In order to provide more capacity to the architecture and to turn it into a real platform, the 
basic structure has been modified to support the Motion Estimation (ME) algorithm. To 
implement ME in coding image applications, the most popular and widely used method, is 
the Full Search Block-Matching Algorithm (FBMA) (Gui-guang & Bao-long, 2004). 
The FBMA divides the image in squared blocks, macro-block (MB), and compares each 

block in the current frame (reference block) with those within a reduced area of the previous 

frame (search area) looking for the best match (Kuhn, 1999). The matching position relative 

to the original position is described by a motion vector, as has been illustrated in Fig. 8. 

Ik(x, y) is defined as the pixel intensity at location (x, y) in the k-th frame and Ik-1(x, y) is the 

pixel intensity at location (x, y) at the k-1-th frame. For FBMA motion estimation, Ik-1(x, y), 

represents usually a pixel located in the search area of the size R2 = Rx×Ry pixel of the 

reference frame and Ik(x, y) belongs to the current frame. The block size is defined as         

N2= N×N pixel. Each individual search position of a search scheme is defined by          

CMV  = (dx, dy). 

The matching procedure is made by determining the optimum of the selected cost function, 
usually Sum of Absolute Differences (SAD), between the blocks (Saponara & Fanucci, 2004). 
The SAD is defined as: 

 ∑ ∑
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Fig. 8. Block-matching for motion estimation 
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The motion vector MV  represents the displacement of the best block with the best result 

for the distance criterion, after the search procedure is finished. 
Due to the nature of Equation (2) the FBMA can be formulated as a window-based operator, 
though some aspects must be considered: 

• The coefficients of the window mask are variable and new windows are extracted from 
the first image to constitute the reference block. Once the processing in the search area 
has been completed, the window mask must be replaced with a new one, and the 
processing goes on the same way until all data is processed. 

• The different windows to be correlated are extracted in a column-based order from the 
search area to exploit data overlapping and sharing. The pixels are broadcasted to all 
the processors to work concurrently. 

Based on these characteristics, the processing block has been modified to support SAD 
operation required for FBMA. 
When the SAD value is processed, data is available in a row format therefore when blocks 
are processed vertically; previous read data in the search area are overlapped for two block 
search as shown in Fig. 9. 
In order to reuse the image pixel available, the PE has been modified to work with a double 
ALU scheme to process two blocks in parallel. The final structure is observed in Fig. 10. 

5. Performance discussion 

In this chapter some representative algorithms based on windows-operators convolution, 
filtering, matrix multiplication, pyramid decomposition and morphological operators have 
been presented in order to validate the correct functionality of the proposed architecture 
and its generalization as a hardware platform. The technical data presented for each version  
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Fig. 9. Data overlapped between search areas in the horizontal and vertical direction for ME 

 

 

Fig. 10. PE modified structure to support ME algorithm 

of the architecture constitute a measurement of its performance. The three main parameters 
considered are the speed, the throughput and the power consumption. Table 1 summarizes 
the results obtained for this set of algorithms. 
 

Application Number of Slices 
Clock 

Frequency 
Power 

Consumption 

Convolution 11,969 out of 19200 66 MHz 2.017 W 

Filtering 11,969 out of 19200 66 MHz 2.017 W 

Matrix 
multiplication 

11,969 out of 19200 66 MHz 2.017 W 

Gaussian pyramid 11,969 out of 19200 66 MHz 2.017 W 

Erosion 12,114 out of 19200 66 MHz 2.4 W 

Dilation 12,074 out of 19200 66 MHz 2.017 W 

Table 1. Summary of the architecture performance 

B1 B2

B3 B4

Data reused  
by double ALU 
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From this table it can be observed little variations in the area occupied according to the 
algorithm being performed. These changes are due to the configuration selected for the PEs 
and the scalar operation being performed. However the performance and power 
consumption practically remain the same. 
In order to establish the advantages of the presented architecture, the results obtained in 

Table 1 needs to be compared with previous implementations of image processing 

architectures; even though most performance metrics are rarely reported for architectures 

and systems in literature. This lack of standard metrics for comparison makes difficult to 

determine the advantages of a given system.   

(DeHon, 2000) proposed a model to compute the hardware resource utilization in a system 

considering the fabrication technology. This model provides a standard metric that allows 

doing a fair comparison between systems measuring the silicon area in feature size units 

rather than in absolute units. 

The silicon area required by the architecture is computed in terms of the feature size in λ. 

Considering data for the XCV2000E device and the results obtained by (DeHon, 2000) and 

(Torres-Huitzil, 2003) it is possible to present a comparison with previous architectures. For 

this purpose the execution time, given in milliseconds, and the silicon area occupied are 

considered as main metrics. The assessments were made considering that the systems deal 

with the same algorithm and they use the same image size. Table 2 presents the technical 

details for the chosen architectures. 
 

System Architecture Application 
Image 
Size 

Timing 
Silicon 

Area 

(Rosas, 2005) 
SIMD FPGA-

based 
3×3 Filtering 

 
640×480 23.04 ms 

Not 
reported 

(Vega-
Rodriguez, 2004) 

FPGA-based 
3×3 Filtering 

 
640×480 868.51 ms 322 Gλ2 

(Torres-Huitzil, 
2003) 

Systolic 
FPGA-based 

7×7 Generic 
Window-based 
Image operator 

640×480 9.7 ms 15 Gλ2 

(Vega-
Rodriguez, 2002) 

Systolic 
FPGA-based 

7×7 Median 
Filter 

640×480 998.20 ms 1.41 Gλ2 

(Herrmann , 
2004) 

Von 
Newman 

3×3 Generic 
Convolution 

640×480 2863 ms N/A 

Proposed 
Architecture 

Systolic 
7×7 Generic 

Window-based 
operators 

640×480 5 ms 26.7 Gλ2 

Table 2. Performance for different architectures 

In summary, the proposed architecture provides a throughput of 5.9 GOPs for this set of 

algorithms on a chip area of 26.7 Gλ2 with an estimated power consumption of 2.4 W 

running at 66 MHz clock frequency, which is a good compromise in area and power 

consumption for the attained performance. From these results it can be shown that it is 

possible to achieve real-time performance for applications based on windows operators. 

Furthermore, the capacity of generalization for the proposed schema has been established. 
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6. Implementation and results 

For test and validation purposes, a RC1000 board from Celoxica that supports a XCV2000E 

XILINX Virtex-E FPGA with up to 2 million system gates, 640×480 gray-level images and 

sequences were used. Even though window masks of different size can be employed, only 

results for 7×7 are presented.  Technical details for the implementation are shown in Table 3. 

The hardware resource utilization for the complete architecture is about 63% of total logic 

available in the FPGA.When the double ALU scheme is activated the Peak performance 

grows up to 9 GOPs. 

 

Element Specification 

Virtex-E XCV2000E 

FPGA technology 0.18 µm 6-layer metal process 

Number of PEs 49 

Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Number of Block RAMs: 13 out of 160 

Number of Slices 12,114 out of 19200 

Number 4 input LUTs 19,163 out of 38,400 

Number of Flip Flops 4,613 out of 38,400 

Overall % occupancy 63% 

Clock frequency 66 MHz 

Estimated Power 
Consumption 

2.4 W 

Peak performance ~5.9 GOPs 

Table 3. Technical data for the entire architecture 

In order to prove the architecture versatility several window-based algorithms have been 

tested in the FPGA board, filtering, erosion, dilation, Gaussian pyramid, and matrix by 

matrix multiplication. Some images examples obtained during experiments are shown in 

Fig. 11. 

Table 4 summarizes the technical details obtained for the motion estimation algorithm. 

7. Conclusions and future work 

In this paper a versatile, modular and scalable platform for test and implementation of low-

level image processing algorithms under real-time constraints was presented.  

The architecture consists of a programmable array of processors organized in a systolic 

approach. The implementation can achieve a processing rate of near 5.9 GOPs with a 66MHz 

clock frequency for the window processing. The performance increased to 9 GOPs for the 

motion estimation architecture extension. The high-performance and compact hardware 

architecture opens new and practical possibilities to mobile machine vision systems where 

size and power consumption are hard constraints to overcome. 
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Fig. 11. Window-based algorithms implemented: (a) Filtering, (b) Morphologic Operators,         
(c) 2 level Gaussian pyramid, (d) Matrix Multiplication. 

The configurable architecture developed can be use to support different algorithms based on 

windows processing such as generic convolution, filtering, gray-level image morphology, 

matrix multiplication and Gaussian pyramid. In addition the architecture provides support 

to the algorithm of motion estimation that is one of the most computationally demanding in 

video applications achieving bandwidth efficiency for both transmission and storage with 

reduced power consumption. 

The programmability of the proposed architecture provides the advantage of being flexible 

enough to be adapted to other algorithms such as template matching and stereo disparity 

computation, among others. In this sense, considering the broad range of algorithms that 

can be implemented in the architecture, it is a convenient platform to develop and accelerate 

image processing applications under real-time constraints.  

The platform has proven to be capable of handling a large amount of data with low area 
utilization, to benefit from parallelism as well as to attain a higher data transfer using a 
reduced bus bandwidth. The main focus has been placed on communication, and the 
possibility of processes chaining. Image buffers and Router elements allow cascade 
connection of several processing stages.  
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Element Specification 

Virtex-E  XCV2000E 

FPGA technology 0.18 µm 6-layer metal process 

Number of PEs 49 

Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Number of Block RAMs: 18 out of 160 

Number of Slices 12,100 out of 19200 

Number 4 input LUTs 5,600 out of 38,400 

Number of Flip Flops 7,742 out of 38,400 

Overall % occupancy 65% 

Clock frequency 66 MHz 

Estimated Power 
Consumption 

3 W 

Peak performance ~9 GOPs 
 

Table 4. Technical data for ME algorithm 

The performance comparison with other existing architectures confirms the promising 

advantages of the proposed FPGA-based systolic architecture over other conventional 

approaches. Its performance has been evaluated for the previous window-based algorithms 

with excellent results that validate the proposed high-performance architectural model.  

Furthermore, the design can be extended using dynamic reconfiguration techniques at high 

level, that is, the processor array could be reconfigured for different parts of a high level 

image processing chain, reusing the existing Routing, I/O Buffer and Data Flow Control 

structures. Dynamic reconfiguration allows modifying an application architecture at run 

time, therefore the platform capacities can be extended beyond what has been presented in 

this chapter without large increase in FPGA resource requirements. Selectively modification 

of the system operation at run time would allow the architecture to execute a sequence of 

different window-based operators to processes chaining, reusing the same hardware 

resources which implies a reduction in area occupancy and power consumption. This 

approach is currently been explored in order to determine its capacities. 
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