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Parallel MATLAB Techniques 

Ashok Krishnamurthy, Siddharth Samsi and Vijay Gadepally 
Ohio Supercomputer Center and Ohio State University 

U.S.A. 

1. Introduction      

MATLAB is one of the most widely used languages in technical computing.  Computational 
scientists and engineers in many areas use MATLAB to rapidly prototype and test 
computational algorithms because of the scripting language, integrated user interface and 
extensive support for numerical libraries and toolboxes. In the areas of signal and image 
processing, MATLAB can be regarded as the de facto language of choice for algorithm 
development. However, the limitations of desktop MATLAB are becoming an issue with the 
rapid growth in the complexity of the algorithms and the size of the datasets.  Often, users 
require instant access to simulation results (compute bound users) and/or the ability to 
simulate large data sets (memory bound users). Many such limitations can be readily 
addressed using the many varieties of parallel MATLAB that are now available (Choy & 
Edelman, 2005; Krishnamurthy et al., 2007). In the past 5 years, a number of alternative 
parallel MATLAB approaches have been developed, each with its own unique set of features 
and limitations (Interactive Supercomputing, 2009; Mathworks, 2009; MIT Lincoln 
Laboratories, 2009; Ohio Supercomputer Center, 2009). 
In this chapter, we show why parallel MATLAB is useful, provide a comparison of the 
different parallel MATLAB choices, and describe a number of applications in Signal and 
Image Processing: Audio Signal Processing, Synthetic Aperture Radar (SAR) Processing and 
Superconducting Quantum Interference Filters (SQIFs). Each of these applications have been 
parallelized using different methods (Task parallel and Data parallel techniques). The 
applications presented may be considered representative of type of problems faced by signal 
and image processing researchers. This chapter will also strive to serve as a guide to new 
signal and image processing parallel programmers, by suggesting a parallelization strategy 
that can be employed when developing a general parallel algorithm. The objective of this 
chapter is to help signal and image processing algorithm developers understand the 
advantages of using parallel MATLAB to tackle larger problems while staying within the 
powerful environment of MATLAB.  

2. Parallel MATLAB overview 

The need for parallel MATLAB is presented in (Choy & Edelman, 2005) and the need for 
parallelizing MATLAB in particular can be summarized as follows: 
1. MATLAB is user friendly 
2. MATLAB is popular 

Source: Image Processing, Book edited by: Yung-Sheng Chen,  
 ISBN 978-953-307-026-1, pp. 572, December 2009, INTECH, Croatia, downloaded from SCIYO.COM
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In a survey of parallel MATLAB technologies, nearly 27 parallel MATLAB technologies 
were discovered. Many of these technologies are defunct, while many of these technologies 
are actively under development, with a large user base and active developer base. In our 
experience, three of these technologies stand out in terms of such factors. 
In this section, we introduce three alternatives for parallel computing using MATLAB. The 
technologies we will be looking at are: pMATLAB+bcMPI, the Parallel Computing Toolbox 
(PCT) with MATLAB Distributed Computing Server and Star-P. 

2.1 bcMPI 

Traditionally, researchers have used MatlabMPI (Kepner & Ahalt, 2003) for parallel 
computing in MATLAB. bcMPI is an open source software library that is an alternative to 
MatlabMPI and is geared towards large, shared supercomputer centers. The bcMPI library 
was developed at the Ohio Supercomputer Center (OSC) to provide an efficient, scalable 
communication mechanism for parallel computing in MATLAB while maintaining 
compatibility with the MatlabMPI API (Hudak et al., 2007). The bcMPI package consists of 
an interface to the MPICH or OpenMPI library and a toolbox for MATLAB that implements 
a subset of the MatlabMPI API calls. bcMPI has been developed primarily on the Linux 
platform, but it has also been tested on the Mac OS-X, NetBSD and IA32 platforms. At its 
core, bcMPI is a C library that supports a collection of MATLAB and Octave data types.  The 
bcMPI software architecture is as shown below:  
 

 

Fig. 1. bcMPI Architecture 

Figure 1 illustrates the relationship between the vaious layers in the bcMPI architecture. The 
bcMPI library provides functions for synchronous as well as asynchronous communication 
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between the MATLAB processes. It supports basic MPI functions as well as collective 
operations such as MPI_Reduce, MPI_Gather and MPI_Barrier. bcMPI also has an efficient 
implementation of the MPI_Broadcast function using the underlying MPI library. bcMPI has 
the advantage that it can use any MPI libraries even thought it has been tested actively with 
the OpenMPI and MPICH libraries.  bcMPI interfaces with pMATLAB (a parallel MATLAB 
extension developed by MIT Lincoln Laboratory) (Bliss & Kepner, 2007) for distributed data 
processing. The combination of pMATLAB and bcMPI is denoted as pMATLAB+bcMPI. 
pMATLAB+bcMPI uses a layer of abstraction beyond traditional MPI calls and reduces 
programming complexity. With this combination, a user would not need to use explicit 
message passing calls to distribute data, as the pMATLAB application would perform these 
actions.  

2.2 Parallel computing toolbox 

The Parallel Computing Toolbox (PCT) along with the MATLAB Distributed Computing 

Server (MDCS) are commercial products offered by The MathWorks Inc. While the core 

MATLAB software itself supports multithreading, the PCT provides functionality to run 

MATLAB code on multicore systems and clusters. The PCT provides functions for parallel 

for-loop execution, creation/manipulation of distributed arrays as well as message passing 

functions for implementing fine grained parallel algorithms.  

The MATLAB Distributed Computing Server (MDCS) gives the ability to scale parallel 

algorithms to larger cluster sizes. The MDCS consists of the MATLAB Worker processes that 

run on a cluster and is responsible for parallel code execution and process control. Figure 2 

illustrates the architecture of PCT and MDCS 
 

 

Fig. 2. The Parallel Computing Toolbox and MATLAB Distributed Computing Server 

The PCT also allows users to run up to 8 MATLAB Labs or Workers on a single machine. 

This enables interactive development and debugging of parallel code from the desktop. 

After parallel code has been developed, it can be scaled up to much larger number of 

Worker or Labs in conjunction with the MDCS. 
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2.3 Star-P 

Star-P is a client-server parallel computing platform for MATLAB available from Interactive 
Supercomputing. The architecture of Star-P is shown in the figure below: 
 

 

Fig. 3. Star-P Architecure 

Figure 3 illustrates the structure of Star-P, and difference between the Star-P client and 

server. Star-P supports fine grained parallel as well as embarrassingly parallel modes of 

operation (these modes of operation are discussed in the next section). The biggest 

advantage offered by Star-P is that it eliminates the need for the developer to use explicit 

Message Passing Interface (MPI) message passing calls for communicating between the 

back-end processes. By using the “*p” construct, users can simply indicate the variables or 

data that are meant to be distributed over the back-end processes.   

3. Parallel programming 

The goals of most parallel computing algorithms include either reduction in computation 
time (for compute bound users) or analysis of larger data sets/parameters sweeps (for 
memory bound users) or some combination of both. This can also be described as a 
capability or capacity problem. In many cases, analysis involves small data sets, but the time 
required to analyze the desired data along with a wide enough parameter sweep on the 
same can make it impractical to run such analyses. In such (and a variety of other) cases, the 
use of parallel computing techniques can enable researchers to employ large numbers of 
processors to run comprehensive analyses in a reasonable amount of time. For example, the 
reconstruction of micro-CT images to generate 3D models may take up to 13 hours on a 
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single machine. This can be reduced significantly simply by running the reconstruction 
algorithm in a parallel fashion. In other applications such as automated image analysis in 
medicine, the data sets tend to be large, with individual images ranging in the multiple 
gigabytes. In such cases, it may not be possible to load the data into memory and analyze 
the images. At the Ohio Supercomputer Center, we have observed that reading in images as 
large as 60000x60000 pixels in resolution on a single machine with 32GB RAM can take 
upwards of 30 minutes. Running simple algorithms on such large images becomes 
impractical, with software stability also becoming a concern. Furthermore, given many such 
images for analysis, the time required to run a single analysis on all images becomes 
impractical and parameter sweep studies become constrained by time. High resolution 
images obtained from tissue biopsies can be as large as 30-40GB each, and with the existing 
software and hardware limitation it is not possible to read in entire images on a single 
processor, thus leading to the problem of capability. In such cases, a simple solution is to use 
parallel computing in MATLAB to process parts of the image on separate processors to 
address problem.  
Broadly, parallel algorithms can be divided into two categories: Task Parallel and Data 

Parallel. Task parallel (or Embarrassingly Parallel) algorithms take advantage of the fact that 

multiple processors can work on the same problem without communicating with each other. 

Typical cases of such algorithms include Monte Carlo simulations where the order of 

computations in a large loop are independent of each other and can be performed in any 

order without affecting the results. Similarly, another application ideal for task parallelism 

involves processing multiple datasets using the same algorithm. In such cases multiple 

processors can analyze subsets of the data simultaneously without the need for inter-

processor communication. Data parallel (or Fine Grained Parallel) algorithms typically 

involve some inter-processor communication. In such algorithms the data to the analyzed is 

typically too large to be analyzed on a single processor. Parallel computing paradigms are 

used to distribute the data across processors and each processor works on a smaller chunk 

of the same data. In such cases, there may be some communication required between 

different processors that involve exchange of data to address boundary conditions. For 

example, a 2-D FFT of a large matrix can be carried out in a parallel fashion by splitting up 

the matrix across multiple processors. Based on how the data is distributed, each processor 

needs a small amount of data from its neighbour to complete the computations.  

The maximum speed up (ratio of runtime before parallelization to runtime after 

parallelization) is discussed in (Amdahl, 1967). The maximum observable speedup is limited 

by the percent of the application that can be parallelized. The maximum percentage of the 

application that can be parallelized is determined by the percentage of code that must be 

run serially. This serial execution requirement is often due to data dependencies present in 

the code, or complications that may arise due to parallelization. It is important that a parallel 

programmer determine the maximum speed up before beginning parallelization. In certain 

applications regardless of parallelization technique, the required speedup may not be 

attainable.  

In the next section, we discuss three applications that help illustrate the different types of 

parallel algorithms discussed here. Two of the applications being considered can be 

parallelized using either the task parallel or data parallel technique.  One of the presented 

applications can be parallelized using both techniques, and a comparison is provided.  
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4. Application development 

In this section, three applications will be presented. The aim of this section is to give real life 
examples of the discussed parallel MATLAB technologies in action (Krishnamurthy et al., 
2008). Additionally, this section will suggest methods by which parallel MATLAB 
programmers can approach a given parallelization problem.  The following applications 
have been parallelized using (1) Task Parallel (Embarrassingly Parallel) and/or (2) Data 
Parallel (Fine Grained Parallel) techniques. 
For each of the applications developed we will concentrate on the following: 
1.     Application Background 

This section will give background information on the application. This section is 
intended to show readers the variety of problems that can be tackled using parallel 
MATLAB. 

2.    Parallelization Strategy 
This section will describe the strategy employed when parallelizing the application. 
Additionally, specific code examples from the serial code, and our parallel code for the 
same will be shown. 

3.    Results 
This section will demonstrate the results obtained through parallelization. This section 
is important in illustrating the computational benefits possible through parallelization. 

4.1 Acoustic signal processing 
4.1.1 Application background: 

Acoustic signal processing on a battlefield primarily involves detection and classification of 

ground vehicles. By using an array of active sensors, signatures of passing objects can be 

collected for target detection, tracking, localization and identification. One of the major 

components of using such sensor networks is the ability of the sensors to perform self-

localization. Self-localization can be affected by environmental characteristics such as the 

terrain, wind speed, etc.  An application developed by the U.S. Army Research Laboratory, 

GRAPE, consists of a Graphical User Interface (GUI) for running acoustic signal processing 

algorithms in parallel on a cluster.  

In recent experiments, several gigabytes of data were collected in 3-minute intervals.  

Processing each data file takes over a minute. A number of different algorithms are used to 

estimate the time of arrival of the acoustic signals. If the number of analysis algorithms 

applied to the data is increased, the processing and analysis time increases correspondingly. 

In order to achieve near real-time response, the data was processed in a parallel fashion in 

MATLAB. Since each data file can be processed independently of others, the parallelization 

approach was to split up processing of individual data files across multiple processors.   

4.1.2 Parallelization strategy: 

It was determined that this particular application could be parallellized using task parallel 
(Embarrassingly Parallel) techniques. Using the MATLAB profiler, it was determined that 
the majority of computation time was spent in the execution of a function called 
process_audio(). It was further determined that the data generated by this function was not 
used in other places (data independence). Thus, a task parallel approach was employed. The 
function process_audio() takes a data structure as an input. One of the fields in this structure 
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Fig. 6. MDCS Results 

 

 

Fig. 7. bcMPI Results 
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Fig. 8. Star-P Results 

4.2 Synthetic aperture radar 
4.2.1 Application background: 

The Third Scalable Synthetic Compact Application (SSCA #3) benchmark (Bader et al., 
2006), from the DARPA HPCS Program, performs Synthetic Aperture Radar (SAR) 
processing.  SAR processing creates a composite image of the ground from signals generated 
by a moving airborne radar platform. It is a computationally intense process, requiring 
image processing and extensive file IO. Such applications are of importance for Signal and 
Image Processing engineers, and the computations performed by the SSCA #3 application 
are representative of common techniques employed by engineers. 

4.2.2 Parallelization strategy: 

In order to parallelize SSCA #3, the MATLAB profiler was run on the serial implementation.  

The profiler showed that approximately 67.5% of the time required for computation is spent 

in the image formation function of Kernel 1 (K1). Parallelization techniques were then 

applied to the function formImage in K1. Within formImage, the function genSARimage is 

responsible for the computationally intense task of creating the SAR image. genSARimage 

consists of two parts, namely, the interpolation loop and the 2D Inverse Fourier Transform.  

Both of these parts were parallelized through the creation of distributed matrices and then 

executed via pMatlab/bcMPI.   

A code example is presented in Figure 9 showing the serial and parallel versions of one code 
segment from the function genSARimage. It is interesting to note that nearly 67.5% of the 
code was parallelized by adding approximately 5.5% to the SLOC.  In the sequential code on 
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parallelize the computation.  In the parallel code on the right of Figure 9, the upper shaded 
region shows the creation of a distributed version of the matrix, pF, which is distributed as 
contiguous blocks of columns distributed across all processors.  The code within the loop 
remains functionally equivalent, with the parallel version altered so that each processor core 
processes its local part of the global array.  The lower shaded region shows a pMatlab 
transpose_grid (Bliss and Kepner, 2006) operation, which performs all-to-all communication 
to change pF from a column distributed matrix to a row distributed matrix in order to 
compute the following inverse FFT in parallel.  Finally, in the lowest shaded region, the 
entire pF array is aggregated back on a single processor using the pMatlab agg command. 
 
%%%%SERIAL CODE%%%% 

 

 

 

F = single(zeros(nx, m));      

 

 

 

 

 

 

  

spatial=ftshift(ifft(ifft(fftshift(F),[],2)))

 

 

%%%%PARALLEL CODE%%%% 

 

kxlocal=kx(:,(myrank*pFlocalsize(2)+1):(myrank+1)*pFlocalsize(2)) 

KXlocal=KX(:,(myrank*pFlocalsize(2)+1):(myrank+1)*pFlocalsize(2)) 

fsmlocal=fsm(:,(myrank*pFlocalsize(2)+1):(myrank+1)*pFlocalsize(2))

m = length((myrank*pFlocalsize(2) +1):(myrank+1)*pFlocalsize(2)) 

pFmap = map([1 Ncpus], {}, [0:Ncpus-1]) 

pF = zeros(nx,m,pFmap); 

pFlocal = ifft(pFlocal, [],2); 

pF = put_local(pF, pFlocal); 

 

Z = transpose_grid(pF); 

clear pF, pFlocal; 

Zlocal = local(Z); 

Zlocal = ifft(Zlocal, [],1); 

Z = put_local(Z,Zlocal); 

Z = agg(Z); 

spatial = abs(Z)'; 

 

Fig. 9. pMATLAB parallelization of image formation kernel 

 

 

Fig. 10. SSCA#3 Results 
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4.2.3 Results: 

The pMATLAB+bcMPI implementation of the SSCA#3 benchmark was run on an AMD 
Opteron cluster at the Ohio Supercomputer Center with nodes containing dual 2.2 GHz 
Opteron processors, 4 GB RAM and an InfiniBand interconnection network. A matrix size of 
1492x2296 elements was chosen, and the runs were conducted on 1, 2, 4, 8, 16, 24, and 32 
processor cores. The absolute performance times and relative speedups for image formation 
are given in Figure 10. The graph is presented as in the previous application. 
Amdahl’s law states that the maximum speedup of a parallel application is inversely 
proportional to the percentage of time spent in sequential execution.  Thus, according to 
Amdahl’s Law, the maximum speedup possible when parallelizing 67.5% of the code is 
approximately 3. In the above figure, a maximum speedup of approximately 2.6 is obtained 
for the 32 processor run.  

4.3 Superconducting Quantum Interference Filters (SQIF) 
4.3.1 Application background: 
The computationally intensive signal and image processing application for this project is the 
modelling and simulation of Superconducting Quantum Interference Filters (SQIF) 
provided by researchers at SPAWAR Systems Center PACIFIC. Superconducting Quantum 
Interference Devices (SQUIDs) (a superconducting circuit based on Josephson junctions) and 
arrays of SQUIDs or Superconducting Quantum Interference Filters (SQIF) have a wide 
variety of applications (Palacios et al., 2006). SQUIDs are the world’s most sensitive 
detectors of magnetic signals (sensitivity ~femto-Teslas) for the detection and 
characterization of signals so small as to be virtually immeasurable by any other known 
sensor technology. Applications such as detection of deeply buried facilities from space 
(military labs, WMD, etc), detection of weak signals on noise limited environments, 
deployment on mobile platforms, SQUID-based gravity gradiometry for navigation of 
submarines, biomagnetism (magnetoencephalography (MEG) and magnetocardiogram 
(MCG)) imaging for medical applications, detection of weapons/contraband concealed by 
clothing (hot spot microbolometers) and non-destructive evaluation are some of the 
applications based on SQUID and SQIF technologies. 
Parallelization of codes that simulate SQUIDs/SQIFs are becoming extremely important for 
researchers. The SQIF application is intended to solve large scale SQIF problems for the 
study and characterization of interference patterns, flux-to-voltage transfer functions, and 
parameter spread robustness for SQIF loop size configurations and SQIF array fault 
tolerance. The SQIF application is intended to solve large scale problems relating to the field 
of cooperative dynamics in coupled noisy dynamical systems near a critical point.  The 
technical background for the SQIF program can be found in (Antonio Palacios, 2006).  The 
particular application developed was intended to run the SQIF program in an optimized 
fashion to either (1) reduce runtime and/or (2) increase the size of the dataset. 

4.3.2 Parallelization strategy: 
The MATLAB profiler was used on the supplied SQIF application to determine a course of 
action.  Application of the MATLAB profiler on the supplied dynamics_sqif() function using 
100 SQUIDs yielded a runtime of approximately 20 minutes.  A detailed analysis showed 
most (approximately 88%) of the time spent in the coupled_squid() function.  Further review 
of the profiler results showed a linear increase in the time taken by dynamics_sqif() as the 
number of SQUIDs (Nsquid) was increased.  Parallelization was carried out on the 
dynamics_sqif() function.   
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Parallelization of code consisted of adding parallel constructs to the given SQIF application. 
These constructs allowed the program to be run on multiple CPUs. In the course of 
parallelization, developers noticed the existence of task based and data based operations in 
the application. Task based operations were parallelized through an embarrassingly parallel 
(EP) implementation. The data based operations were parallelized through a fine grained 
parallel (FP) solution. The application was parallelized using both of the following 
techniques. 
1.    Task Based Parallelization (TP) – Parallelization over length(xe) 
2.    Data Based Parallelization (DP) – Parallelization over Nsquids  
A brief technical background and relative merits and demerits of each implementation are 
given below. It is interesting to note the difference in performance for both techniques. 
Results of the optimization and parallelization were obtained using pMATLAB+bcMPI on 
the Ohio Supercomputer Center‘s AMD Opteron Cluster “Glenn.” 
Task Parallel Approach 
This particular implementation involved a task based parallel solution. The type of 
parallelization implemented was embarrassingly parallel. Specifically, for this application, 
an approach was taken such that individual processors would perform a part of the entire 
task, thus making the approach task parallel in nature. The embarrassingly parallel solution, 
in the context of this application, involved the distribution of workload between processors 
for the number of points for flux calculation (length(xe)). For this particular implementation, 
parallelization efforts were carried out in the dynamics_sqif() function. It was determined that 
iterations of the loop containing “for i = 1:length(xe)” were independent of each other. Thus, 
it was determined that a number of CPUs could process different portions of the ‘for’ loop. 
For example, if there were 4 processors and length(xe) = 100, the loop would run such that on 
processor 1, i = 1:25, on processor 2, i = 26:50, etc.  Thus, the approach is embarrassingly 
parallel in nature. 
A code snippet of the added pMATLAB lines required for parallelization is shown in the 
following figure.  
 

%%%%SERIAL CODE%%%% 

 

 

 

 

For i = 1:length(xe) 

 

x = series_sqif(J(j),xe(i),M,dt, 

    beta_n,Nsquid,var_size,tmax); 

 

end 

 

%%%%PARALLEL CODE%%%% 

 

DVmap = map([1 Ncpus], {}, [0:Ncpus-1]); 

pDV = zeros(Nsquid, length(xe), DVmap); 

lngth = length(xe); 

DVlocal = local(pDV); 

size(DVlocal) 

ind = zeros(1,Ncpus); 

ind(:) = ceil(double(lngth)/Ncpus); 

ind(1:rem(lngth,Ncpus)) = ceil(double(lngth)/Ncpus); 

ind(Ncpus) = (ind(Ncpus)-(sum(ind)-lngth)); 

num_loop = ind(rank+1); 

t = sum(ind(1:(rank+1))); 

startind = t-ind(rank+1)+1; 

endind = startind+num_loop -1; 

 

for i = startind:endind 

x = series_sqif(J(j),xe(i),M,dt, 

    beta_n,Nsquid,var_size,tmax); 

end 

Fig. 11. pMatlab additions to serial code for Task Parallel Implementation 

Data Parallel Approach 
In this approach, a fine grained parallel solution is implemented. In the dynamics_sqif() 
function, there is a function call for series_sqif().  This function, series_sqif(), in turn calls 
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my_ode() which in turn calls coupled_squid(). As has been mentioned in the application 
background, the majority of time is spent in the coupled_squid() function, due to the number 
of times that the coupled_squid() function is called.  The function coupled_squid() creates, as an 
output, a matrix of size 1 x Nsquid.  Looking at this, it was decided that parallelizing over 
Nsquids would yield improvement in overall runtime.  It was observed that by making 
suitable modifications to coupled_squid(), it would be possible for different processors to 
work on different parts of the overall data.  After creating a version of coupled_squid() that 
would allow different processors to access different parts of the data, all referring function 
calls were modified to make use of this parallel behavior. Thus, at the topmost level, in 
dynamics_sqif(), the function series_sqif() could be called by different processors with different 
sections of the original data. A snippet of the pMATLAB code required in the coupled_squid() 
function is shown in the following figure. 
 
%%%%SERIAL CODE%%%% 

 

 

 

 

x = series_sqif(J(j),xe(i),M, 

    t,beta_n,Nsquid,var_size,tmax);

 

 

%%%%PARALLEL CODE%%%% 

 

xmap = map([1 Ncpus], {}, [0:Ncpus-1]); 

x = zeros(10001, 2*NsquidsOrig, xmap); 

xlocal = local(x); 

xlocaltmp = series_sqif(J(j),xe(i),M,dt,beta_n, Nsquid,var_size,tmax,        

localpart, NsquidsOrig); 

xlocal = xlocaltmp(:,locPart_x); 

x = put_local(x, xlocal); 

x = agg(x); 

 

Fig. 12. pMatlab additions to serial code for Data Parallel Implementation 

4.3.3 Results 

This section discusses the results of parallelizing the SQIF application by both techniques 

(Task parallel and Data parallel techniques). A brief discussion about the results obtained 

using both techniques is also presented. In the following graphs, the primary (left) vertical 

axis corresponds to the total time taken by the SQIF application function to complete 

analysis on a fixed NSquids.  The secondary (right) axis displays the speedup obtained when 

running on multiple processors. 

Task Parallel Approach 

Results for running the task parallel implementation of the SQIF application were obtained 

on the Ohio Supercomputer Center’s AMD Opteron Cluster (glenn).  Near linear speedup 

was obtained for increasing number of processors and constant number of SQUIDs (Nsquid).  

The following graph summarizes the results obtained by running the SQIF application at 

OSC with a varying number of SQUIDs, and Processors.  

Data Parallel Approach 

Results for running the data parallel implementation of the SQIF application were obtained 

on the Ohio Supercomputer Center’s AMD Opteron Cluster (glenn). A speedup was 

observed, and results are graphed below.  The comparison is made between different 

numbers of SQUIDs (Nsquid), and different numbers of Processors.  As the parallel 

implementation is data parallel in nature, slight modifications were made in the actual 

computation.    

The following graph shows the application runtime and speedup for a fixed problem size 

(number of Nsquids).  A comparison is also made between the runtimes of the task parallel 

solution and data parallel solution. 
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Fig. 13. Graph of TP implementation for NSquids = 768 

 

Fig. 14. Graph of DP runtimes on Glenn for Nsquids = 384 (red), 786 (blue) 

From Figure 14, it is clear that there is definite speedup when using the data parallel (DP) 
implementation. This speedup becomes more pronounced when larger Nsquids are used.  In 
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these graphs, it is interesting to note that the speedup is not linear, but is much more 
scalable.  Also, communication overhead starts to play a large part in the results when the 
number of processors is greater than 24 (for the problem sizes tested).   
The following graph shows the performance of parallelization over length(xe) when 

compared to parallelization over Nsquids for a constant length(xe) of 100 and varying 

Nsquids. This comparison was made on the Ohio Supercomputer Center’s AMD Opteron 

Cluster “Glenn.” 

From Figure 15, it is clear that parallelization over the length(xe) yields far better 

performance than parallelization over NSquids.  This is due to the following reasons: 

1.  Parallelization over length(xe) is embarrassingly parallel.  It is expected that this  

approach gives near linear speedup. 

2.    In the parallelization over length(xe), the percentage of parallelized code is nearly 99%.  

In the parallelization over Nsquids, the percentage of parallelized code is nearly 90%.   

 

 
 

Fig. 15. Comparison between two techniques of parallelization for Nsquids = 768 

Maximum speed up for both parallelization techniques: 

1.    By Amdahl’s Law, given that parallelization is being applied to approximately 90% of 

the problem size, the maximum speed up one can expect is 1/(1-0.90) ≈ 10, in the case of 

parallelization over Nsquids. The maximum observed speedup is approximately 8.7 (for 

Nsquids = 14400, Number of Processors = 48).   

2.    By Amdahl’s Law, given that parallelization is being applied to approximately 99% of 

the problem size, the maximum speed up one can expect is 1/(1-0.99) ≈ 100, in the case 

of parallelization over the length(xe).  The maximum observed speedup is 

approximately 20 (for Nsquids = 768, Number of Processors = 24). 
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5. Defining a general parallelization strategy: 

In this section, a very general strategy for determining a parallelization strategy is 
presented. Please note that this strategy is very general in nature due to the numerous types 
of applications that can be parallelized. 
1.    Determining what to parallelize: 

Often, a user may use a tool such as the MATLAB profiler to determine this.  The root 
cause of the slowdown needs to be determined. For example, if function1() is shown to 
be causing the slowdown, the lines of code within function1() that are causing the 
problem should be parallelized. If the user wants to parallelize the application for 
improved memory utilization, the source of memory usage should be determined, and 
this should be parallelized. 

2.     Determining the type of parallelization: 
In this step, the cause is analyzed by looking at data dependencies to determine 
whether an embarrassingly parallel strategy can be employed or whether a fine grained 
parallel strategy is required. In general, when parallelizing a large portion of code, 
embarrassingly parallel solutions are easier to code and deliver greater speedup when 
compared with fine grained parallel solutions. On the other hand, fine grained parallel 
solutions are useful when attempting to improve memory utilization in the application, 
as fine grained parallel solutions consist of data parallelization. Application of 
Amdahl’s Law would also be beneficial, so that the developer understands what 
speedup to expect. For very few applications, parallelization may not lead to a 
significant speedup.  

3.    Using one of the mentioned technologies to parallelize the application: 
In our experience, all the mentioned technologies offer similar performance and 
usability for embarrassingly parallel applications.  For fine-grained parallel 
applications, the user needs to look at the technologies more closely. 

4.     Parallelize the application: 
Recode the application with parallel constructs. 

5.     Test the Application: 
Verify that the parallelization gives correct results (often within a margin of error). As 
parallelization often modifies the calculations, the user needs to confirm that the 
parallelized code not only brings about a speedup or larger memory availability but 
also maintains the correct solution. 

6. Conclusions and future work 

This chapter begins with an introduction to Parallel MATLAB and its uses. From our 

experience, most users who require parallel MATLAB are (1) compute and/or (2) memory 

bound. Compute bound users often require faster time-to-solution from their MATLAB 

applications. Memory bound users often require the shared resources offered by using 

multiple processing units (more RAM, etc.). Both of these classes of users can make 

extensive use of parallel MATLAB technologies. Broadly, there are two techniques to 

parallelization (1) Task parallel (Embarrassingly parallel) or (2) Data parallel (Fine Grained 

parallel). Both of these techniques were described in detail, and the strategies involved with 

recoding an application to reflect these techniques was discussed. Three applications from 

the signal and image processing area were highlighted. These applications were intended to 
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show potential users the power of parallel MATLAB, and the ease of use. Very often, for less 

than 5% increase in Source Lines of Code, an application can be parallelized. The 

applications also intended to demonstrate typical results that can be obtained by 

parallelizing applications using the discussed techniques. The acoustic signal processing 

application was parallelized using task parallel techniques, and the SSCA #3 application 

was parallelized using data parallel techniques. As a final application, the authors 

parallelized the SQIF application using both task and data parallel techniques, so 

demonstrate the difference between the techniques.   

At the Ohio Supercomputer Center, we have had extensive experience with parallel 
MATLAB technologies pertaining to the Signal and Image processing area. Three parallel 
MATLAB technologies stand out in terms of development status: (1) bcMPI + pMATLAB (2) 
MATLAB DCS and Parallel Computing Toolbox, and (3) Star-P. In our experience all three 
technologies are equally usable, though developer preference and developer experience may 
play a part. 
As multi-core and multi-processor systems become more common, parallel MATLAB 
clusters will also become more popular. MATLAB computations will be extended to 
Graphical Processing Units (GPUs) to harness their fast floating point arithmetic capabilities.   
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