
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

5

Parallel MATLAB Techniques

Ashok Krishnamurthy, Siddharth Samsi and Vijay Gadepally
Ohio Supercomputer Center and Ohio State University

U.S.A.

1. Introduction

MATLAB is one of the most widely used languages in technical computing. Computational
scientists and engineers in many areas use MATLAB to rapidly prototype and test
computational algorithms because of the scripting language, integrated user interface and
extensive support for numerical libraries and toolboxes. In the areas of signal and image
processing, MATLAB can be regarded as the de facto language of choice for algorithm
development. However, the limitations of desktop MATLAB are becoming an issue with the
rapid growth in the complexity of the algorithms and the size of the datasets. Often, users
require instant access to simulation results (compute bound users) and/or the ability to
simulate large data sets (memory bound users). Many such limitations can be readily
addressed using the many varieties of parallel MATLAB that are now available (Choy &
Edelman, 2005; Krishnamurthy et al., 2007). In the past 5 years, a number of alternative
parallel MATLAB approaches have been developed, each with its own unique set of features
and limitations (Interactive Supercomputing, 2009; Mathworks, 2009; MIT Lincoln
Laboratories, 2009; Ohio Supercomputer Center, 2009).
In this chapter, we show why parallel MATLAB is useful, provide a comparison of the
different parallel MATLAB choices, and describe a number of applications in Signal and
Image Processing: Audio Signal Processing, Synthetic Aperture Radar (SAR) Processing and
Superconducting Quantum Interference Filters (SQIFs). Each of these applications have been
parallelized using different methods (Task parallel and Data parallel techniques). The
applications presented may be considered representative of type of problems faced by signal
and image processing researchers. This chapter will also strive to serve as a guide to new
signal and image processing parallel programmers, by suggesting a parallelization strategy
that can be employed when developing a general parallel algorithm. The objective of this
chapter is to help signal and image processing algorithm developers understand the
advantages of using parallel MATLAB to tackle larger problems while staying within the
powerful environment of MATLAB.

2. Parallel MATLAB overview

The need for parallel MATLAB is presented in (Choy & Edelman, 2005) and the need for
parallelizing MATLAB in particular can be summarized as follows:
1. MATLAB is user friendly
2. MATLAB is popular

Source: Image Processing, Book edited by: Yung-Sheng Chen,
 ISBN 978-953-307-026-1, pp. 572, December 2009, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

Image Processing 78

In a survey of parallel MATLAB technologies, nearly 27 parallel MATLAB technologies
were discovered. Many of these technologies are defunct, while many of these technologies
are actively under development, with a large user base and active developer base. In our
experience, three of these technologies stand out in terms of such factors.
In this section, we introduce three alternatives for parallel computing using MATLAB. The
technologies we will be looking at are: pMATLAB+bcMPI, the Parallel Computing Toolbox
(PCT) with MATLAB Distributed Computing Server and Star-P.

2.1 bcMPI

Traditionally, researchers have used MatlabMPI (Kepner & Ahalt, 2003) for parallel
computing in MATLAB. bcMPI is an open source software library that is an alternative to
MatlabMPI and is geared towards large, shared supercomputer centers. The bcMPI library
was developed at the Ohio Supercomputer Center (OSC) to provide an efficient, scalable
communication mechanism for parallel computing in MATLAB while maintaining
compatibility with the MatlabMPI API (Hudak et al., 2007). The bcMPI package consists of
an interface to the MPICH or OpenMPI library and a toolbox for MATLAB that implements
a subset of the MatlabMPI API calls. bcMPI has been developed primarily on the Linux
platform, but it has also been tested on the Mac OS-X, NetBSD and IA32 platforms. At its
core, bcMPI is a C library that supports a collection of MATLAB and Octave data types. The
bcMPI software architecture is as shown below:

Fig. 1. bcMPI Architecture

Figure 1 illustrates the relationship between the vaious layers in the bcMPI architecture. The
bcMPI library provides functions for synchronous as well as asynchronous communication

www.intechopen.com

Parallel MATLAB Techniques 79

between the MATLAB processes. It supports basic MPI functions as well as collective
operations such as MPI_Reduce, MPI_Gather and MPI_Barrier. bcMPI also has an efficient
implementation of the MPI_Broadcast function using the underlying MPI library. bcMPI has
the advantage that it can use any MPI libraries even thought it has been tested actively with
the OpenMPI and MPICH libraries. bcMPI interfaces with pMATLAB (a parallel MATLAB
extension developed by MIT Lincoln Laboratory) (Bliss & Kepner, 2007) for distributed data
processing. The combination of pMATLAB and bcMPI is denoted as pMATLAB+bcMPI.
pMATLAB+bcMPI uses a layer of abstraction beyond traditional MPI calls and reduces
programming complexity. With this combination, a user would not need to use explicit
message passing calls to distribute data, as the pMATLAB application would perform these
actions.

2.2 Parallel computing toolbox

The Parallel Computing Toolbox (PCT) along with the MATLAB Distributed Computing

Server (MDCS) are commercial products offered by The MathWorks Inc. While the core

MATLAB software itself supports multithreading, the PCT provides functionality to run

MATLAB code on multicore systems and clusters. The PCT provides functions for parallel

for-loop execution, creation/manipulation of distributed arrays as well as message passing

functions for implementing fine grained parallel algorithms.

The MATLAB Distributed Computing Server (MDCS) gives the ability to scale parallel

algorithms to larger cluster sizes. The MDCS consists of the MATLAB Worker processes that

run on a cluster and is responsible for parallel code execution and process control. Figure 2

illustrates the architecture of PCT and MDCS

Fig. 2. The Parallel Computing Toolbox and MATLAB Distributed Computing Server

The PCT also allows users to run up to 8 MATLAB Labs or Workers on a single machine.

This enables interactive development and debugging of parallel code from the desktop.

After parallel code has been developed, it can be scaled up to much larger number of

Worker or Labs in conjunction with the MDCS.

www.intechopen.com

Image Processing 80

2.3 Star-P

Star-P is a client-server parallel computing platform for MATLAB available from Interactive
Supercomputing. The architecture of Star-P is shown in the figure below:

Fig. 3. Star-P Architecure

Figure 3 illustrates the structure of Star-P, and difference between the Star-P client and

server. Star-P supports fine grained parallel as well as embarrassingly parallel modes of

operation (these modes of operation are discussed in the next section). The biggest

advantage offered by Star-P is that it eliminates the need for the developer to use explicit

Message Passing Interface (MPI) message passing calls for communicating between the

back-end processes. By using the “*p” construct, users can simply indicate the variables or

data that are meant to be distributed over the back-end processes.

3. Parallel programming

The goals of most parallel computing algorithms include either reduction in computation
time (for compute bound users) or analysis of larger data sets/parameters sweeps (for
memory bound users) or some combination of both. This can also be described as a
capability or capacity problem. In many cases, analysis involves small data sets, but the time
required to analyze the desired data along with a wide enough parameter sweep on the
same can make it impractical to run such analyses. In such (and a variety of other) cases, the
use of parallel computing techniques can enable researchers to employ large numbers of
processors to run comprehensive analyses in a reasonable amount of time. For example, the
reconstruction of micro-CT images to generate 3D models may take up to 13 hours on a

www.intechopen.com

Parallel MATLAB Techniques 81

single machine. This can be reduced significantly simply by running the reconstruction
algorithm in a parallel fashion. In other applications such as automated image analysis in
medicine, the data sets tend to be large, with individual images ranging in the multiple
gigabytes. In such cases, it may not be possible to load the data into memory and analyze
the images. At the Ohio Supercomputer Center, we have observed that reading in images as
large as 60000x60000 pixels in resolution on a single machine with 32GB RAM can take
upwards of 30 minutes. Running simple algorithms on such large images becomes
impractical, with software stability also becoming a concern. Furthermore, given many such
images for analysis, the time required to run a single analysis on all images becomes
impractical and parameter sweep studies become constrained by time. High resolution
images obtained from tissue biopsies can be as large as 30-40GB each, and with the existing
software and hardware limitation it is not possible to read in entire images on a single
processor, thus leading to the problem of capability. In such cases, a simple solution is to use
parallel computing in MATLAB to process parts of the image on separate processors to
address problem.
Broadly, parallel algorithms can be divided into two categories: Task Parallel and Data

Parallel. Task parallel (or Embarrassingly Parallel) algorithms take advantage of the fact that

multiple processors can work on the same problem without communicating with each other.

Typical cases of such algorithms include Monte Carlo simulations where the order of

computations in a large loop are independent of each other and can be performed in any

order without affecting the results. Similarly, another application ideal for task parallelism

involves processing multiple datasets using the same algorithm. In such cases multiple

processors can analyze subsets of the data simultaneously without the need for inter-

processor communication. Data parallel (or Fine Grained Parallel) algorithms typically

involve some inter-processor communication. In such algorithms the data to the analyzed is

typically too large to be analyzed on a single processor. Parallel computing paradigms are

used to distribute the data across processors and each processor works on a smaller chunk

of the same data. In such cases, there may be some communication required between

different processors that involve exchange of data to address boundary conditions. For

example, a 2-D FFT of a large matrix can be carried out in a parallel fashion by splitting up

the matrix across multiple processors. Based on how the data is distributed, each processor

needs a small amount of data from its neighbour to complete the computations.

The maximum speed up (ratio of runtime before parallelization to runtime after

parallelization) is discussed in (Amdahl, 1967). The maximum observable speedup is limited

by the percent of the application that can be parallelized. The maximum percentage of the

application that can be parallelized is determined by the percentage of code that must be

run serially. This serial execution requirement is often due to data dependencies present in

the code, or complications that may arise due to parallelization. It is important that a parallel

programmer determine the maximum speed up before beginning parallelization. In certain

applications regardless of parallelization technique, the required speedup may not be

attainable.

In the next section, we discuss three applications that help illustrate the different types of

parallel algorithms discussed here. Two of the applications being considered can be

parallelized using either the task parallel or data parallel technique. One of the presented

applications can be parallelized using both techniques, and a comparison is provided.

www.intechopen.com

Image Processing 82

4. Application development

In this section, three applications will be presented. The aim of this section is to give real life
examples of the discussed parallel MATLAB technologies in action (Krishnamurthy et al.,
2008). Additionally, this section will suggest methods by which parallel MATLAB
programmers can approach a given parallelization problem. The following applications
have been parallelized using (1) Task Parallel (Embarrassingly Parallel) and/or (2) Data
Parallel (Fine Grained Parallel) techniques.
For each of the applications developed we will concentrate on the following:
1. Application Background

This section will give background information on the application. This section is
intended to show readers the variety of problems that can be tackled using parallel
MATLAB.

2. Parallelization Strategy
This section will describe the strategy employed when parallelizing the application.
Additionally, specific code examples from the serial code, and our parallel code for the
same will be shown.

3. Results
This section will demonstrate the results obtained through parallelization. This section
is important in illustrating the computational benefits possible through parallelization.

4.1 Acoustic signal processing
4.1.1 Application background:

Acoustic signal processing on a battlefield primarily involves detection and classification of

ground vehicles. By using an array of active sensors, signatures of passing objects can be

collected for target detection, tracking, localization and identification. One of the major

components of using such sensor networks is the ability of the sensors to perform self-

localization. Self-localization can be affected by environmental characteristics such as the

terrain, wind speed, etc. An application developed by the U.S. Army Research Laboratory,

GRAPE, consists of a Graphical User Interface (GUI) for running acoustic signal processing

algorithms in parallel on a cluster.

In recent experiments, several gigabytes of data were collected in 3-minute intervals.

Processing each data file takes over a minute. A number of different algorithms are used to

estimate the time of arrival of the acoustic signals. If the number of analysis algorithms

applied to the data is increased, the processing and analysis time increases correspondingly.

In order to achieve near real-time response, the data was processed in a parallel fashion in

MATLAB. Since each data file can be processed independently of others, the parallelization

approach was to split up processing of individual data files across multiple processors.

4.1.2 Parallelization strategy:

It was determined that this particular application could be parallellized using task parallel
(Embarrassingly Parallel) techniques. Using the MATLAB profiler, it was determined that
the majority of computation time was spent in the execution of a function called
process_audio(). It was further determined that the data generated by this function was not
used in other places (data independence). Thus, a task parallel approach was employed. The
function process_audio() takes a data structure as an input. One of the fields in this structure

www.intechopen.com

Pa

Fig

is
dis
bef

Fig

4.1
Re
pre
tot
sec
It
rep
Re
Pe
we
con
net
com
It i
Fro
ne
sho
pre

rallel MATLAB Tec

g. 4. Vehicle signa

nFiles, which de
stributed array w
fore and after par

%%%%SERIAL CODE

out = process_a

g. 5. pMATLAB p

1.3 Results:
esults from para
esented below. I
tal time taken by
condary (right) ax
is also interesti

presented an incr
esults for the MD
ntium 4 cluster u

ere obtained on
ntaining dual 2.2
twork. As the par
mmunication, a n
is also clear that p
om the above res
arly the same sp
own using pMA
esnted tools.

hniques

ature identified v

scribes the numb
was used to distri
rallelization are a

E%%%%

audio(A)

%%

Al

in

in

Al

ou

parallelization of

allelization of the
In the following g
y the process_audi
xis displays the s
ing to note tha
rease of less than

DCS and bcMPI te
using an InfiniBan
n the Ohio Sup
2 GHz Opteron p
rallelization strat

nearly linear spee
parallel MATLAB
sults (Figures 6, 7
peedup for a give

ATLAB+bcMPI, an

via signal processi

ber of files to be
ibute these indice
as follows:

%%%PARALLEL CODE%%%%

local = A;

ndlocal = local(indic

ndlocal = indlocal +

local.fname = A.fname

ut = process_audio(Al

acoustic signal pr

e GRAPE code
graphs, the prima
io() function to c
speedup obtained
at the modificati
1% in Source Lin
ests were obtaine
nd interconnectio

percomputer Cen
rocessors, 4 GB R
tegy is a task para
ed-up is observed
can aid greatly in
7 and 8), it is als
en code set. For
nd similar result

ing

e run by the proc
es across multipl

ces)

[(Nfiles-size(indloc

e(indlocal)

local)

rocessing applica

using MDCS, b
ary (left) vertical
omplete analysis

d when running o
ions required to

nes of Code (SLOC
ed on the Ohio Su
on network. Res
nter’s IBM 1350
RAM and an Infin
allel solution that

d for each of the p
n returning a time
so clear that the t

the remaining a
ts can be obtaine

cess_audio() funct
le processors. Th

cal,2)+1):Nfiles];

ation

bcMPI, and Star
axis corresponds

s on 63 data files
on multiple proce
o parallelize the
C).
upercomputer Ce

sults for the Star-
0 Cluster, with
niBand interconn
t incurs no interp
parallel MATLAB
ely solution to the
three technologie

applications, resu
ed by using any

83

tion. A
he code

r-P are
s to the
s. The
essors.

e code

enter’s
P tests
nodes

nection
process
B tools.

user.
es give

ults are
of the

www.intechopen.com

Image Processing 84

Fig. 6. MDCS Results

Fig. 7. bcMPI Results

1

3

5

7

9

11

13

15

17

0

50

100

150

200

250

300

350

400

450

500

0 4 8 12 16 20

S
p

e
e

d
u

p

T
im

e
 T

a
k

e
n

 (
m

in
.)

Number of Processors

Matlab® DCS Results

Run Time

1

3

5

7

9

11

13

0

50

100

150

200

250

300

350

400

450

500

0 4 8 12 16 20

S
p

e
e

d
u

p

T
im

e
 T

a
k

e
n

 (
m

in
.)

Number of Processors

bcMPI Results

Run Time Speedup

www.intechopen.com

Parallel MATLAB Techniques 85

Fig. 8. Star-P Results

4.2 Synthetic aperture radar
4.2.1 Application background:

The Third Scalable Synthetic Compact Application (SSCA #3) benchmark (Bader et al.,
2006), from the DARPA HPCS Program, performs Synthetic Aperture Radar (SAR)
processing. SAR processing creates a composite image of the ground from signals generated
by a moving airborne radar platform. It is a computationally intense process, requiring
image processing and extensive file IO. Such applications are of importance for Signal and
Image Processing engineers, and the computations performed by the SSCA #3 application
are representative of common techniques employed by engineers.

4.2.2 Parallelization strategy:

In order to parallelize SSCA #3, the MATLAB profiler was run on the serial implementation.

The profiler showed that approximately 67.5% of the time required for computation is spent

in the image formation function of Kernel 1 (K1). Parallelization techniques were then

applied to the function formImage in K1. Within formImage, the function genSARimage is

responsible for the computationally intense task of creating the SAR image. genSARimage

consists of two parts, namely, the interpolation loop and the 2D Inverse Fourier Transform.

Both of these parts were parallelized through the creation of distributed matrices and then

executed via pMatlab/bcMPI.

A code example is presented in Figure 9 showing the serial and parallel versions of one code
segment from the function genSARimage. It is interesting to note that nearly 67.5% of the
code was parallelized by adding approximately 5.5% to the SLOC. In the sequential code on
the left of Figure 9, the matrix, F, needs to be divided among the processor cores to

1

6

11

16

21

26

31

36

41

0

50

100

150

200

250

300

350

400

450

0 8 16 24 32 40 48 56 64 72

S
p

e
e

d
u

p

T
im

e
 T

a
k

e
n

 (
m

in
.)

Number of Processors

Star-P Results

Run Time

www.intechopen.com

Image Processing 86

parallelize the computation. In the parallel code on the right of Figure 9, the upper shaded
region shows the creation of a distributed version of the matrix, pF, which is distributed as
contiguous blocks of columns distributed across all processors. The code within the loop
remains functionally equivalent, with the parallel version altered so that each processor core
processes its local part of the global array. The lower shaded region shows a pMatlab
transpose_grid (Bliss and Kepner, 2006) operation, which performs all-to-all communication
to change pF from a column distributed matrix to a row distributed matrix in order to
compute the following inverse FFT in parallel. Finally, in the lowest shaded region, the
entire pF array is aggregated back on a single processor using the pMatlab agg command.

%%%%SERIAL CODE%%%%

F = single(zeros(nx, m));

spatial=ftshift(ifft(ifft(fftshift(F),[],2)))

%%%%PARALLEL CODE%%%%

kxlocal=kx(:,(myrank*pFlocalsize(2)+1):(myrank+1)*pFlocalsize(2))

KXlocal=KX(:,(myrank*pFlocalsize(2)+1):(myrank+1)*pFlocalsize(2))

fsmlocal=fsm(:,(myrank*pFlocalsize(2)+1):(myrank+1)*pFlocalsize(2))

m = length((myrank*pFlocalsize(2) +1):(myrank+1)*pFlocalsize(2))

pFmap = map([1 Ncpus], {}, [0:Ncpus-1])

pF = zeros(nx,m,pFmap);

pFlocal = ifft(pFlocal, [],2);

pF = put_local(pF, pFlocal);

Z = transpose_grid(pF);

clear pF, pFlocal;

Zlocal = local(Z);

Zlocal = ifft(Zlocal, [],1);

Z = put_local(Z,Zlocal);

Z = agg(Z);

spatial = abs(Z)';

Fig. 9. pMATLAB parallelization of image formation kernel

Fig. 10. SSCA#3 Results

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

40

60

80

100

120

140

160

0 8 16 24 32 40

S
p

e
e

d
u

p

T
im

e
 T

a
k

e
n

 (
se

c.
)

Number of Processors

SSCA#3 Results

Run Time

www.intechopen.com

Parallel MATLAB Techniques 87

4.2.3 Results:

The pMATLAB+bcMPI implementation of the SSCA#3 benchmark was run on an AMD
Opteron cluster at the Ohio Supercomputer Center with nodes containing dual 2.2 GHz
Opteron processors, 4 GB RAM and an InfiniBand interconnection network. A matrix size of
1492x2296 elements was chosen, and the runs were conducted on 1, 2, 4, 8, 16, 24, and 32
processor cores. The absolute performance times and relative speedups for image formation
are given in Figure 10. The graph is presented as in the previous application.
Amdahl’s law states that the maximum speedup of a parallel application is inversely
proportional to the percentage of time spent in sequential execution. Thus, according to
Amdahl’s Law, the maximum speedup possible when parallelizing 67.5% of the code is
approximately 3. In the above figure, a maximum speedup of approximately 2.6 is obtained
for the 32 processor run.

4.3 Superconducting Quantum Interference Filters (SQIF)
4.3.1 Application background:
The computationally intensive signal and image processing application for this project is the
modelling and simulation of Superconducting Quantum Interference Filters (SQIF)
provided by researchers at SPAWAR Systems Center PACIFIC. Superconducting Quantum
Interference Devices (SQUIDs) (a superconducting circuit based on Josephson junctions) and
arrays of SQUIDs or Superconducting Quantum Interference Filters (SQIF) have a wide
variety of applications (Palacios et al., 2006). SQUIDs are the world’s most sensitive
detectors of magnetic signals (sensitivity ~femto-Teslas) for the detection and
characterization of signals so small as to be virtually immeasurable by any other known
sensor technology. Applications such as detection of deeply buried facilities from space
(military labs, WMD, etc), detection of weak signals on noise limited environments,
deployment on mobile platforms, SQUID-based gravity gradiometry for navigation of
submarines, biomagnetism (magnetoencephalography (MEG) and magnetocardiogram
(MCG)) imaging for medical applications, detection of weapons/contraband concealed by
clothing (hot spot microbolometers) and non-destructive evaluation are some of the
applications based on SQUID and SQIF technologies.
Parallelization of codes that simulate SQUIDs/SQIFs are becoming extremely important for
researchers. The SQIF application is intended to solve large scale SQIF problems for the
study and characterization of interference patterns, flux-to-voltage transfer functions, and
parameter spread robustness for SQIF loop size configurations and SQIF array fault
tolerance. The SQIF application is intended to solve large scale problems relating to the field
of cooperative dynamics in coupled noisy dynamical systems near a critical point. The
technical background for the SQIF program can be found in (Antonio Palacios, 2006). The
particular application developed was intended to run the SQIF program in an optimized
fashion to either (1) reduce runtime and/or (2) increase the size of the dataset.

4.3.2 Parallelization strategy:
The MATLAB profiler was used on the supplied SQIF application to determine a course of
action. Application of the MATLAB profiler on the supplied dynamics_sqif() function using
100 SQUIDs yielded a runtime of approximately 20 minutes. A detailed analysis showed
most (approximately 88%) of the time spent in the coupled_squid() function. Further review
of the profiler results showed a linear increase in the time taken by dynamics_sqif() as the
number of SQUIDs (Nsquid) was increased. Parallelization was carried out on the
dynamics_sqif() function.

www.intechopen.com

Image Processing 88

Parallelization of code consisted of adding parallel constructs to the given SQIF application.
These constructs allowed the program to be run on multiple CPUs. In the course of
parallelization, developers noticed the existence of task based and data based operations in
the application. Task based operations were parallelized through an embarrassingly parallel
(EP) implementation. The data based operations were parallelized through a fine grained
parallel (FP) solution. The application was parallelized using both of the following
techniques.
1. Task Based Parallelization (TP) – Parallelization over length(xe)
2. Data Based Parallelization (DP) – Parallelization over Nsquids
A brief technical background and relative merits and demerits of each implementation are
given below. It is interesting to note the difference in performance for both techniques.
Results of the optimization and parallelization were obtained using pMATLAB+bcMPI on
the Ohio Supercomputer Center‘s AMD Opteron Cluster “Glenn.”
Task Parallel Approach
This particular implementation involved a task based parallel solution. The type of
parallelization implemented was embarrassingly parallel. Specifically, for this application,
an approach was taken such that individual processors would perform a part of the entire
task, thus making the approach task parallel in nature. The embarrassingly parallel solution,
in the context of this application, involved the distribution of workload between processors
for the number of points for flux calculation (length(xe)). For this particular implementation,
parallelization efforts were carried out in the dynamics_sqif() function. It was determined that
iterations of the loop containing “for i = 1:length(xe)” were independent of each other. Thus,
it was determined that a number of CPUs could process different portions of the ‘for’ loop.
For example, if there were 4 processors and length(xe) = 100, the loop would run such that on
processor 1, i = 1:25, on processor 2, i = 26:50, etc. Thus, the approach is embarrassingly
parallel in nature.
A code snippet of the added pMATLAB lines required for parallelization is shown in the
following figure.

%%%%SERIAL CODE%%%%

For i = 1:length(xe)

x = series_sqif(J(j),xe(i),M,dt,

 beta_n,Nsquid,var_size,tmax);

end

%%%%PARALLEL CODE%%%%

DVmap = map([1 Ncpus], {}, [0:Ncpus-1]);

pDV = zeros(Nsquid, length(xe), DVmap);

lngth = length(xe);

DVlocal = local(pDV);

size(DVlocal)

ind = zeros(1,Ncpus);

ind(:) = ceil(double(lngth)/Ncpus);

ind(1:rem(lngth,Ncpus)) = ceil(double(lngth)/Ncpus);

ind(Ncpus) = (ind(Ncpus)-(sum(ind)-lngth));

num_loop = ind(rank+1);

t = sum(ind(1:(rank+1)));

startind = t-ind(rank+1)+1;

endind = startind+num_loop -1;

for i = startind:endind

x = series_sqif(J(j),xe(i),M,dt,

 beta_n,Nsquid,var_size,tmax);

end

Fig. 11. pMatlab additions to serial code for Task Parallel Implementation

Data Parallel Approach
In this approach, a fine grained parallel solution is implemented. In the dynamics_sqif()
function, there is a function call for series_sqif(). This function, series_sqif(), in turn calls

www.intechopen.com

Parallel MATLAB Techniques 89

my_ode() which in turn calls coupled_squid(). As has been mentioned in the application
background, the majority of time is spent in the coupled_squid() function, due to the number
of times that the coupled_squid() function is called. The function coupled_squid() creates, as an
output, a matrix of size 1 x Nsquid. Looking at this, it was decided that parallelizing over
Nsquids would yield improvement in overall runtime. It was observed that by making
suitable modifications to coupled_squid(), it would be possible for different processors to
work on different parts of the overall data. After creating a version of coupled_squid() that
would allow different processors to access different parts of the data, all referring function
calls were modified to make use of this parallel behavior. Thus, at the topmost level, in
dynamics_sqif(), the function series_sqif() could be called by different processors with different
sections of the original data. A snippet of the pMATLAB code required in the coupled_squid()
function is shown in the following figure.

%%%%SERIAL CODE%%%%

x = series_sqif(J(j),xe(i),M,

 t,beta_n,Nsquid,var_size,tmax);

%%%%PARALLEL CODE%%%%

xmap = map([1 Ncpus], {}, [0:Ncpus-1]);

x = zeros(10001, 2*NsquidsOrig, xmap);

xlocal = local(x);

xlocaltmp = series_sqif(J(j),xe(i),M,dt,beta_n, Nsquid,var_size,tmax,

localpart, NsquidsOrig);

xlocal = xlocaltmp(:,locPart_x);

x = put_local(x, xlocal);

x = agg(x);

Fig. 12. pMatlab additions to serial code for Data Parallel Implementation

4.3.3 Results

This section discusses the results of parallelizing the SQIF application by both techniques

(Task parallel and Data parallel techniques). A brief discussion about the results obtained

using both techniques is also presented. In the following graphs, the primary (left) vertical

axis corresponds to the total time taken by the SQIF application function to complete

analysis on a fixed NSquids. The secondary (right) axis displays the speedup obtained when

running on multiple processors.

Task Parallel Approach

Results for running the task parallel implementation of the SQIF application were obtained

on the Ohio Supercomputer Center’s AMD Opteron Cluster (glenn). Near linear speedup

was obtained for increasing number of processors and constant number of SQUIDs (Nsquid).

The following graph summarizes the results obtained by running the SQIF application at

OSC with a varying number of SQUIDs, and Processors.

Data Parallel Approach

Results for running the data parallel implementation of the SQIF application were obtained

on the Ohio Supercomputer Center’s AMD Opteron Cluster (glenn). A speedup was

observed, and results are graphed below. The comparison is made between different

numbers of SQUIDs (Nsquid), and different numbers of Processors. As the parallel

implementation is data parallel in nature, slight modifications were made in the actual

computation.

The following graph shows the application runtime and speedup for a fixed problem size

(number of Nsquids). A comparison is also made between the runtimes of the task parallel

solution and data parallel solution.

www.intechopen.com

Image Processing 90

Fig. 13. Graph of TP implementation for NSquids = 768

Fig. 14. Graph of DP runtimes on Glenn for Nsquids = 384 (red), 786 (blue)

From Figure 14, it is clear that there is definite speedup when using the data parallel (DP)
implementation. This speedup becomes more pronounced when larger Nsquids are used. In

1

3

5

7

9

11

13

15

17

19

200

700

1200

1700

2200

2700

3200

3700

4200

4700

1 6 11 16 21

S
p

e
e

d
u

p

T
im

e
 T

a
k

e
n

 (
se

c.
)

Number of Processors

SQIF TP Implementation Results

Run Time for Nsquids = 768 Speedup for Nsquids = 768

1

1.5

2

2.5

3

3.5

4

700

1200

1700

2200

2700

3200

3700

4200

4700

1 6 11 16 21

S
p

e
e

d
u

p

T
im

e
 T

a
k

e
n

 (
se

c.
)

Number of Processors

SQIF DP Implementation Results

Run Time for Nsquids = 384 Run Time for Nsquids = 768

www.intechopen.com

Parallel MATLAB Techniques 91

these graphs, it is interesting to note that the speedup is not linear, but is much more
scalable. Also, communication overhead starts to play a large part in the results when the
number of processors is greater than 24 (for the problem sizes tested).
The following graph shows the performance of parallelization over length(xe) when

compared to parallelization over Nsquids for a constant length(xe) of 100 and varying

Nsquids. This comparison was made on the Ohio Supercomputer Center’s AMD Opteron

Cluster “Glenn.”

From Figure 15, it is clear that parallelization over the length(xe) yields far better

performance than parallelization over NSquids. This is due to the following reasons:

1. Parallelization over length(xe) is embarrassingly parallel. It is expected that this

approach gives near linear speedup.

2. In the parallelization over length(xe), the percentage of parallelized code is nearly 99%.

In the parallelization over Nsquids, the percentage of parallelized code is nearly 90%.

Fig. 15. Comparison between two techniques of parallelization for Nsquids = 768

Maximum speed up for both parallelization techniques:

1. By Amdahl’s Law, given that parallelization is being applied to approximately 90% of

the problem size, the maximum speed up one can expect is 1/(1-0.90) ≈ 10, in the case of

parallelization over Nsquids. The maximum observed speedup is approximately 8.7 (for

Nsquids = 14400, Number of Processors = 48).

2. By Amdahl’s Law, given that parallelization is being applied to approximately 99% of

the problem size, the maximum speed up one can expect is 1/(1-0.99) ≈ 100, in the case

of parallelization over the length(xe). The maximum observed speedup is

approximately 20 (for Nsquids = 768, Number of Processors = 24).

200

700

1200

1700

2200

2700

3200

3700

4200

4700

0 3 6 9 12 15 18 21 24 27

T
im

e
 T

a
k

e
n

 (
se

c.
)

Number of Processors (Ncpus)

Comparison for Nsquid = 768 between

parallelization techniques

Parallelization over NSQUIDs Parallelization over length(xe)

www.intechopen.com

Image Processing 92

5. Defining a general parallelization strategy:

In this section, a very general strategy for determining a parallelization strategy is
presented. Please note that this strategy is very general in nature due to the numerous types
of applications that can be parallelized.
1. Determining what to parallelize:

Often, a user may use a tool such as the MATLAB profiler to determine this. The root
cause of the slowdown needs to be determined. For example, if function1() is shown to
be causing the slowdown, the lines of code within function1() that are causing the
problem should be parallelized. If the user wants to parallelize the application for
improved memory utilization, the source of memory usage should be determined, and
this should be parallelized.

2. Determining the type of parallelization:
In this step, the cause is analyzed by looking at data dependencies to determine
whether an embarrassingly parallel strategy can be employed or whether a fine grained
parallel strategy is required. In general, when parallelizing a large portion of code,
embarrassingly parallel solutions are easier to code and deliver greater speedup when
compared with fine grained parallel solutions. On the other hand, fine grained parallel
solutions are useful when attempting to improve memory utilization in the application,
as fine grained parallel solutions consist of data parallelization. Application of
Amdahl’s Law would also be beneficial, so that the developer understands what
speedup to expect. For very few applications, parallelization may not lead to a
significant speedup.

3. Using one of the mentioned technologies to parallelize the application:
In our experience, all the mentioned technologies offer similar performance and
usability for embarrassingly parallel applications. For fine-grained parallel
applications, the user needs to look at the technologies more closely.

4. Parallelize the application:
Recode the application with parallel constructs.

5. Test the Application:
Verify that the parallelization gives correct results (often within a margin of error). As
parallelization often modifies the calculations, the user needs to confirm that the
parallelized code not only brings about a speedup or larger memory availability but
also maintains the correct solution.

6. Conclusions and future work

This chapter begins with an introduction to Parallel MATLAB and its uses. From our

experience, most users who require parallel MATLAB are (1) compute and/or (2) memory

bound. Compute bound users often require faster time-to-solution from their MATLAB

applications. Memory bound users often require the shared resources offered by using

multiple processing units (more RAM, etc.). Both of these classes of users can make

extensive use of parallel MATLAB technologies. Broadly, there are two techniques to

parallelization (1) Task parallel (Embarrassingly parallel) or (2) Data parallel (Fine Grained

parallel). Both of these techniques were described in detail, and the strategies involved with

recoding an application to reflect these techniques was discussed. Three applications from

the signal and image processing area were highlighted. These applications were intended to

www.intechopen.com

Parallel MATLAB Techniques 93

show potential users the power of parallel MATLAB, and the ease of use. Very often, for less

than 5% increase in Source Lines of Code, an application can be parallelized. The

applications also intended to demonstrate typical results that can be obtained by

parallelizing applications using the discussed techniques. The acoustic signal processing

application was parallelized using task parallel techniques, and the SSCA #3 application

was parallelized using data parallel techniques. As a final application, the authors

parallelized the SQIF application using both task and data parallel techniques, so

demonstrate the difference between the techniques.

At the Ohio Supercomputer Center, we have had extensive experience with parallel
MATLAB technologies pertaining to the Signal and Image processing area. Three parallel
MATLAB technologies stand out in terms of development status: (1) bcMPI + pMATLAB (2)
MATLAB DCS and Parallel Computing Toolbox, and (3) Star-P. In our experience all three
technologies are equally usable, though developer preference and developer experience may
play a part.
As multi-core and multi-processor systems become more common, parallel MATLAB
clusters will also become more popular. MATLAB computations will be extended to
Graphical Processing Units (GPUs) to harness their fast floating point arithmetic capabilities.

7. Acknowledgements

The authors would like to thank Gene Whipps (Army Research Laboratory, Adephi, MA,
USA) for providing the ARL GRAPE application. The authors would also like to thank Dr.
Fernando Escobar (SPAWAR Systems Center PACIFIC, Code 7113, San Diego, CA) for
providing the serial SQIF code. The original SQIF application code was written by Dr.
Patrick Loghini (SPAWAR Systems Center PACIFIC, Code 7173, San Diego, CA).

8. References

Amdahl, G.M., 1967. Validity of the single processor approach to achieving large scale
computing capabilities. In ACM New York, NY, USA., 1967.

Bader, D.A. et al., 2006. Designing scalable synthetic compact applications for benchmarking
high productivity computing systems. Cyberinfrastructure Technology Watch, 2.

Bliss, N.T. & Kepner, J., 2007. 'pMATLAB Parallel MATLAB Library'. International Journal
of High Performance Computing Applications, 21, p.336.

Choy, R. & Edelman, A., 2005. Parallel MATLAB: Doing it right. Proceedings of the IEEE, 93,
pp.331-41.

Hudak, D.E., Ludban, N., Gadepally, V. & Krishnamurthy, A., 2007. Developing a
computational science IDE for HPC systems. In IEEE Computer Society
Washington, DC, USA., 2007.

Interactive Supercomputing, 2009. StarP for MATLAB users. [Online].
Kepner, J. & Ahalt, S., 2004. MatlabMPI. Journal of Parallel and Distributed Computing, vol.

64, no. 8, pp. 997 – 1005, 2004
Krishnamurthy, A. et al., 2008. Parallel MATLAB in Production Supercomputing with

Applications in Signal and Image Processing. In Conference on Parallel Processing
for Scientific Computing., 2008. SIAM.

www.intechopen.com

Image Processing 94

Krishnamurthy A. , Nehrbass J., Chaves J., and Samsi S., 2007. Survey of Parallel MATLAB
techniques and applications to signal and image processing. IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 4, 2007.

Mathworks, 2009. Parallel Computing Toolbox 4.0. [Online].
MIT Lincoln Laboratories, 2009. pMATLAB: Parallel MATLAB toolbox. [Online].
Ohio Supercomputer Center, 2009. bcMPI. [Online].
Palacios, A., Aven, J. & Longhini, P., 2006. Cooperative dynamics in coupled noisy

dynamical systems near a critical point: The dc superconducting quantum
interference device as a case study. Physical Review E, 74.

www.intechopen.com

Image Processing

Edited by Yung-Sheng Chen

ISBN 978-953-307-026-1

Hard cover, 516 pages

Publisher InTech

Published online 01, December, 2009

Published in print edition December, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

There are six sections in this book. The first section presents basic image processing techniques, such as

image acquisition, storage, retrieval, transformation, filtering, and parallel computing. Then, some applications,

such as road sign recognition, air quality monitoring, remote sensed image analysis, and diagnosis of industrial

parts are considered. Subsequently, the application of image processing for the special eye examination and a

newly three-dimensional digital camera are introduced. On the other hand, the section of medical imaging will

show the applications of nuclear imaging, ultrasound imaging, and biology. The section of neural fuzzy

presents the topics of image recognition, self-learning, image restoration, as well as evolutionary. The final

section will show how to implement the hardware design based on the SoC or FPGA to accelerate image

processing.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ashok Krishnamurthy, Siddharth Samsi and Vijay Gadepally (2009). Parallel MATALAB Techniques, Image

Processing, Yung-Sheng Chen (Ed.), ISBN: 978-953-307-026-1, InTech, Available from:

http://www.intechopen.com/books/image-processing/parallel-matalab-techniques

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

