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Chapter

TLR4-Induced Inflammation Is a 
Key Promoter of Tumor Growth, 
Vascularization, and Metastasis
Sophia Ran, Nihit Bhattarai, Radhika Patel 

and Lisa Volk-Draper

Abstract

Toll-like receptor-4 (TLR4) is a powerful pathway best known for inducing 
inflammation in response to bacteria-produced lipopolysaccharide. TLR4 is also 
activated by endogenous ligands produced by host-damaged cells and a chemo-drug 
paclitaxel. Under normal conditions, TLR4 is expressed mainly in macrophages and, 
at a lower level, in epithelial, endothelial, and stromal cells. Activated TLR4 signifi-
cantly increases inflammatory cytokines and enhances cell proliferation, migration, 
invasion, and survival. While these functions in normal cells are essential for host 
defense and tissue repair, TLR4 overexpression in malignant cells promotes tumor 
growth and metastasis. This is because pro-oncogenic effects of activated TLR4 in 
tumor cells are amplified by similar event in TLR4-positive tumor-associated 
cells including endothelial cells and their mobilized progenitors. The collective 
activation of multiple cell types within the tumor promotes chemoresistance and 
metastasis. Here, we summarize the current knowledge of the TLR4 pathway and 
its functional outcomes in normal and tumor cells. We also discuss its underap-
preciated role in supporting tumor progression through vascular activation and 
recruitment of endothelial progenitors. The review considers several open questions 
regarding the impact of TLR4-mediated pro- and antitumor effects, structural 
requirements for recognition of the TLR4 complex, and a potential contribution of 
chemotherapy to tumor spread.

Keywords: Toll-like receptor-4, paclitaxel chemotherapy, tumor growth,  
tumor blood and lymphatic vessels, metastasis

1. Introduction

Human Toll-like receptor-4 (TLR4) was discovered in 1997 through a bioinfor-
matics approach based on the homology of similar Toll protein found in Drosophila 
[1, 2]. Drosophila Toll protein-mediated protection against fungus infection was the 
first clue suggesting the role of mammalian TLR4 in activation of the immune system. 
The complex of TLR4 and its co-receptors is the primary sensor and responder to 
lipopolysaccharides (LPS), the major constituents of membranes of Gram-negative 
bacteria [3]. Based on exquisite sensitivity to LPS and high level of TLR4 expression 
in macrophages, it was initially thought that the main function of this protein is 
restricted to an inflammatory response aimed at eradication of microbial pathogens. 
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Subsequent studies, however, discovered intricate interactions of TLR4 with multi-
tude of other molecules besides LPS suggesting a much broader role in homeostasis, 
tissue repair, and longevity in addition to the immune defense. These functions of 
TLR4 directly relate to cancer initiation, progression, and response to therapy.

2. Basic structure of TLR4 gene and protein

Human TLR4 gene contains four exons, and it is located in the long arm of 
chromosome 9 [4]. TLR4 is Type-1 transmembrane protein belonging to the family 
of Toll-like receptors consisting of 10 members in humans and 12 proteins in mice 
[5]. TLR4 protein is composed of an extracellular domain, a C-terminal leucine-rich 
repeat (LRR) domain, and a single transmembrane sequence connected to an intracel-
lular Toll/IL-1 receptor (TIR) region that conveys signaling [5]. LRR and TIR domains 
are responsible for ligand recognition and signal transduction, respectively [6].

3. TLR4 expression in normal organs

The main cell types that express TLR4 under normal conditions are cells of innate 
immunity including monocytes [7], macrophages [8], neutrophils [9], and dendritic 
cells [10]. In addition, TLR4 is also found in T cells [11] and B lymphocytes [12] albeit 
at lower level. Osteoclasts, macrophage-like cells in the bone marrow, also express 
TLR4 [13]. Embryonic stem cells [14] as well as adult hematopoietic-myeloid [15], 
lymphoid [15], mesenchymal [16], blood vascular endothelial [17], and lymphatic 
endothelial [18] progenitors all express TLR4 and signaling components of this 
pathway. Among non-hematopoietic cells, TLR4 is expressed in blood vascular [19] 
and lymphatic [20] endothelia as well as at low concentration in fibroblasts [21], 
keratinocytes [22], and epithelial cells of most normal organs including the colon 
[23], intestine [24], ovary [25], kidney [26], and lungs [27]. Professional phagocytes 
and their myeloid precursors express the greatest amount of TLR4 and exhibit the 
most pronounced response to its ligands [28]. The level and composition of TLR4 
signal-transducing molecules vary among different cell types, particularly between 
myeloid and epithelial cells [29]. However, all positive cells share the basic traits of 
this pathway such as responsiveness to LPS reflected by activation of transcription 
factors of the NF-κB family and production of inflammatory cytokines. During 
inflammation, TLR4-expressing normal cells significantly increase secretion of 
inflammatory mediators [25, 30] due to co-upregulated TLR4 [31], its intracellular 
adapters [32], and co-receptors [10] which enhances cooperation among the path-
way’s components. Likewise, malignant TLR4-positive cells express much higher 
levels of inflammatory proteins as compared with their normal counterparts [33, 34].

4. Physiological functions of TLR4 in normal organs

In order to understand the full impact of TLR4 on cancer progression, it is useful 
to be familiar with its physiological role in normal organs. The main function of 
TLR4 in normal cells is restoration of tissue homeostasis perturbed by either patho-
gens or sterile injury. Response to pathogens is dictated by its ability to recognize 
and respond to LPS [3] and other microbial [35] and non-bacterial [36] lipids. The 
bacterial lipid-containing products are collectively called pattern-associated molecu-
lar patterns (PAMPs). Recognition of PAMPs triggers upregulation of inflammatory 
proteins that mediate proliferation [37], chemotactic migration [38], and survival 



3

TLR4-Induced Inflammation Is a Key Promoter of Tumor Growth, Vascularization…
DOI: http://dx.doi.org/10.5772/intechopen.85195

[39] of innate immunity cells, all of which is necessary for their division, mobiliza-
tion to infected tissue, and cytoprotection against bacterial toxins and stresses of 
inflamed environment. LPS also induces differentiation of myeloid progenitors 
resulting in rapid maturation of dendritic cells and their superior antigen presenta-
tion to T lymphocytes necessary for eradication of invading pathogens [40].

Another broad panel of TLR4-activating molecules are called damage-associated 
molecular patterns or DAMPs. These molecules are produced by severely damaged 
or dying cells [41, 42]. The TLR4 responsiveness to this class of activators creates 
regenerative environment that helps to repair the injured tissue by replacing its lost 
or damaged components. This function of TLR4 is equally critical for long-term 
survival of the entire organism as the ability to generate pathogen-destroying cells. 
Therefore, in this situation TLR4 activates local and bone marrow (BM)-derived 
myeloid (BMDM) progenitors wired to differentiate the required cell types that 
replenish the damaged tissue. Not surprisingly, TLR4-expressing macrophages 
derived from BMDM progenitors dominate the late stages of wound healing acting 
to restore post-injury homeostasis, including rebuilding of functional vasculature 
[43]. In parallel to systemic effect, local epithelial and stromal cells activated by 
TLR4 produce copious amounts of chemotactic factors to recruit these progenitors 
while also being induced to divide, migrate, and re-populate the wounded area.

Given the TLR4 role in homeostasis, it is not surprising that it activates and 
induces differentiation of BM-derived progenitors from myeloid and lymphoid 
lineages [15], mesenchymal stem cells [16], blood vascular endothelial progenitors 
[17], lymphatic endothelial progenitors [18], and local tissue epithelial stem cells [14]. 
Chemokines recruiting these progenitors are produced by local stroma and epithe-
lium as demonstrated by TLR4-dependent upregulation of a variety of cytokines in 
inflamed fibroblasts [42], hepatic stellate cells [44], as well as intestinal [45], alveolar 
[27], ovarian [25], and renal [26] epithelial cells. In addition to production of chemo-
kines, TLR4 activation of epithelial cells increases their division [46] and survival [47] 
similarly to its effects on immune and hematopoietic cells described above. Tissue 
infiltration by immune cells and BM progenitors is facilitated by increased vascular 
permeability [48, 49] and upregulation of cell adhesion proteins that facilitate leuko-
cyte-endothelial interactions [50]. These two major events permitting recruitment of 
BM-regenerating cells are induced by TLR4 activation of blood vascular endothelium 
[51] and vessel-supporting pericytes [52]. Lastly, TLR4 activation of lymphatic endo-
thelial cells [20, 53] is essential for collection of tissue-mobilized macrophages from 
the inflamed tissue followed by their transportation to locoregional lymph nodes. 
Lymphatic-mediated removal of macrophages and dendritic cells from the affected 
site helps in resolving the inflammation and mounting the adaptive immune response 
through antigen presentation to T cells in the local nodes. Simultaneous activation of 
TLR4 in epithelium, stroma, endothelium, BM, and immune organs ensures tissue 
recovery in a coordinated and timely manner. TLR4 plays a central role in this process 
by coordinating epithelial cytokine release and activation, production of new cells in 
the BM, their recruitment to injured tissue, and resolution of residual inflammation 
that collectively promote tissue repair [54, 47]. While all these processes are essential 
for homeostasis, similar TLR4 activities in the context of cancer result in devastat-
ing outcomes including protection of tumor cells against anticancer drugs and their 
improved ability to generate and invade newly formed vessels.

5. TLR4 expression in malignant tumors

Although TLR4 expression was initially thought to be restricted to hematopoietic 
cells, subsequent studies discovered functional TLR4 in a variety of normal epithelial 
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Tumor type No. 

patients

Detection 

method

Comments P-value Ref

Various solid 

tumors

1,294 Meta 

analysis

Data from 15 independent studies 

show high correlation between 

TLR4 expression and poor 

disease-free and overall survival

0.001 

and 

0.05

[81]

Breast 665 RT-PCR Significantly shorter survival 

of patients with TLR4 

polymorphisms

0.006 [82]

Breast 50 IHC High TLR4 expression in tumor 

cells significantly correlated with 

lymph node metastasis

0.022 [76]

Breast 74 IHC High TLR4 expression in 

infiltrating mononuclear cells 

highly correlated with lymphatic 

metastasis and recurrence

0.0001 [79]

Breast 120 IHC Elevated TLR4 expression was 

strongly associated with tumor 

size and lymphatic metastasis

0.05 [83]

Prostate 133 ELISA High TLR4 expression correlated 

with elevated PSA after ablation, 

an event defined as biochemical 

recurrence

0.05 [84]

Ovarian 109 RT-PCR and 

IHC

High expression of TLR4 

significantly correlated with 

worse of overall and disease-free 

survival

0.01 [85]

Non-small 

cell lung 

cancer

126 IHC Elevated TLR4 expression was 

strongly associated with TNM 

stage and lymphatic metastasis

0.001 [86]

Ovarian 57 IHC TLR4 was detected in 46.3% of 

cases. Co-expression of TLR4 

and its adaptor MyD88 was 

highly associated with advanced 

tumor stage

0.05 [87]

Colorectal 108 IHC High expression of TLR4 strongly 

correlated with shorter overall 

survival

0.0001 [77]

Colon 53 IHC High expression of TLR4 

strongly correlated with disease 

progression

0.05 [73]

Hepatic 106 IHC TLR4 was expressed in 86% 

of tumor specimens and 

significantly correlated with 

tumor size

0.01 [64]

Pancreatic 30 RT-PCR and 

IHC

TLR4 was expressed in 69.2% 

of tumor specimens and 

significantly correlated with 

tumor size, vascular invasion and 

lymphatic metastasis

0.001 [72]

Esophageal 87 RT-PCR and 

IHC

TLR4 expression in 

mononuclear cells was detected 

in 48.3% of specimens and 

significantly correlated with 

lymphatic metastasis

0.05 [88]
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cells [25, 26]. Malignant transformation amplifies TLR4 expression while typically 
preserving its functionality [55]. In fact, constitutive expression of epithelial TLR4 
might contribute to development of cancer if persistently activated by pathogenic 
and environmental ligands which leads to vicious cycles of self-propagating inflam-
mation. For instance, TLR4 interaction with H. pylori products in normal gastric 
epithelium might lead to chronic gastritis and progression into gastric intestinal 
metaplasia [56]. Analysis of cell lines from other organs also consistently showed 
substantial upregulation of TLR4 in tumor cells compared with their normal counter-
parts. Protein, mRNA, and functional activity of the TLR4 pathway have been dem-
onstrated in tumor lines derived from many human epithelial lines including breast 
[33, 57], ovarian [58, 59], lung [60], prostate [61, 62], head and neck [63], hepatic 
[64], gastric [65], and pancreatic [66] cancers. It is also expressed in melanoma [67], 
glioblastoma [68], and various lines derived from hematopoietic malignancies [69]. 
Mouse tumor cell lines from a variety of tissues replicate these findings [70, 71].

TLR4 expression is not only limited to cultured tumor cell lines but is also 
detected in malignant cells in clinical human cancers. Moreover, the majority 
of clinical studies showed that TLR4 expression strongly correlates with poor 
prognosis due to increased tumor size [72], stage [73], loss of differentiation [74], 
chemoresistance [73, 75], venous invasion [72], lymph node metastasis [72, 75–78], 
recurrence [79], and shorter patient survival [77, 80] (Table 1). A recently pub-
lished meta-analysis examining data from 15 independent encompassing analyses 
of different tumors from 1294 patients found strong associations (P-values 0.001–
0.05) between TLR4 expression and reduced overall and disease-free survival [81]. 
Collectively, these studies demonstrate high expression of TLR4 in a variety of 
human solid tumors suggesting it plays a prominent role in inflammation-fueled 
cancer progression and metastasis.

6. Signal transduction and intracellular pathways induced by TLR4

Given the emerging evidence for the TLR4 pro-tumorigenic role (Table 1), it is 
important to understand the basic steps in this pathway, its positive and negative 
molecular regulators, as well as biochemical requirements for intracellular signal 
transduction in both normal myeloid and malignant epithelial cells. The best 
understanding of this pathway is derived from the studies of macrophages activated 
by LPS. Initiation of a signal cascade is mediated through recruitment of adapters 
interacting with the TIR domain of TLR4. Upon ligand-induced oligomerization 
of TLR4, the TIR domain recruits myeloid differentiation factor-88 (MyD88) that 
forms heterodimers with Mal (MyD88 adapter-like) partner, a protein specific for 
TLR4 pathway [89]. Upon binding to TIR, MyD88-Mal complex recruits mem-
bers of the IL-1R associated kinase (IRAK) family, IRAK1 and IRAK4 [90]. Once 
phosphorylated, IRAK1/4 dissociates from the complex and recruits TNF recep-
tor associate factor-6 (TRAF6), an E3 ubiquitin ligase and a critical mediator of 

Tumor type No. 

patients

Detection 

method

Comments P-value Ref

Melanoma 35 IHC TLR4 expression in mononuclear 

cells significantly correlated with 

shorter relapse-free survival

0.001 [80]

Table 1. 
Correlation of TLR4 expression with tumor growth, metastasis and poor patient survival in clinical human cancers.
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TLR2 and TLR4 signaling [91]. Polyubiquitination mediated by TRAF6 activates 
MAP3 kinases and TGF-beta associated kinase (TAK1) [92]. MAP3K activation 
leads to stimulation of p38/JNK pathways, whereas TAK1 together with TAB1/2 
kinases phosphorylates the inhibitor of cytosolic NF-κB complex leading to release 
and nuclear translocation of NF-κB p65/p50 heterodimers [92]. This initiates the 
canonical NF-κB cascade resulting in transcription of a broad panel of inflamma-
tory and pro-survival genes. This is amplified by genes transcribed by AP-1, CREB, 
and Sp1, factors activated through the parallel p38/JNK cascade.

Independently of MyD88 pathway, viruses and some TLR4 ligands also activate 
TIR domain-containing adapter inducing interferon-beta protein (TRIF) that is 
associated with TRIF-related adapter molecule (TRAM). TRIF also activates NF-κB; 
however, the expression level and the composition of the downstream transcribed 
genes are distinct from the MyD88-dependent activation. For instance, TRIF specifi-
cally activates IRF3 factor that induces robust transcription of antiviral interferons 
necessary to fight viral infections as opposed to classic MyD88-NF-κB targets such as 
TNFα and IL-6 that are predominantly upregulated after exposure to bacterial LPS.

7. Role of co-receptors in activation of TLR4

One persistent misconception in the cancer research literature is that TLR4 
directly binds LPS and other activating ligands. However, it has been firmly 
established that TLR4, as a single protein, has very low affinity to LPS. Triggering 
the TLR4 pathway by LPS in monocytes and macrophages requires at least four 
co-receptors: myeloid differentiation protein-2 (MD2), CD14, and CD11b bound 
to CD18 (a complex of integrins known as Mac-1). Secreted MD2 binds to and 
stabilizes extracellular portion of TLR4 which creates a highly specific site for LPS 
recognition [93]. Intracellular MD2 also aids cytosolic trafficking of TLR4 from 
Golgi to the plasma membrane [94]. Physical interaction among MD2, LPS, and 
TLR4 has been shown in multiple elegant studies employing a combination of high-
resolution structural analyses, phenotype comparison in genetically modified mice, 
and other rigorous approaches [95] that show a critical role of MD2 in LPS recogni-
tion by TLR4 in either mouse or human cells.

Likewise, the essential role of CD14 has been shown by physical binding of 
CD14 to lipid A portion of LPS using crystal structure analyses [35] and resonance 
energy transfer [96] as well as by hypo-responsiveness to LPS in mice lacking 
CD14 [97] or in the presence of CD14-blocking antibodies [7]. The function of 
CD14 is to accept a monomer of LPS from a blood-circulating LPS-binding protein 
and transfer it to a pre-made pocket in the MD2/TLR4 complex [98]. The absence 
of CD14 from TLR4-/MD2-positive cells results in a 1000-fold reduced sensitiv-
ity to LPS compared with cells expressing this protein [99]. The involvement of 
CD11b/CD18 in reactivity to LPS is somewhat less certain although some studies 
using a point mutation identified a specific LPS-binding site in CD18 integrin 
[100]. Additional studies showed lack of cytokine production in Mac-1-deficient 
mice [101] and other deficiencies in TLR4 signaling upon treatment with anti-
CD11b or anti-CD18 antibodies in vivo [9]. While some studies suggested that 
optimal signaling requires LPS engagement with TLR4/MD2 complex and Mac-1, 
others found lesser requirements for CD11b/CD18 [102]. This issue, therefore, 
remains unresolved as well as the mechanisms of TLR4 signal transduction 
induced by various endogenous ligands dissimilar from LPS. Importantly, very 
few structural studies were performed in TLR4-expressing normal or tumor epi-
thelial cells that might have entirely different requirements for TLR4 co-receptors 
and signal transduction than macrophages. Tumor epithelial cells are unlikely 
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to express myeloid-specific CD14 and CD11b and might not uniformly express 
MyD88, MD2, and other TLR4 pathway essential proteins. How exactly TLR4 
transmits the multitude of functional effects in the epithelial cell context is largely 
unknown.

8. LPS is the most rigorously confirmed TLR4 agonist

The best-studied ligands of TLR4 are various LPS molecules expressed in Gram-
negative bacteria. The basic structure of LPS includes a lipid A component with 
4–6 fatty acyl chains, an oligosaccharide core, and covalently attached O-antigen 
polysaccharide side chain [103]. The presence of phosphates in the lipid A and 
oligosaccharides confers the highly negative charge to LPS enabling its reactivity 
with cationic bactericidal host molecules such as beta-defensins [104]. CD14 binds 
the lipid A portion of LPS leaving acyl chains exposed to an LPS-binding site on the 
TLR4/MD2 complex. The presence of six acyl chains (as opposed to five or four) 
confers the best potency in activating TLR4 [105], presumably because the four acyl 
chains perfectly fit the hydrophobic cavity in MD2 [106] and the other two chains 
support the complex and promote its oligomerization [107]. This structural require-
ment illustrates the exquisite specificity of the binding site in the TLR4/MD2 com-
plex to LPS raising reservations about the potential suitability of this complex for 
binding alternative ligands [95]. A functional and some structural evidence exists 
demonstrating TLR4-dependent cell activation triggered by lipid-like molecules 
(e.g., lipoteichoic acid [108], minimally oxidized LDL [109], and free saturated 
fatty acid palmitate [110]) whose binding might be supported by a hydrophobic site 
on CD14. Among other proposed TLR4-activating ligands, some structural evidence 
exists for a chemotherapeutic drug paclitaxel (PXL) [95, 101] and endogenous 
ligands HMGB1 [111] and S100A8 [112]. At the present, mechanisms by which other 
functional TLR4 ligands induce signal transduction are largely unknown.

9.  Chemotherapeutic drug paclitaxel as a TLR4 ligand and a promoter of 
tumor growth and metastasis

For cancer researchers, a TLR4 stimulating effect of PXL is of special signifi-
cance. This is because PXL and the entire class of its derivatives known as taxanes 
are widely used as anticancer cytotoxic drugs against a variety of human malig-
nancies [113]. Resistance, however, occurs frequently [114], and the underlying 
mechanisms are poorly understood. PXL, the active component of all taxanes, 
exerts its cytotoxic action via binding to microtubules leading to their over-
stabilization which results in apoptotic death of dividing cells [115]. The pro-
survival effects of activated TLR4 pathway can explain many attributes associated 
with PXL chemoresistance including activation of NF-κB [116], phosphorylation 
of Bcl-2 and Bcl-XL [117], and resultant evasion of apoptosis [33, 58] in spite of 
continuous therapy.

Despite somewhat limited direct evidence confirming physical interactions of 
PXL with the TLR4 complex, there is overwhelming functional evidence for PXL 
activation of the TLR4 pathway in malignant human and mouse cells (Table 2). 
The early studies demonstrated that wild-type (WT) mice with functional TLR4 
injected with PXL upregulated nearly an identical panel of inflammatory cytokines 
as those injected with LPS [3]. That was in sharp contrast to myeloid cells from 
TLR4-deficient mice that failed to respond to either molecule [118]. Mice lack-
ing MyD88, the major intracellular adapter of TLR4, also did not respond to LPS 
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or PXL [119]. Treatment with PXL faithfully reproduced all known events in the 
LPS-inducing cascade including dual activation of MyD88 and TRIF pathways 
[58, 119–121]; phosphorylation of IRAK1 and IRAK4 [58, 122]; NF-κB activation 

Tumor 

type

Specie Study 

type

Taxane-mediated effects Ref

Breast and 

ovarian

Human In vitro PXL induced degradation of IkappaB 

alpha followed by activation of NF-κB 

and MAPK

[126]

Renal Human In vitro PXL activated ERK1/2 and induced 

Bcl-2 and EGFR

[127]

Breast Human In vitro Only PXL-responsive tumor lines 

showed marked increase in AP-1 and 

NF-κB binding to IL-8 promoter

[128]

Breast Human In vitro &  

In vivo

Curcumin, an inhibitor of NF-κB, 

blocked PXL-dependent upregulation 

of pro-survival, proliferative and 

angiogenic proteins including MMP9 

& VEGF-A

[129]

Prostate Human In vitro Docetaxel increased tumor cell survival 

by activating PI3K/AKT pathway and 

TLR4 silencing reduced this effect

[61]

Breast Human Tumor 

xenografts 

in mice

PXL therapy induced NF-κB, Bcl-2, and 

VEGF-A, and anti-VEGF-A antibody 

blocked this effect

[130]

Various Human In vitro In a cell-based screening of 1,280 

compounds, PXL was identified as one 

of the most potent inducers of invasion

[131]

Non-small 

cell lung 

carcinoma

Human Clinical 

study

Pre-operative taxane therapy increased 

COX2, PGE2 and microvessel density 

in patients

[132]

Breast Human In vitro 

& models 

in vivo

PXL upregulated cytokines mainly in 

TLR4-positive tumor lines; an anti-

TLR4 antibody blocked this effect

[33]

Breast Human Clinical 

study

Taxane chemotherapy increased 

circulating angiogenic factors and 

endothelial cell progenitors in patients

[133]

Breast Human & Mouse Tumor 

models in 

mice

Taxane chemotherapy increased 

circulating CSF1 and tumor homing of 

BM pro-vascular myeloid cells

[134]

Breast Human Clinical 

study

Neoadjuvant taxane therapy increased 

angiogenesis in patients, possibly 

through VEGF-A and Notch pathways

[135]

Breast Human Tumor 

xenografts 

in mice

TLR4-positive tumors responded 

to PXL by increasing cytokines, 

homing of myeloid pro-vascular cells, 

lymphangiogenesis, and metastasis to 

lymph nodes

[136]

Breast Human & Mouse In vitro PXL induced differentiation of 

lymphatic endothelial progenitors in 

TLR4-positive BM myeloid precursors

[18]

Breast Human & Mouse Tumor 

models 

in vivo

Docetaxel increased tumor lymphatic 

formation and metastasis to lymph 

nodes

[137]

Table 2. 
Pro-oncogenic Effects of Paclitaxel and Docetaxel (selected list)
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[33, 118, 122]; signaling through PI3K/pAKT [61, 121, 123] and activation of MAP 
kinases [119], p38 [124], JNK [123], ERK1/2 [33, 125], AP-1, and STAT3 [116]; and 
transcription of inflammatory genes and pro-survival factors [33, 118].

PXL-induced upregulation of inflammatory, promitotic, and pro-survival 
genes is evidenced by transcriptional analyses of drug-treated human cancer 
lines from breast [33, 122, 136], ovarian [58, 121], prostate [61], lung [116, 138], 
and melanoma [139] origins. Upregulation of these genes is evidenced as early 
as 6 hours posttreatment [138] which eliminates the possibility that this is a 
secondary effect resulting from cell death. Inhibition of IRAK1, an intracellular 
kinase whose phosphorylation is required for TLR4-dependent activation of 
NF-κB [90], in breast cancer lines suppressed an inflammatory response to PXL 
concomitant with decreased chemoresistance in vivo [122]. Correlation with 
chemoresistance was also recorded in an independent study that employed two 
different models of isogenic TLR4-negative and TLR4-positive lines [33, 136]. 
Mediation of PXL signaling through TLR4 is also suggested by studies with TAK-
242 (also known as CLI-095), a TLR4-specific inhibitor that blocks interactions 
between the TIR domain and intracellular adapters [140]. Breast carcinoma cells 
pre-treated with TAK-242 reduced PXL-induced expression of inflammatory 
cytokines by nearly 90% [33]. Multiple studies showed that PXL effects on tumor 
epithelial or immune cells are largely TLR4-dependent since silencing TLR4 by 
siRNAs or blocking its actions by specific antibodies or sequence-based peptide 
inhibitors significantly reduced both NF-κB activation and subsequent molecular 
(e.g., cytokine upregulation) and cellular (e.g., division and migration) activities 
[33, 61, 121].

While the notion of PXL sharing the TLR4 pathway with LPS is generally 
accepted, the molecular basis for physical TLR4 recognition by PXL is still a matter 
of debate, particularly in the context of nonmyeloid cells. CD14 was reported to 
play a minimal role in transmission of PXL signals [141], and it is typically absent in 
normal and tumor epithelial cells. PXL was reported to bind to CD18 [101], but the 
partner for the Mac-1 complex, CD11b, is typically absent from non-hematopoietic 
cells such as tumor cells from epithelial malignancies. The requirement for MD2 
turned out to be particularly contentious as several studies reported an exclusive 
specificity of mouse but not human MD2 in supporting PXL-induced signaling 
[142, 143]. The implication would be that PXL affects only cells from the mouse 
specie, but this contradicts extensive evidence demonstrating functional LPS-
mimetic effects of PXL on human tumor cells (Table 2) and normal monocytes 
[18]. One group found that PXL does bind to human TLR4/MD2 complex but acts 
as an antagonist [143]. However, this is inconsistent with increased migration, 
invasion, and other activities of human tumor cells [62, 144] as well as with direct 
stimulating effects on multiple signaling pathways [122]. It should be noted that 
two studies that identified PXL as an inhibitor of TLR4 were performed in HEK-
293 cells, a human embryonic kidney line immortalized by adenovirus A5 which 
caused substantial deviations from the epithelial phenotype including expression 
of neuron-specific genes [145]. HEK-293 cell line was very useful for identification 
of structural components of the TLR4 complex but might not necessarily reflect the 
biology of human tumor cells due to differences in organ origin (many responders 
are derived from tissues other than kidney), stemness status (embryonic vs. adult), 
and unique genetic changes caused by virus. The latter could lead to significant 
differences in expression of TLR4 co-receptors and other regulatory proteins. In 
general, the majority of structural studies with PXL have been performed with 
either HEK-293 or macrophages. It therefore remains to be established whether 
the same mechanisms control PXL interactions with the TLR4 complex in human 
epithelial neoplastic cells.
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10.  Endogenous ligands of TLR4 released from damaged and necrotic 
cells

The class of endogenous ligands comprises more than 30 molecules that share 
no structural resemblance within the members of the group and either LPS or 
PXL. The list of proposed endogenous TLR4 ligands includes a variety of structur-
ally dissimilar molecules ranging from high-mobility group box-1 (HMBG1) [146] 
to S100A8 [27, 147] and fibronectin [148]. Alternative names for endogenous ligands 
are DAMPs mentioned above [41], danger factors [42], and alarmins [149]. The 
current concept suggests that DAMPs normally segregated into cytosol or intracel-
lular compartments are secreted upon exposure to inflammatory cytokines [146] or 
passively released from damaged or necrotic cells [71]. Soluble DAMPs then activate 
receptors of innate immunity such as TLR2, TLR4, and RAGE that are charged not 
only with protection against pathogens but also with restoration of homeostasis 
[41]. This is an appealing concept that fits well with well-established activation of 
TLR4 during sterile injury [150] and remodeling of wounded tissue or tumor [151]. 
It might also explain activation of TLR4 in cancers developed at sterile anatomic sites 
and, particularly, during cytotoxic therapy that produces massive cell death.

DAMP-mediated activation of the TLR4 pathway in tumor cells has been shown 
by numerous independent studies using genetically modified mice with absent or 
mutated TLR4 [152], blocking anti-TLR4 antibodies [153], specific inhibitors [152], 
and gain- of-function or loss-of-function approaches [153]. For instance, anti-TLR4 
antibody reduced HMGB1-induced proliferation of mouse lung carcinoma cells [154]. 
HMGB1-dependent recruitment of c-Kit+ progenitors [155], angiogenesis [156], and 
lymphangiogenesis [157] was significantly reduced in TLR4 −/− non-tumor-bearing 
mice suggesting similar outcomes in the presence of tumor. HMGB1-induced angio-
genesis was also shown in study with UV-damaged keratinocytes in which the released 
factor increased inflammation, cell proliferation, and migration of melanoma cell 
toward the endothelial monolayer [144]. All effects were reduced in TLR4- and 
MyD88-deficient mice as well as in the presence of TAK-242, a specific peptide inhibi-
tor of TLR4 signal transduction [144]. Consistent with this finding, HMGB1 released 
from necrotic skin cells enhanced inflammation and recruitment of BM myeloid cells 
and promoted tumor formation, all of which were reduced in TLR4 null mice [158]. 
Overexpression of HMGB1 in hepatic carcinoma correlated with tumor invasion, and 
knockdown of this protein suppressed metastasis [159]. Chemotherapy that produces 
massive necrosis and hence release of HMGB1 and other pro-inflammatory intracel-
lular factors was shown to enhance tumor relapse and metastasis in a model of colon 
cancer [71]. A variety of tumor- and metastasis-promoting effects have also been 
reported for other endogenous TLR4 ligands including S100A8/A9 [152], SAA3 [147], 
hyaluronic acid [153], heat-shock proteins [68, 160], and peroxiredoxin-1 [161].

While the existing functional evidence strongly supports DAMP activation of 
the TLR4 pathway, the question remains whether these factors are truly ligands 
for TLR4 or ancillary molecules that stabilize its membrane complex or potentiate 
intracellular signaling. This uncertainty stems from structural dissimilarity between 
LPS and many TLR4-activating molecules; a potential risk by LPS contamination 
of recombinant factors produced in Gram-negative bacteria [162]; and lack of clear 
structural evidence for physical interaction with TLR4 or MD2 proteins for some 
ligands [95]. That said, binding of mammalian cell-produced, endotoxin-free SAA3 
and S100A8 to TLR4/MD2 complex was shown by surface plasmon resonance [163], 
and binding of HMGB1 to the same complex was demonstrated by a point muta-
tion in Cys106 that severely reduced the HMGB1 capacity to activate TLR4 [111]. 
Determination of other ligands as binding partners, amplifiers [164], or assistants 
might need to be resolved in the future studies.
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11.  Cellular and molecular consequences of TLR4 activation in the 
context of cancer

TLR4 is a powerful pathway that simultaneously enhances several key cell 
functions including differentiation, proliferation, migration, invasion, and survival. 
On molecular level, the hallmark of TLR4 stimulation is strong upregulation of 
inflammatory cytokines that act as autocrine and paracrine activators of the first cell 
responders to TLR4 ligands and nearby stroma, respectively, as well as systemic alert 
signals for immune organs. In tumors, parallel TLR4 activation of neoplastic and 
immune cells often results in “double-edge sword” effects [165] due to conflicting 
functional implications for each cell type. An antitumor effect of TLR4 activation 
of dendritic cells (DC) is evident by enhanced maturation [166], migration [167], 
improved antigen presentation [168], better activation of cytotoxic T cells  
[168], and increased tumor cell death [169]. However, induction of similar pro-
mitotic, survival, and migratory functions in malignant and tumor-associated cells 
has a pro-tumorigenic effect. TLR4 agonists are often proposed to be used clinically 
for enhancing antitumor therapy [170]; however, it is worth considering both local 
and systemic consequences of TLR4 activation. The effects on host immune and 
hematopoietic cells are not straightforward as improved DC functions are coun-
terbalanced by increased generation of myeloid-derived suppressor cells [171] that 
inhibit antitumor responses. TLR4 activation of BM immature myeloid cells leads to 
generation of provascular progenitors [17, 18] that increase tumor vessel formation 
and metastasis [136, 172]. Lung recruitment of the host BM-derived myeloid cells 
by TLR4 ligands SAA3 in combination with S100A8/A9 has been shown to create a 
pulmonary pre-metastatic niche, thus ensuring successful establishment of tumor 
lesions in distant organs [147]. Likewise, TLR4 activation of T cells may enhance 
their immunosuppressive effects [173] rather than anticancer activities. In our stud-
ies performed in tumor-bearing immunocompetent and immunodeficient mice, we 
often observe a transiently reduced growth upon injection of TLR4-differentiated 
myeloid progenitors. However, tumor growth resumes at later stages along with 
substantial increase in lymph node metastasis which correlates with injection 
of myeloid-derived progenitors [18]. These studies suggest that development of 
either TLR4-suppressing or TLR4-activating therapeutic strategies should take 
into account the impact of modulators on all TLR4-positive cells at both tumor and 
systemic organs.

12. Direct functional effects of TLR4 on tumor cells

Most solid tumors that originated from epithelial, neuronal, and skin cells do 
not exhibit the same level of responsiveness to LPS as myeloid cells. Nevertheless, 
functionally, TLR4 activation of tumor cells largely reproduces the known effects 
in cells of innate immunity. On molecular level, this includes MyD88-dependent 
activation of NF-κB [33, 71, 174], MAPK [75], PI3K/AKT [61, 175], ERK1/2 [176], 
c-Jun [69], p38 [75, 176, 177], and other pathways that collectively upregulate 
inflammatory cytokines [174, 178], metalloproteases [179], and pro-survival 
factors [59, 180]. Among multiple LPS-induced cytokines in cancer cells are par-
ticularly important angiogenic factor VEGF-A [55, 60, 181], immunosuppressive 
TGF-beta [60, 182], and a variety of chemokines recruiting BM-derived myeloid 
cells [34, 178] that promote tumor progression through their own mechanisms. On 
a cellular level, TLR4 activation increases tumor cell proliferation [69, 177, 183], 
migration [64, 175], invasion [159], and survival [58, 176, 184] that collectively 
results in resistance to therapy [58, 61, 69, 136, 183]. Some studies also reported 
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increased stemness due to expansion of cancer stem cells [153, 183]. Additional 
effects include induction of epithelial-mesenchymal transition (EMT) [66, 180] 
and evasion of immunosurveillance [183], both of which might reflect TLR4-
activated macrophage properties enabling tissue repair and resilience against 
pathogen-produced toxins. Undoubtedly, combination of these effects profoundly 
impacts tumor growth, chemoresistance, and metastasis.

While it is not possible to discuss all relevant reports due to very extensive 
literature on the subject, it is worthwhile to highlight several general points. First, 
the majority of reports showed a significant increase in oncogenic and metastatic 
potential of tumor cells treated with TLR4 ligands, whereas a minority described 
an opposite effect [185]. This suggests that in most situations, although both 
pro- and antitumor effects are induced by TLR4 signaling, the former might be 
prevailing over the latter. Second, the pro-oncogenic effects have been observed 
across the entire tumor source spectrum including breast [136, 174, 175], ovarian 
[58, 121], prostate [61, 62, 184], lung [55, 70], pancreatic [186], colon [176, 180], 
colorectal [75, 78], and hepatocellular [159, 177] carcinoma lines as well as glioma 
[183], myeloma [69], and melanoma [144] cells. This indicates a widespread role 
of TLR4 signaling in human solid cancers which should be considered by clinical 
therapeutic strategies. Third, TLR4 pathway activated by PXL [33, 58, 62], LPS 
[175, 184], or other ligands [154] equally affects mouse [178] and human [33, 58] 
cancer cells. This point is important not only because of the widespread use of 
mice for modeling human cancers but also because of a lingering debate whether 
PXL-dependent activation is restricted to mouse cells [142, 187]. Evidence from 
multiple studies demonstrating PXL-dependent activation of human tumor 
cells (Table 2; reviewed in [188]) indicates that this is not a case. Lastly, media-
tion through the TLR4 protein by PXL and endogenous ligands has been shown 
by many approaches including RNA interference [61, 62], anti-TLR4 blocking 
antibodies [33, 189], TLR4-specific inhibitors [33, 144], as well as use of TLR4−/− 
mice [30, 144, 158] and isogenic tumor lines with differential TLR4 expression 
[33]. Although the studies of alternative TLR4 ligands would still benefit from 
stronger structural evidence for direct recognition of the TLR4 complex, the 
combined functional evidence derived from multiple independent studies cannot 
be dismissed. The currently available data show mainly a pro-tumorigenic impact 
of TLR4 expressed in human and mouse cancer cells resulting from exposure to 
LPS or TLR4 alternative ligands.

13.  Importance of TLR4-induced autocrine loops in normal myeloid cell 
physiology and tumor pathology

One important function of the TLR4 pathway in macrophages during pathogenic 
invasion is to amplify the signaling to hasten proliferation and survival of resident 
macrophages as well as recruitment of BM-derived myeloid cells to the septic site. 
Macrophages effectively achieve this goal by establishing autocrine loops through 
coincided upregulation of secreted cytokines and corresponding membrane-
inserted receptors. This positive reinforcement ensures sustained expression of 
downstream targets necessary for prolonged survival, resilience, and heightened 
activities of immune cells. For instance, LPS-upregulated IL-1 and IL-18 are 
co-expressed with their receptors that signal through the MyD88 pathway in addi-
tion to TLR4 [190] which doubles the outcomes of the combined signaling [191]. 
LPS-induced co-expression of IL-8, TNF alpha, and other cytokines with their 
receptors was reported to amplify macrophage functions by enhancing activation of 
NF-κB [39] and STAT1 [192]. This pattern is mimicked by TLR4-positive tumor cells 
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activated by either LPS [178] or PXL [33]. In our study with TLR4-expressing breast 
carcinoma lines, we observed that PXL-induced transcription of multiple cytokines 
was coordinated with upregulation of matching receptors evident by parallel 
elevation of CXCL2/CXCR2, CCL20/CCR6, and CSF1/CSF1R pairs [33]. Similarly to 
positive reinforcement in activated macrophages, signaling through these addi-
tional pathways in tumor cells significantly increased expression of pro-survival 
proteins such as pAKT and ERK1/2 [33]. These findings highlight a cytoprotective 
program naturally induced by TLR4 in macrophages and reproduced by tumor cells 
that might represent a key mechanism underlying tumor evasion of apoptosis and 
resistance to therapy.

14.  Indirect pro-oncogenic effects of TLR4 mediated by cells in the 
tumor microenvironment (TME)

TME has profound effects on tumor progression [193, 194]. Some of the pro-
oncogenic and pro-metastatic effects of TLR4 are mediated by TME cells such as 
macrophages, fibroblasts, smooth muscle cells, and pericytes as well as endothe-
lium lining blood and lymphatic vessels. Macrophages are natural responders to 
TLR4 ligands having the highest expression of this receptor. Under inflammatory 
conditions, TLR4 is further upregulated by LPS [31] and cytokines [195] through 
positive feedback loops. Tumor-associated macrophages (TAMs) are well-known 
promoters of metastasis through secretion of growth-promoting cytokines, prote-
ases [196], and immunosuppressive factors [197]. TAMs are also significant source 
for lymphangiogenic factors that increase lymphatic density and metastasis [198]. 
Importantly, TAMs from TLR4-deficient mice have a significantly reduced capacity 
to activate NF-κB leading to deficient production of angiogenic and inflammatory 
factors that promote tumor growth [55].

Cancer-associated fibroblasts (CAFs) are another cell type found in most 
solid tumors but particularly pronounced in pancreatic [199], colorectal [200], 
and breast [201] cancers. Inflamed human and mouse fibroblasts express TLR4/
MD2 complex and respond to TLR4 ligands [202]. Deletion of TLR4 prevents 
fibrosis in vivo [202] suggesting that CAF-expressed TLR4 might play a non-
redundant role in tumor pathology. This is, indeed, supported by several studies. 
TLR4 expression in CAFs in human colorectal cancer was associated with high 
recurrence rate and poor patient survival [200]. CAFs associated with breast 
cancer were identified as a main source of HMGB1 that activated neighboring 
TLR4-positive tumor cells [203]. Functional TLR4 was also found to be expressed 
in another TME component, tumor-recruited mesenchymal stem cells (MSC), 
which was evidenced by LPS-activated NF-κB, PI3K and IRF1, and upregulation 
of downstream cytokines [204]. High level of TLR4 was also detected in human 
pericytes that are ontogenically related to MSC [52]. When activated by either 
LPS or HMGB1, pericytes upregulated classic NF-κB genes including cytokines 
and cell adhesion molecules (CAMs) such as VCAM-1 and ICAM-1. The latter 
greatly increase leukocyte adhesion to pericyte monolayer [52] which might play 
a key role in transmigration of blood-circulating immune cells and hematopoietic 
progenitors through the vascular barrier and infiltration of the tumor interstitium. 
Tumor-recruited cells harbor BM-derived myeloid-suppressive cells that promote 
immuno-evasion [205] as well as provascular progenitors that expand tumor vas-
culature [206, 207]. Both of these TME populations are known to advance tumor 
progression. Collectively, these studies illustrate a prominent role of TLR4 signal-
ing in cross-talk of various TME compartments that propagate circuits supporting 
tumor-associated and malignant cells.
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15. Role of TLR4 in tumor angiogenesis and lymphangiogenesis

Although majority of studies have been focused on myeloid cells, it is difficult to 
overstate the functional impact of the TLR4 pathway on vasculature. Blood ves-
sels are the first responders to circulating septic molecules, and lymphatic vessels, 
among other functions, help mounting the adaptive immune response by collecting 
pathogenic antigens from the infected tissue and delivering them to regional lymph 
nodes. Blood vascular endothelial cells (BEC) and lymphatic endothelial cells (LEC) 
from human [19, 208] and mouse [50] origins express TLR4 and are naturally 
equipped to sense and respond to TLR4 ligands [49, 209]. Endothelial cells (EC) 
from both large [208] and microvessels [19] express TLR4 and accessory molecules 
for ligand recognition [32] and intracellular signaling [49, 209, 210]. The TLR4 
specificity of endothelial response to LPS and other ligands has been documented 
using mice with deleted receptor [50], ectopic overexpression of nonfunctional 
protein [19], siRNA [211], and anti-TLR4 monoclonal antibodies [19].

Similarly to myeloid cells, activation of endothelial TLR4 results in NF-κB-
mediated upregulation of inflammatory cytokines [19] that includes prominent 
expression of angiogenic factors VEGF-A and PDGF-BB [212]. Along with this 
shared pattern, EC also display a distinct response to TLR4 activation such as high 
upregulation of transcription factor FOXC2 and induction of DLL4-Notch signal-
ing [210] regulating vascular sprouting [213]. Likewise, CAM upregulation, which 
is detected in all TLR4-activated cells, is particularly pronounced in endothelium 
[212]. TRAF6, the key regulator of the TLR4 pathway, also mediates endothelial-
specific responses, e.g., disruption of the vascular barrier [48, 49]. The resultant 
increase in vascular permeability combined with CAM upregulation strongly 
promotes recruitment of blood-circulating cells [50, 155] many of which (e.g., 
BM-derived immature myeloid cells) have potent independent effects on generation 
of tumor vessels [206]. Indeed, microvessel density in clinical human pancreatic 
cancers was found to be strongly associated with TLR4 expression [211]. A puta-
tive endogenous ligand of TLR4, peroxiredoxin-1, was shown to increase tumor 
growth by promoting tumor vasculature [161]. These studies support the concept 
that TLR4 activation of tumor endothelium promotes vascular formation through 
direct induction of angiogenic factors and sprouting and, indirectly, by facilitating 
transmigration of blood-circulating tumor-promoting immune cells.

Whereas tumor angiogenesis is indispensable for expansion of tumor mass, it 
might be less relevant to metastasis than lymphatic vessels that have invasion-prone 
discontinuous basement membrane [214] and are naturally equipped to transport 
cells to regional lymph nodes [215]. Hematogenous metastasis typically occurs 
later from the blood vessels in the lymphatic lesions as has recently been shown 
in several mouse models [216, 217]. Cell trafficking to lymph nodes is mediated 
exclusively by tumor-associated lymphatic vessels, and increase in density of these 
vessels is directly associated with metastasis in breast [218] and many other human 
cancers [188]. Functional TLR4 is highly expressed in LEC as evidenced by sub-
stantial upregulation of NF-κB-dependent chemokines that recruit macrophages 
from inflamed tissue to the lymphatic vessels leading to the draining nodes [20]. 
The absence of TLR4 significantly reduces lymphatic vessel formation resulting 
in increased edema and decreased transport through the lymphatic channels [53]. 
Paclitaxel, a potent mimetic of LPS, promotes lymphangiogenesis in breast cancer 
models concomitant with highly elevated lymphatic metastasis and, subsequently, 
increased recurrence [136]. Collectively, these studies present strong evidence for 
TLR4-dependent promotion of metastasis through activation of both blood and 
lymphatic endothelia in the tumor.
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16.  Indirect provascular effects of TLR4 through differentiation of 
BM-derived endothelial progenitors and their recruitment to tumors

One often overlooked aspect of systemic TLR4 signaling is its tremendous 
impact on differentiation and recruitment of BM-derived provascular progenitors. 
Angiogenesis and lymphangiogenesis are tightly regulated in adult organism and, 
with few exceptions (e.g., wound healing and a female reproductive cycle), are 
induced only during sustained unresolved inflammation or cancer. The latter are one 
and the same because all solid tumors have a persistent inflammatory component. 
Physiologically, any increase in tissue mass or remodeling is accompanied by expan-
sion of blood and lymphatic vessels necessary to serve the new vascular bed. TLR4 
responds to this host default program not only by activating local endothelium but 
also by inducing differentiation of provascular progenitors from early BM precursors.

In all vertebrates, embryonic stem cells derived from hemogenic endothelium 
express TLR4-NF-κB pathway that is necessary and sufficient to create hemato-
poietic stem/progenitor cells [15]. The latter give rise to both immune and vascular 
endothelial cells [219, 220]. Adult mesenchymal [16, 204] and hematopoietic stem 
cells express functional TLR4 as evidenced by LPS-induced self-renewal and their 
differentiation into appropriate lineages. Both blood vascular [17, 221] and lym-
phatic endothelial [18] progenitors vigorously respond to LPS [17] and other TLR4 
ligands [221] by increasing proliferation, migration, and expression of transcription 
factors that control their differentiation into endothelial-like cells. When ligands 
are present systemically (e.g., released from necrotic tumors and during bolus PXL 
chemotherapy), TLR4-induced differentiation of BM progenitors occurs in parallel 
with upregulation of TLR4-dependent CCL2, CCL20, and other chemokines that 
recruit these progenitors to tumor [136, 174, 178, 222]. In experimental models, 
mobilization of genetically traceable BM-derived provascular progenitors increased 
tumor angiogenesis [172], whereas recruitment of myeloid-derived lymphatic 
endothelial progenitors (M-LECP) substantially increased tumor lymphangiogen-
esis [136] and lymphatic metastasis [18]. Taken together, these studies demonstrate 
how TLR4-induced differentiation of BM endothelial precursors and upregulation 
of tumor chemokines act in concert to increase blood and lymphatic networks that 
ultimately promote metastasis.

While both LPS and PXL can expand provascular progenitors, the latter is more 
pertinent to oncology due to widespread use of taxanes in clinical practice. PXL 
is an active component of all taxanes including widely clinically used docetaxel 
and nab-paclitaxel. Although counterintuitive, the new concept of chemotherapy-
driven metastasis mediated by the TLR4-PXL axis [188, 223, 224] is substantiated 
by ample evidence from clinical studies. A single dose of PXL to breast cancer (BC) 
patients doubles the blood level of inflammatory cytokines [225]. An independent 
study of BC patients before and after PXL therapy confirmed these data and further 
demonstrated in mice that PXL significantly increases tumor recruitment of 
BM-derived progenitors [226]. An additional study in BC patients found that PXL 
increased mobilization of myeloid-derived progenitors by >300% [227]. A separate 
analysis conducted before and after taxane therapy in BC patients showed a > five-
fold increase in tumor-infiltrating myeloid cells and subsequent metastasis [228]. 
Similar extent of tumor enrichment by CD11b+/CD14+ myeloid cells concomitant 
with enhanced metastasis was shown in a large study of patients (N = 699) treated 
by taxanes [134]. Tumor recruitment of these cells was strongly associated with 
lymphatic metastasis that doubled in taxane-treated compared with untreated 
patients [134]. In experimental models, PXL treatment increased angiogenesis 
and metastatic properties in tumor cells [229]. We recently showed that PXL 
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chemotherapy increased differentiation of BM hematopoietic-myeloid precur-
sors into lymphatic progenitors [18], tumor mobilization of these progenitors, 
intratumoral lymphangiogenesis, and enhanced metastasis to lymph nodes [18, 
136]. Broader recognition of this emerging concept should help in developing novel 
approaches to combat metastasis such as targeting TLR4-dependent BM differentia-
tion and tumor recruitment of provascular myeloid cells.

Figure 1. 
Activation of TLR4 in tumor cells and tumor microenvironment. TLR4 is overexpressed in malignant cells 
and in a variety of host cells within the tumor mass including endothelial cells, fibroblasts, pericytes, immune 
cells, and various progenitors recruited by TLR4-dependent chemokines to tumor inflammatory environment. 
TLR4 is activated mainly by endogenous ligands released from all expressing cells due to necrotic death induced 
by pathological surroundings as well as by taxane chemotherapy due to direct activation of the receptor and, 
indirectly, through increase of endogenous ligands from dead and damaged cells. Following, TLR4 signaling leads to 
upregulation of inflammatory cytokines, pro-survival and migratory factors, and proteases that disrupt extracellular 
matrix. This collectively increases not only tumor growth but also its metastatic potential due to enhanced vascular 
invasion and resistance to cytotoxic therapies. Metastasis is also enhanced because of direct activating effects on 
tumor endothelium as well as recruitment of provascular progenitors that aid in generation of new vessels.
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17.  Summary of TLR4-dependent mechanisms that specifically promote 
metastasis

Among multitude of pro-oncogenic effects of TLR4, those that specifically 
affect metastasis relate first and foremost to acquisition of traits normally restricted 
to inflamed macrophages, that is, enhanced migration, invasion, proliferation, 
and survival (Figure 1). However, this is strongly supplemented by effects on 
TLR4-expressing cells in the tumor environment from which most relevant are 
BEC and LEC. Undoubtedly, expansion of angiogenesis and lymphangiogenesis 
confers direct enhancement of tumor spread through these channels which may 
occur independently of TLR4 expression in tumor cells. Additionally, the ability 
to expand BM provascular and stromal progenitors and recruit them to tumor by 
chemokines—a specific property of inflamed macrophages—substantially sup-
ports new vessel and stroma formation. Importantly, the newly acquired properties 
enabled by the TLR4 signaling are further enhanced by endogenous factors released 
due to spontaneous necrotic death and chemotherapeutic treatments. Under 
these conditions, PXL, as an activator of TLR4, takes a special place because of its 
pro-inflammatory effects through release of endogenous ligands due to tumor cell 
kill as well through direct action on the TLR4 complex. Ultimately, these processes 
occur in parallel at tumor and systemic, mainly immune organs, sites. TLR4-
positive tumor cells have a pro-metastatic advantage by coordinating generation 
of new transporting channels and enhanced migratory/invasive potential as well 
as the enhanced capacity to survive in the circulation and at new sites (Figure 1). 
TLR4-negative tumor cells might have a reduced metastatic potential due to the 
absence of direct stimulating effects, but they are still benefited from the regenera-
tive tumor environment that is strongly supported by inflammation orchestrated by 
TLR4. Taking into account a comprehensive systemic view on tumor and chemo-
therapy effects on TLR4-mediated activities should facilitate the rational develop-
ment of new anti-metastatic strategies.
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