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Chapter

Real-Time Quantitative PCR 
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Microbiological Quality of Food
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Abstract

Microbiological parameters of food provide quality information regarding the 
processing, storage, and distribution conditions, shelf life, as well as whether the 
food poses a health risk to the population. In this context, the concern with food 
safety is a competitive advantage, as the pressure of consumers, who are increas-
ingly interested and concerned about what they are consuming, directs the trade to 
reach the quality of products and services offered. With regard to microbiological 
analyses, researchers have been developing sensitive techniques to produce rapid 
results, since traditional methods of microbiological culture are time-consuming 
and very laborious. Thus, the real-time quantitative PCR technique (qPCR) offers 
the possibility of quantifying the total bacterial DNA in a food sample without the 
need of the microbial growth step. That is, the result can be expressed on the same 
day, and it is possible to perform a simultaneous quantification of more than one 
pathogen in a single assay. Therefore, it can be a useful tool for monitoring micro-
biological quality in food industries. In this chapter, we will present the advantages 
and disadvantages of this methodology for food microbiology emphasizing the 
challenge of differentiating viable cells from nonviable cells.

Keywords: pathogen quantification, food microbiology, food safety,  
quantitative microbial risk assessment, propidium monoazide qPCR,  
ethidium monoazide qPCR

1. Introduction

The quality term has undergone variations over time. In the last century, the 
food quality was expressed only by the intrinsic and extrinsic characteristics of 
different individual units of a product which would determine its acceptability 
[1]. Currently, the term quality has already a broader aspect: it is related to the 
ability to plan and develop continuous actions during all stages of processing, 
aiming at maintaining the product characteristics and performance to reach the 
requirements that satisfy the needs and expectations of the consumer [2]. Thus, 
food companies seek to achieve more and more the quality standard of their 
products that will be delivered to the final consumer. In turn, the perception of 
quality by consumers is closely linked to the attributes they most value: nutrition 
and food safety.
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Food safety practices aim to ensure the appropriate physical, chemical, and 
microbiological conditions for product quality. For food industries, the safety 
aspect is always a determining factor about quality, since any problem can compro-
mise the consumer health, culminating in serious financial losses and diminishing 
the reliability of their products. Thus, the industry advocates the application of 
food safety management system in the entire food production chain, as a preventa-
tive approach toward identifying, preventing, and reducing foodborne hazards, to 
ensure the food is safe for consumption and with nutritional value. Only then, the 
total quality of food can be reached [3–5].

One of the main parameters that determine the food quality is its microbiologi-
cal characteristic, since microbial contamination is responsible for most foodborne 
disease (FBD) outbreaks in worldwide, affecting individuals of all ages, particularly 
children under 5 years of age and persons living in low-income regions of the world 
[6]. The microbiological evaluation is performed with the objective of establish-
ing the absence of pathogens or their toxins and to enumerate total or indicator 
microorganisms that provide information about the conditions of processing, 
storage, distribution, shelf life, and the health risk of the population [7]. As such 
examples, we can cite the increased numbers of Staphylococcus aureus when detected 
in a food processing step might imply in contamination by handling, the increased 
numbers of Escherichia coli might suggest fecal contamination, and the detection 
of Salmonella spp. might indicate that the processing has not been able to eliminate 
pathogenic microorganisms [8].

The microbiological quality should be effectively focused on traceability, with 
emphasis on the “farm-to-fork” approach, reaching the entire food chain. For this, 
rapid diagnostic methods are highly recommended so that early interventions of 
control strategies can be applied, ensuring the consumer’s health and reducing 
the financial losses of the industry, as well as the costs with public health in cases 
of FBD outbreaks. In addition, these methods are essential for assessment of food 
safety objectives (maximum levels of hazards at the point of consumption) in food 
safety management, which require results in a shorter time than those obtained by 
culture cultivation [9]. Among rapid methods, real-time quantitative polymerase 
chain reaction (qPCR) has been shown to be a good tool for monitoring microbio-
logical quality of food, since this technique is evolving to improve the sensitivity 
and specificity in detection and quantification of pathogens. According to “MIQE 
guidelines” [10], we chose to use the abbreviation qPCR for real-time quantitative 
PCR in entire chapter, avoiding confusion with other abbreviations that designate 
reverse transcription-qPCR (RT-qPCR).

2.  Advantages and disadvantages of real-time quantitative PCR for 
microbiological assessment of food quality

For more than a century, the identification and isolation of pathogens in food 
and clinical samples were performed exclusively by microbiological culture tech-
niques. The analyses use a wide variety of selective, nonselective, and differential 
media. The suspect microbial colonies in these media are selected and isolated and 
need to go through yet another confirmation step, the biochemical tests. If a patho-
gen is detected, serological typing and more detailed biochemical tests are per-
formed, and the data from these tests facilitate epidemiological analyses. However, 
even though these conventional methods are valuable, there is a great need of time 
(around 1 week) and material, making this technique inadequate in the event of 
a food outbreak. One of the main criticisms of conventional methods is that the 
results are available relatively late in clinical disease, limiting the overall value of 
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the test. Treatment decisions are usually based on the clinical severity of the disease 
prior to receipt of confirmation of isolation of the microbial culture. This long 
period to diagnose foodborne diseases by traditional microbiological methods may 
have an impact on the clinical pathway for each patient. However, for isolation and 
identification of bacterial pathogens transmitted by food, these classical methods 
are still considered as the “gold standard,” especially by regulatory agencies, since 
they are harmonized methods in worldwide [7, 11, 12].

In the last decades, several alternative methods have been developed with the 
purpose of producing fast microbiological results to ensure food safety and allow-
ing manipulation of multiple samples in the same analysis [12]. These methods 
are based on chromogenic culture media, immunoassays for antigen detection, 
bacteriophage analysis, biosensors, or molecular methods that detect nucleic acids 
[11–15]. Among the molecular methods, polymerase chain reaction (PCR) is the 
most versatile and widely used amplification technique [12].

2.1 Principle of real-time quantitative PCR techniques

The real-time quantitative PCR technique (qPCR) is a variant of conventional 
PCR and offers the possibility of quantifying the pathogen DNA in a sample in 
real time, without the need of microbial growth steps. That is, the result can be 
expressed on the same day. In addition, it is possible to perform multiplex analyses, 
allowing simultaneous quantification of more than one pathogen in the same assay 
[16]. For absolute quantification of pathogens, it is necessary to design a standard 
curve through serial dilutions of a known amount of target DNA [17]. In this curve, 
the lowest DNA amount detectable by the technique may be included (< 10 copies 
of a target gene) to attest its sensitivity. The high sensitivity, specificity, and speed 
of results have allowed qPCR to be widely used for specific pathogen quantification 
in which microbial amount is low.

The use of qPCR, by reducing the time associated with generating quantitative 
data, offers the potential to increase the robustness of the quantitative microbial 
risk assessment, thus allowing a subsequent early intervention of control strategies. 
The quantification of a pathogen in a food product and the prevalence of contami-
nation are important parts of the quantitative microbial risk assessment modeling 
process, because it needs to determine the probability of exposure as well as the 
amount of exposure to a pathogen [18].

The quantification through qPCR is based on the exponential increase of the 
initial DNA amount during PCR amplification cycles. After amplifying a specific 
sequence, the amplification progress is monitored in real time using fluorescence 
technology. As soon as the fluorescent signal reaches a threshold level, correlation 
with the amount of original target sequence occurs, thus allowing DNA quantifica-
tion in a sample. In addition, the final product may further be characterized by 
gradual raising temperature during a melt curve to determine the “melt tempera-
ture.” This point is reached when half of the DNA strand is on single strand and the 
other half on double strands. It depends on the length and composition of nucleo-
tide sequence of the target gene, which increases the specificity of technique [19].

Among fluorescent reagents, the DNA intercalating agents (such as SYBR 
Green) and hydrolysis probes (also known as TaqMan™ probes) are the most 
popularly used. SYBR Green dye is a nonspecific detection system that promotes 
intercalation, followed by surface binding to double strands of newly amplified 
DNA [20]. As the DNA is amplified, the fluorescent signal is emitted by the reagent 
and detected by the equipment. As any DNA amplification can be detected and 
quantified, to help ensure the reaction specificity, the melt curve of the amplified 
product can be analyzed to determine the melt temperature (Tm). If there are two 
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or Tm peaks, it is suggested that more than one sequence was amplified, and one 
may not be the specific DNA target [19] or even primer dimer.

The principle of detection system using the hydrolysis probes is based on Förster 
resonance energy transfer, when a non-radiative energy is transferred from a fluo-
rescent donor (the fluorophore) to a lower energy acceptor (the quencher) via long-
range dipole-dipole interactions [21, 22]. It occurs because the hydrolysis probes are 
small dual-labeled oligonucleotide sequences: in one side, it is labeled by a specific 
fluorophore, and the other side by the quencher. As the fluorophore and quencher 
are in close proximity, the quencher adsorbs the reporter fluorophore signal. When 
the DNA amplification occurs during qPCR reaction, the probe is hydrolyzed by 
the Taq DNA polymerase, due to its 5′-nuclease activity, and the fluorophore and 
quencher are separated, emitting fluorescence that corresponds to specific ampli-
fication of the target DNA [19]. The great advantage of qPCR using hydrolysis 
probes is that when the probes are labeled with fluorophores that emit fluorescence 
at different wavelengths, there is the possibility of performing a multiplex qPCR 
reaction in which more than two targets are detected and quantified simultaneously 
in a specific way [23]; therefore, it is a good alternative for use as a rapid test in large 
number of samples, providing real-time results, and to diminish the cost of analyses.

2.2 qPCR versus traditional culture method in food microbiology

Some studies comparing qPCR and microbial culture observed that qPCR for 
the detection of a single pathogen (singleplex assay) demonstrated to be statisti-
cally more sensitive than the conventional technique. Real-time PCR assay specific 
for detection of Salmonella enterica serotype enteritidis analyzed 422 naturally 
contaminated environmental samples from integrated poultry houses, being the 
same samples also evaluated by traditional microbiology. The diagnostic sensitivity 
of the qPCR assay for these samples was significantly higher than those using the 
culture method. In addition, the result of real-time PCR was obtained in 2 days, 
while the traditional method took 4–8 days [24]. Another study comparing stan-
dard culture methods, conventional PCR, and real-time PCR for the detection 
of Listeria monocytogenes in milk, cheese, fresh vegetables, and raw meat showed 
that the real-time PCR assay was statistically more sensitive, reducing the time of 
analysis and laborious work [25]. The targeted gene coding for a protein of the ribo-
some large subunit was used in qPCR for quantifying Enterobacteriaceae in 51 food 
products naturally contaminated. The results showed high specificity to differenti-
ate Enterobacteriaceae of non-Enterobacteriaceae based on the cycle threshold (Ct) 
values; by comparing qPCR and culture methods, only a < 1log difference between 
methods was obtained in 81.8% of these samples [26]. In seafood products and sedi-
ments, conventional PCR, real-time PCR, and culture methods were used to detect 
pathogenic Vibrio spp. (V. parahaemolyticus, V. cholerae, and V. alginolyticus) in 113 
fish, 83 clams, 30 seawater samples, and 21 sediment samples. Of the 247 samples 
analyzed, 41.3% were positive for traditional microbiological method, while 51% 
were positive for the molecular methods, without prior isolation of pathogens [27].

However, by using multiplex qPCR assay for detection/quantification of more 
than one pathogen, the sensitivity of the technique may decrease compared to the 
traditional culture technique (or even compared with singleplex assay), probably 
due to the competitive nature of the process [8]. In our lab, we compared multi-
plex qPCR assay for quantification of Escherichia coli, Staphylococcus aureus, and 
Salmonella spp. with singleplex assays (by hydrolysis probes and by SYBR Green) 
in 28 naturally contaminated oyster samples containing pools of 40 oysters col-
lected from natural estuarine environment (1120 in total). The multiplex assay 
presented lower sensitivity and higher specificity than both singleplex assays 
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(data not published). This can be caused by the competition of the primers by the 
reagents available in the reaction mix or by the non-varying concentrations of 
the reaction components (which are used in the same way in the singleplex and 
multiplex reactions). In addition, the amplification of one target DNA present 
in the reaction can be overcome by more efficient amplification of other targets 
(including nonspecific products), thereby reducing the efficiency of the multiplex 
reaction and consequently decreasing its sensitivity [28]. The same methodology 
was applied in different food matrices (ground beef, milk, and oyster samples) 
artificially contaminated by E coli, S. aureus, and Salmonella enteritidis. Differences 
<1log in E. coli and S. aureus quantities were observed comparing multiplex qPCR 
and traditional culture method in milk and ground beef, with no statistic differ-
ence. However, in oyster samples, the multiplex qPCR demonstrated to be more 
sensitive than culture methods for E. coli quantification [8]. Thus, we can affirm 
that the food matrix can interfere in the sensitivity of the results due to the intrinsic 
nature of PCR inhibitors present in such food.

Singleplex 

qPCR

Multiplex 

qPCR

Traditional 

culture

Advantages

Shorter analysis time ++ +++ 0

Specificity +++ ++ +

Sensitivity +++ + ++

Reproducibility +++ +++ ++

Monitoring the results in real time +++ +++ 0

Simultaneous quantification of different pathogens 0 +++ 0

Distinguishing of living cells from dead cells 0 0 +++

Detection of “viable but non-culturable” (VBNC) 

microorganisms

+++ ++ 0

Colony isolation for further genotyping/phenotyping 

analysis

0 0 +++

Potential of automation +++ +++ 0

Standardized method in worldwide + 0 +++

“Gold standard” for regulatory agencies 0 0 +++

Fast screening of large number of samples +++ ++ 0

Useful for microbiological quality control +++ +++ +

Useful for the quantitative microbial risk assessment +++ ++ +

Disadvantages

Cost of material, equipment, and infrastructure −−− −−− −−−

Competitive amplification (decrease of the efficiency) 0 −−− 0

Interference of food sample −−− −−− 0

Labor-intensive analysis −−− −−− −−−

Need for qualified personnel −−− −−− −−−

*Based on Refs. [8, 12].
(+) advantage score; (−) disadvantage score; (0) no score for such characteristic.

Table 1. 
Advantage and disadvantage scores of real-time quantitative PCR (singleplex/multiplex qPCR) and 
traditional culture methods for microbiological analysis of food*.
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To increase sensitivity, a pre-enrichment step may be applied prior to qPCR 
reaction. However, this stage favors microbial growth making it impossible to 
quantify the pathogens in the original sample; only their detection is possible [29]. 
Therefore, for simultaneous quantification of pathogens in food, multiplex qPCR 
can be a potential tool for rapid screening of large number of samples in food 
industries, leading to faster product release for sale [8].

The high cost of equipment investment and its maintenance can be an obstacle 
to qPCR implementation in routine food analysis laboratories. We must not forget 
the training of skilled labor. This is because, despite the potential of automation 
of the technique, the interpretation of the results must be done in a thorough way, 
so that the “noises” produced by the technique are not interpreted as real signals. 
However, what really limits the use of this technique in microbiological analysis of 
foods is the impossibility of distinguishing living cells from dead cells [30]. That 
is, this technique is able of amplifying any target DNA present in the sample, even 
being from nonviable cells, which can generate false-positive results by overesti-
mating the number of pathogens present in the food. The Table 1 summarizes some 
advantages and disadvantages of qPCR (singleplex and multiplex) and traditional 
culture methods for microbiological analysis of food.

3.  Potential of qPCR for the monitoring microbiological quality of foods: 
the challenge of differentiating viable cells from nonviable cells

The changes in consumption, diversity, and food mobility, due to globaliza-
tion, world population growth, and increasing purchasing power, have increased 
the need of analyzing food qualitatively and quantitatively, especially from the 
perspective of standardization, authentication, and certification. In this sense, 
real-time PCR is undergoing continuous improvement and becoming a method 
present in food analysis both to detect and quantify pathogens, allergens, and plant 
species or animals that are present in food, with high sensitivity and specificity. 
Many fluorescent probes are available, and nowadays, nanoparticles are opening up 
new diagnostic opportunities using this methodology due to it high sensitivity and 
providing results in a short time [31].

As already mentioned, the inability of qPCR to differentiate viable cells from 
nonviable (dead) cells is one of its main limitations in microbiological food 
analysis [30]. As DNA persists in samples even after the cell have lost its viability, 
the DNA-based detection methods cannot differentiate whether positive signals 
originate from living or dead bacterial targets. Thus, in order to detect only viable 
microorganisms in foods, DNA intercalating dyes, such as propidium monoazide 
(PMA) or ethidium monoazide (EMA), have been used in a step prior to PCR 
methods (Table 2). These agents selectively penetrate in damaged cell membranes 
and cross-link to DNA, thereby reducing the amplification capacity of the DNA 
template [32]. Both EMA and PMA are being used for detection of viable cells from 
different human pathogens, including those that assume the physiological status 
of “viable but non-culturable” (VBNC), such as Campylobacter jejuni, Escherichia 
coli, Helicobacter pylori, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas 
aeruginosa, Salmonella typhimurium, Shigella dysenteriae, and Vibrio cholerae, which 
may be viable, but cannot grow outside their natural habitat [33].

PMA has been reported to be more effective than EMA in eliminating qPCR sig-
nals from dead cells [32]. Studies comparing EMA and PMA have shown that EMA 
can also penetrate in living cells of some bacterial species, such as Anoxybacillus 
flavithermus [34], Staphylococcus aureus, Listeria monocytogenes, Micrococcus luteus, 
Mycobacterium avium, Streptococcus sobrinus, and Escherichia coli O157: H7 [32], 
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Food matrix Microorganisms Cell viability 

dye-PCR method

References

Meat

Chicken breasts and legs Campylobacter jejuni EMA-qPCR [37]

Chicken rinses and egg 

broth

Salmonella spp. EMA-qPCR [38]

Poultry Campylobacter jejuni; Campylobacter 

coli

EMA/PMA-qPCR [39]

Chicken carcasses Campylobacter spp. PMA-qPCR [40]

Ground beef E. coli O157:H7 EMA-qPCR [41]

PMA-qPCR [42]

Salmonella spp. PMA-qPCR [43]

Broiler carcass rinses Campylobacter jejuni; Campylobacter 

coli

PMA-qPCR [44]

Meat products Staphylococcus aureus PMA-qPCR [45]

Meat exudates Listeria monocytogenes PMA-qPCR [46]

Frozen and chilled broiler 

carcasses

Campylobacter spp. PMA-qPCR [47]

Ground beef meatballs E. coli O157:H7* PMA-qPCR [48]

Dairy products

Gouda cheese Listeria monocytogenes EMA-qPCR [49]

Infant formula Cronobacter sakazakii EMA-qPCR [50]

Pasteurized milk Coliform bacteria; Enterobacteriaceae EMA/PMA-qPCR [51]

UHT milk Bacillus sporothermodurans PMA-semi-nested 

PCR

[52]

Bacillus cereus group PMA-qPCR [53]

Milk powder Staphylococcus aureus PMA-qPCR [45]

Ice cream Salmonella typhimurium PMA-qPCR [54]

Milk and milk products Cronobacter sakazakii; Bacillus cereus; 

Salmonella spp.

PMA-multiplex 

qPCR

[55]

Milk E. coli O157: H7; Salmonella spp. PMA-multiplex 

qPCR

[56]

Probiotic yogurt Bifidobacterium EMA-qPCR [57]

Lactobacillus paracasei PMA-qPCR [58]

Seafood

Fish fillets 16S rDNA EMA-qPCR [59, 60]

PMA-qPCR [61]

Raw seafood (oyster, 

scallop, shrimp, and 

crab)

Vibrio parahaemolyticus PMA-qPCR [62]

Raw shrimp Vibrio parahaemolyticus; Listeria 

monocytogenes

PMA-multiplex 

qPCR

[63]

Shrimp, pomfret fish, 

and scallop

Vibrio parahaemolyticus* PMA-qPCR [64]

Smoked salmon juice Listeria monocytogenes PMA-qPCR [46]
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causing loss of genomic DNA during extraction [35] and reducing the efficiency of 
PCR. However, PMA has been shown to be highly selective in penetrating only bac-
terial cells with compromised membrane integrity, but not in cells with intact cell 
membranes. After the DNA intercalation of nonviable cells, the azide group, pres-
ent in the dye molecule, forms a covalent grid and when exposed to halogen light 
makes the DNA insoluble, which results in its loss during the extraction process of 
the genomic DNA. Thus, exposing a bacterial population composed of living and 
dead cells to PMA treatment results in the selective removal of DNA from dead cells 
[32]. Nevertheless, the dose of PMA must be carefully adjusted because this reagent 
becomes increasingly toxic to cells at higher concentrations. It is important to note 
that the cost of method may become prohibitive in the case of increasing concentra-
tion of PMA for its use in different  food matrix, or its use in large scale [36].

4. Conclusion

The qPCR came with the intention of reducing the time of analysis and labori-
ous work of the microbiological culture method. The analysis of a food sample 
performed by qPCR allows the monitoring of amplification while it runs; therefore, 
it does not need to perform any postreaction processing, such as the electropho-
resis gel, allowing results available in around 2 h. Nevertheless, the difficulty of 
distinguishing living cells from dead cells is the great obstacle when using this 
methodology as routine food analysis laboratories. In this way, the pretreatment of 
food samples using PMA (or EMA) aims at eliminating false-positive results, as it 
only allows the quantification of viable cells. Thus, the PMA/EMA-qPCR promises 
to be a valuable tool in food safety management and microbiological quality control, 
especially as a method for quantitative microbial risk assessment. It is critical, 
therefore, that assays are comparatively evaluated in different food matrices for the 
detection and quantification of different pathogens and their reproducibility must 
be validated with intralaboratory experiments to ensure their effectiveness in the 
intended testing situation prior to implementation.
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Food matrix Microorganisms Cell viability 

dye-PCR method

References

Water and vegetables

Water Campylobacter jejuni; Campylobacter 

coli

EMA-qPCR [65]

Lettuce Salmonella typhimurium PMA-qPCR [66]

Lettuce and soya sprouts E. coli O157:H7 PMA-qPCR [67]

Fresh spinach Salmonella spp. PMA-qPCR [43]

*Bacterial culture in physiological status of “viable but nonculturable” (VBNC).

Table 2. 
Summary of the studies using PMA or EMA prior to PCR methods for microbiological analysis applied in 
different food matrices.
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