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Chapter

Magneto-Sensitive Smart
Materials and Magnetorheological
Mechanism
Yangguang Xu, Guojiang Liao and Taixiang Liu

Abstract

Magneto-sensitive smart materials, also named as magnetorheological (MR)
materials, are a class of smart composites prepared by dispersing nanometer- or
micrometer-sized ferromagnetic fillers into the different carrier matrix. As the
rheological properties can be controlled by an external magnetic field rapidly,
reversibly, and continuously, magneto-sensitive smart materials have great appli-
cation potential in construction, automotive industry, artificial intelligence, etc. In
this chapter, a brief history and classification of magneto-sensitive smart materials
are firstly summarized. Next, we discuss the state-of-the-art of the magnetor-
heological mechanism through experimental and theoretical studies, respectively.
Finally, the prospect for this material in the future is presented.

Keywords: smart soft material, magnetorheological material, magnetorheology,
magnetic dipole theory, viscoelasticity

1. Introduction

Most smart materials imitate natural biological materials, which can respond to
the stimuli (like mechanical, thermal, electrical, photic, acoustic, magnetic, chemi-
cal, etc.) by changing one or multiple properties to adapt to the changing environ-
ment [1]. So far, bioinspired smart materials have become an important research
direction in material science. It is difficult for a homogenous material to possess
multifunction, so it generally combines the materials with the functions of percep-
tion, actuation, control, etc., together in a specific way to design a novel composite
with multiple characteristics. The smart material is multilevel with different
components; each component has different characteristics and microstructures, and
the coupling effect exists between different components, and these components
make the smart material show complicated responses to external stimuli.
Generally, the adapting ability of smart material to external environment, which is
similar to the activated function of biological material, can be dynamically adjusted
through the transportation of substance and energy.

Magnetorheological (MR) materials can be regarded as a kind of bioinspired
smart materials because their viscoelastic properties can be easily adjusted by an
external magnetic field. Magnetorheological materials can be generally classified
into MR fluids, MR elastomers, and MR gels according to the type of the carrier
matrix and the physical state in the absence of magnetic field [2–4]. The MR
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fluid-based practical devices mainly include damper, buffer, clutch, artificial mus-
cle, and so on [5]. Some application examples of MR fluid working under different
modes can be found in various dampers, which take MR fluid as working medium.
Besides, MR fluid has also found wide application potential in the fields of thermal
conduction [6], sound transmission [7], precision machining [8], and biomedicine
[9]. The applications of MR elastomer have been widely reported in the fields of
adaptive tuned vibration absorber [10], impact absorber [11], active noise abate-
ment barrier system [12], vibration isolator [13], sensor [14–16], and so on. MR
elastomer mainly works by changing its modulus through magnetic field during
pre-yield stage, which shows different working mechanism with MR fluid (MR
fluid mainly works at post-yield stage). The examples for the application of MR gel
are relatively less in comparison with MR fluid or MR elastomer, but the unique
magneto-induced phenomena have attracted more and more attentions; some work
concentrating on the potential applications of MR gel have been reported [17–20].

Here, we will give a brief introduction to different kinds of MR materials,
discuss the related experimental and theoretical work when investigating the MR
mechanism, and finally propose some future prospects for these magneto-sensitive
smart materials aiming at practical applications.

2. The development of magnetorheological materials

2.1 Magnetorheological fluid

Magnetorheological (MR) fluid is the earliest developed magneto-sensitive
smart material, which is a particulate suspension by mixing micrometer-sized fer-
romagnetic fillers, non-magnetic fluid, and some additives together. After applying
an external magnetic field, the MR fluid will change from Newtonian-like fluid to
semi-solid material quickly (within several microseconds) [21], as shown in
Figure 1a [22]. The randomly dispersed magnetic fillers are rearranged to form
chain-like ordered microstructure through the magnetic interaction. Moreover, the
ordered degree of the microstructure is relevant with the magnetic field strength.
That is, a stronger magnetic field will induce a more ordered chain-like microstruc-
ture parallel with the direction of external magnetic field (Figure 1b) [23].

The rheological measurements indicate that MR fluid shows Bingham fluidic
behavior under magnetic field, an obvious yield stress exists, and the maximum of
yield stress has exceeded 100 kPa [24]. Moreover, the apparent viscosity of MR
fluid changes typically 3–4 orders of magnitude by changing the magnetic field
strength, presenting a typical MR effect. However, the sedimentation problem due
to the density mismatch between carrier matrix and ferromagnetic fillers become
one of the bottlenecks to hinder the development of MR fluid. To solve the prob-
lems of particle sedimentation and the re-dispersion after the particle aggregation in
the carrier matrix, many effective methods have been proposed. Generally, these
methods can be classified into two main categories from the aspects of filler and
carrier matrix.

Carbonyl iron particle is an ideal candidate to prepare MR fluid due to its low
coercive force and high saturation magnetization (μ0Ms = 2.1 T). However, a serious
sedimentation problem exists in the MR fluid with carbonyl iron particle. Some-
times, it has to abandon carbonyl iron particle with excellent magnetic property and
choose some other magnetic material which could improve the sedimentation of
MR fluid for the balance between performance and stability.

Decreasing the size of magnetic fillers is an effective method to improve the
stability of MR fluids. Submicron- or nanometer-sized particle shows better
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stability in the non-magnetic carrier matrix in comparison with the micrometer-
sized particle because of the Brownian movement and Van der Waals force. Espe-
cially, the particulate suspension totally using nanometer-sized ferromagnetic fillers
as dispersed phase is named as magnetic fluids or ferrofluids [25–32]. Each ferro-
magnetic filler in ferrofluids includes single magnetic domain and could disperse in
the carrier matrix randomly due to the Brownian movement, so the sedimentation
is greatly improved. However, the ferrofluids keep their liquid-like state even under
a strong magnetic field, which indicates that it is impossible for ferrofluids to have a
high magneto-induced yield stress. In addition, the particle aggregation caused by
the particle’s nanometer size (or the re-dispersion of particles after removing the
magnetic field) is another challenge to promote the further development of
ferrofluids [33]. Using the magnetic material with the shape of rod-like or fibroid is
regarded as another effective method to improve the stability and MR performance
of MR fluids [34].

Except for changing the size and shape of ferromagnetic fillers, the core-shell
structured ferromagnetic particle, whose surface is chemically modified by various
polymers, is also a good candidate. The core-shell structure not only decreases the
density of the particle but also increases the static electrical repulsion between
adjacent particles, so the stability and the redispersibility of MR fluid are evidently
improved. Moreover, the antioxidation is improved because the surface of the
particle is wrapped by polymer [35]. Figure 2 shows the SEM images of carbonyl
irons wrapped by various polymers, which were mainly made by Choi’s research
group at Inha University.

It is a new approach to balancing the stability and performance of MR fluid by
dispersing the submicron- or nanometer-sized ferromagnetic fillers (such as nano-
tube, submicron- or nanometer-sized carbonyl iron particle, wrought monox,
organic clay, clavate ferromagnetic Co-γ-Fe2O3, and CrO2) into conventional MR
fluid to change the property of continuous phase (i.e., the matrix) [36–39]. Both of

Figure 1.
The images of MR fluid without and with magnetic field [22] (a). The microstructures of MR fluid with
different magnetic fields [23] (b).
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the sedimentation rates of the dispersed phase and the MR effect are improved
significantly due to the existence of ion. However, the modification to the carrier
matrix, together with the modification to the dispersed particles, could only
improve the sedimentation of MR fluid to some extent. To solve the particle sedi-
mentation completely, the non-magnetic liquid matrix can be totally substituted by
rubber-like polymer matrix. Thereout, a new magneto-sensitive soft material, that
is, MR elastomer, appears later.

2.2 Magnetorheological elastomer

MR elastomer presents solid state even without magnetic field; it inherits the
magneto-sensitive feature of MR fluids, but its working principle and application
field are quite different fromMR fluid. The magnetic fillers are fixed in the polymer
matrix after the MR elastomer is prepared, the particles cannot move freely even
exposed in a magnetic field, and no “phase transition” appears like happened in MR
fluid. MR elastomer carries out the intelligent control mainly through changing its
damping and modulus by magnetic field before yield [40]. The ordered chain-like
(or column-like) microstructure aligned parallel to the direction of magnetic field
generates if an external magnetic field is applied during the vulcanizing process of
the polymer matrix. After vulcanization, the ordered microstructure can be solidi-
fied in the matrix, and the anisotropic MR elastomer is obtained.

Figure 3 shows the SEM images of MR elastomers pretreated by different mag-
netic fields. It is clear that chain-like structured anisotropic MR elastomer can be
prepared if it is exposed under an external magnetic field during the pre-
configuration process. The structure of particle chains can be further adjusted by
the magnetic field. The ferromagnetic fillers aggregate more easily under a strong
magnetic field, resulting in a higher degree of anisotropy of MR elastomer. Further
magnetorheological characterization indicates that the MR elastomer with higher

Figure 2.
Pure carbonyl iron and the carbonyl iron wrapped by various polymers [35].
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degree of anisotropy also possesses high MR effect [41]. So far, many kinds of
rubber, such as natural rubber [41], silicon rubber [42], polyurethane rubber [43],
cis-polybutadiene rubber [44], nitrile butadiene rubber [45], and thermoplastic
elastomer blended by polypropylene and SEBS [46], have been chosen as the can-
didates for fabricating the MR elastomer.

Although the particle sedimentation is completely solved, the magneto-induced
effect and MR effect constrain each other, making the requirement of engineering
application not easy to be achieved. Moreover, MR elastomer loses the feature that
the particulate microstructure can be easily controlled by magnetic field as like in
MR fluid because the ferromagnetic fillers are fixed in the rubber matrix, which
indicates that it loses the magneto-controllable flexibility. To pursue a stable MR
material with a high MR effect and a strong magneto-induced effect aiming to the
engineering application, it needs to abandon the conventional fabricating solutions
and redesign a new magneto-sensitive smart material.

2.3 Magnetorheological gel

MR gel is another magneto-sensitive smart material whose continuous phase is
viscoelastic. The inelastic matrix makes MR gel present typical viscoelastic charac-
teristics even without external magnetic field. Shiga et al. firstly proposed the
concept of MR gel in 1995 [47], and they prepared a series of MR gels with different
particle contents by dispersing ferromagnetic fillers into silicone gel and investi-
gated the magneto-dependent viscoelastic behaviors and microstructures of MR gel.

Figure 3.
The SEM images of MR elastomer pretreated by different magnetic fields [41]: (a) 0 mT; (b) 200 mT;
(c) 400 mT; (d) 600 mT; (e) 800 mT; and (f) 1000 mT.
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The MR gels can be further classified into liquid-like and solid-like MR gels
according to their physical state without magnetic field.

The liquid-like MR gels can be regarded as a kind of special MR fluid with a little
mount of polymer solution as additive. The polymer additive can generate a net-
work structure in the matrix to modify the interfacial characteristic of ferromag-
netic fillers and their interaction, greatly slowing down the sedimentation velocity
of ferromagnetic fillers [48–50]. In comparison with MR fluids, except for improv-
ing the sedimentation stability, the off-state viscosity and yield stress of liquid-like
MR gels can also be adjusted by adding a certain amount of polymer additives.
However, the polymer network increases the moving resistance of ferromagnetic
fillers in the matrix, and the response of MR gels to external magnetic field is then
decreased accordingly. In addition, the sedimentation problem in the liquid-like MR
gels is not completely solved.

Strictly speaking, the magnetic gel reported by Shiga et al. is a kind of solid-like
MR gels [47]. The most distinct characteristic of solid-like MR gels is that there is no
particle sedimentation problem exists, like MR elastomer. Yet the matrix is not the
rubber-like elastic material, the solid-like MR gel cannot be classified into MR
elastomer. Recently, these solid-like MR gels have been paid more and more atten-
tion [51–57]. A novel solid-like MR gel by mixing micrometer-sized magnetic parti-
cles and plasticine-like polyurethane was reported by Xu et al. [58]. As Figure 4a
shows, this material presents like plasticine without magnetic field, can be changed
into any shapes, and remains the status of plastic deformation, so it is named as MR
plastomer. MR plastomer deforms along with the direction of the applied external
magnetic field (Figure 4b). Further microstructure characterization indicates that
the randomly dispersed magnetic particles can rearrange to generate chain-like
(or column-like) orientated microstructure driven by magnetic force

Figure 4.
The images of MR plastomer without (a) and with (b) magnetic field [58]. The SEM images of MR plastomer
without (c) and with (d) magnetic field (the direction of magnetic field is marked by the red arrow) [59].
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(Figure 4c and d). In addition, the anisotropic particulate microstructure is kept
even the external magnetic field is removed [59].

In one word, an orientated particulate microstructure in the solid-like MR gel
can be adjusted through an external magnetic field. Meanwhile, the chain-like (or
column-like) microstructure can be fixed in the soft matrix after removing the
magnetic field. This unique feature makes solid-like MR gel process the merits
existed on MR fluid and MR elastomer (i.e., movability of particles and the “frozen”
property of orientated microstructure) at the same time, which is significant to
investigate the magneto-mechanical coupling mechanism.

2.4 Other magnetorheological materials

Some other special MR materials, which cannot be simply classified into the
most well-known MRmaterials as mentioned above, were reported in the literature.
MR foam is a kind of solid-like polymer composite by pouring MR fluid into porous
polymer foam (Figure 5); the modulus of the MR foam can be controlled by
changing the rheological property of MR fluid through a magnetic field [60–62].
Due to the special porous microstructure, MR foam presents the merits of light-
weight, controllable modulus, excellent sound-absorbing property, and so on [63].

To solve the problem of particle sedimentation for MR fluid, Park et al. prepared
a kind of novel MR material with excellent sedimentation resistance ability by
substituting the fluidic matrix of MR fluid with commercial grease, and they named
this MR material as MR grease [64]. MR grease shows typical Bingham fluid behav-
ior; so strictly speaking, MR grease can be regarded as a special MR fluid. Byrom
and Biswal reported a colloidal material system by adding micrometer-sized para-
magnetic and diamagnetic particles into ferrofluid [65]. Different from the con-
ventional MR fluid, the particles do not generate a chain-like orientated structure
parallel with the direction of magnetic field but a fractal net-like microstructure in
2D direction. Further analysis indicated that the fractal net-like microstructure is
induced by the magnetic dipole interaction between paramagnetic and diamagnetic
particles, and the fractal dimension of the particle aggregates can be controlled by
adjusting the concentration of ferrofluid and the ratio of paramagnetic and dia-
magnetic particles.

A multifunctional magnetic plasticine™ was developed by Xuan et al. [66], and
they chose paraffin wax petroleum jelly as the matrix. Except for the high magneto-
induced G0 (4.23 MPa) and MR effect (305%), magnetic plasticine™ can be
switched between liquid-like state and solid-like state by changing the temperature,
which greatly enhances the regulation ability. Shahrivar and de Vicente also
reported a thermo-responsive polymer-based magneto-sensitive material [67],

Figure 5.
The fabrication procedure of MR foam (a): pouring the MR fluid D into porous polymer material E. MR fluid
D consists of carbonyl iron particles A, carrier fluid B, and additives C; (b) the microstructure inside the foam:
microtubule wall 2 is surrounded by MR fluid 1, and the other space is full of air 3 [61].
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which can easily achieve phase transition by changing temperature. Figure 6a
depicts that “liquid-to-solid” transition with increasing temperature appears in the
MR composite with PEO-PPO-PEO solutions because a repulsive colloidal glass
generates, while an inverse temperature-driven phase transition can be achieved for
MR composite with P-NIPA microgel dispersions (Figure 6b). Besides, the critical
temperature of phase transition can be changed by tuning polymer concentration.
The multi-responsive MR material is a good effort in the frontier between conven-
tional MR fluid and MR elastomer.

3. Magneto-sensitive properties and MR mechanism

The magnetic field usually leads to a structural rearrangement in soft MR mate-
rial, and this process has significant influence on the physical properties of soft MR
material. Due to the weak restriction of polymer matrix to the ferromagnetic fillers
and complexity of polymer matrix, the responses of MR gel to external stimuli are
more complicated than those of MR fluid and MR elastomer. For this reason, MR gel
presents some unique magneto-electro-thermo-mechanical coupling phenomena.
However, the realization on the coupling mechanism of MR gel is far from enough
in comparison with those of MR fluid and MR elastomer, and more efforts need to
be made through experimental and theoretical studies. Tight correlations exist
between these three MRmaterials; so, there are some similarities in MRmechanism,
and we can use the characterization techniques and theoretical models of MR fluid
and MR elastomer for reference when studying the MRmechanism of MR gel. Next,
we will briefly discuss the characterization methods and theoretical studies for
different MR materials.

3.1 Experimental characterization of MR materials

Experimental characterization of MR materials can not only quantitatively eval-
uate their performance but also provide the necessary parameters for theoretical
research or certify the accuracy of the theoretical results, which is the foundation
for investigating the MR mechanism. The magneto-induced rheological properties
of MR materials under different loading conditions (quasi-static shear, tensile,

Figure 6.
Temperature dependent G0 of MR composites with PEO-PPO-PEO copolymer solution (upper subfigure) and
P-NIPA microgel dispersion (lower subfigure) (a). Photos of the copolymer-based MR material at different
temperatures after 1 h at rest (b) [67].
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compressive loading, dynamic shear, and squeeze loading) are the most important
properties, and this is the primary reason for naming this magneto-sensitive smart
material as MR material. The influences of relevant factors (i.e., magnetic field,
temperature, PH value, particle concentration, shape, size, and so on) on rheologi-
cal properties were also widely investigated. Besides, the magnetization, electrical
conduction, thermal conduction, and magnetostriction of MR materials are studied
as well.

The rheological property of MR materials under shear loading is the most used
characterization parameters at present. Many famous commercial rheometers, like
the Physica MCR rheometer from Anton Paar Company and Discovery hybrid
rheometer from TA Company, are designed for the rheological characterization
under shear loading.

The magneto-dependent rheological behavior of MR fluid is usually described by
Bingham model:

τ ¼ τy þ η _γ τj j≥ τy

τ ¼ G0γ τj j < τy,
(1)

where τ is shear stress, _γ is shear strain rate, τy is magneto-dependent shear yield
stress, G0 is the shear modulus before yield, and η is the plastic viscosity. τy is
defined as the minimum stress of MR fluid to resist the thixotropic effect and start
to deform or flow, which can be calculated by fitting the shear stress-strain rate
curves of MR fluid by using Bingham model (Eq. (1)). Figure 7 depicts the typical
magneto-sensitive relationship between shear stress and strain rate of MR fluid
[68]. Usually, it can be approximately considered the fitting value at the strain rate
of zero as τy, so it is easily found from Figure 7 that τy significantly increases when
the magnetic field strength increases. Therefore, the magneto-dependence of τy can
be regarded as a characterization parameter to evaluate the magnetorheological
effect of MR fluid [69]. This method can also be directly utilized to characterize the
magnetorheological property of liquid-like MR gels [70].

Both of the solid-like and liquid-like MR material can be considered as the
viscoelastic material, and the dynamic mechanical analysis under oscillatory shear is
one of the most important characterization methods for viscoelastic materials. Nor-
mally, applying a sinusoidal shear strain to the viscoelastic material, if the ampli-
tude of the strain is small enough, a sinusoidal response stress at the same frequency

Figure 7.
Shear stress of MR fluid as a function of shear rate under different magnetic fields [68].
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but a specified phase shift can be obtained; then, we define the dynamic mechanical
properties (i.e., storage modulus G0, loss modulus G″, and loss factor tanδ) of
material within the linear viscoelastic (LVE) range as the ratio of response stress to
actuation strain in the complex plane. Dynamic mechanical properties are fre-
quently used characterization parameters for investigating the magneto-induced
microstructure evolution mechanism of MR materials. For the practical application,
most MR materials in the devices are working under the oscillatory shearing mode.
More importantly, both solid-like MR elastomer and liquid-like MR fluid can be
characterized by dynamic mechanical analyzer (DMA) [71, 72], which indicates
that dynamic mechanical analysis can be considered as a universal method to
characterize MR materials. Therefore, as the intermediate material system between
MR elastomer and MR fluid, the magnetorheological properties of MR gel are
mostly studied by DMA [73].

The oscillatory shear mode can be further classified into simple shear and rotat-
ing shear according to different measurement principles of commercial devices.
Figure 8a shows a typical DMA (Tritec 2000, provided by the Triton Technology
Co. Ltd., UK). If an external magnetic field generator is added (Figure 8b), the
magneto-mechanical coupling behaviors of MR elastomer under oscillatory simple
shear mode can be investigated [74]. The deformation of the sample under simple
shear mode is uniform, which is valuable for theoretical analysis. The rheometer can
also be used for dynamic mechanical analysis. Figure 8c shows a parallel-plate
rheometer (Physica MCR 301, Anton Paar Co., Austria) equipped with a MR acces-
sory (MRD 180), which provides a controllable magnetic field when carrying out a
rotating shear experiment (Figure 8d). The deformation of the sample under
rotating shear mode is inhomogeneous (the shear strain increases linearly in the
radial direction of disc-like sample; the shear strain at the center of the sample is
zero). Although with different measurement principles, the measurement results
obtained from these two kinds of devices show little difference if the amplitude of
the actuating strain is small enough. Besides, the magneto-dependent creep and

Figure 8.
A modified magneto-mechanical coupled DMA (a) and its measurement schematic diagram
(b); a parallel-plate rheometer (c) with a magnetic field generation accessory (d).
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recovery [75–77] and stress relaxation behaviors [78] of MR materials under shear
loading are very helpful for investigating the magnetorheological mechanism and
can be tested with the modified DMA and the rheometer as mentioned above.

The modulus variation of ferromagnetic filler-doped polymer composite can be
reflected from the compressive and tensile properties of MR elastomer, which are
also frequently used characterization parameters. Bellan and Bossis investigated the
influences of magnetic field, particle concentration, and particle distribution on the
tensile property of silicon rubber-based MR elastomer [79]. The compressive prop-
erties of MR elastomer with different particle distributions (randomly dispersed
isotropic and chain-like orientated anisotropic structures) and its magnetic field
dependency were investigated by Varga et al., as shown in Figure 9. It is found that
the compressive modulus of MR elastomer is not only affected by the particle
distribution (i.e., the compressive modulus of anisotropic MR elastomer is larger
than that of isotropic one under the same loading condition) but also by the mag-
netic field and loading direction. When the directions of magnetic field, particle
chain, and compressive loading are parallel (i.e., the middle test condition in the
second row of Figure 9), the largest compressive modulus and magneto-induced
effect of MR elastomer were observed [80]. In addition, the mechanical properties
of MR elastomer under oscillatory squeezing mode were reported by Kallio et al.
and Koo et al., respectively [81, 82], which provide valuable experimental data for
the application of MR elastomer.

In recent years, many people pay attention to the rheological behaviors of MR
fluid under tensile or squeezing loading, and the results suggest that the yield stress
of MR fluids is significantly enhanced due to the squeeze-strengthen effect [83–85].
However, the tensile and squeezing behaviors of MR gel are rarely studied to date.
Therefore, Xu et al. systematically investigated the squeeze flow behaviors (includ-
ing quasi-static compressive and tensile behaviors and oscillatory squeeze behav-
iors) of MR gel [86]. It was concluded that the squeeze flow curve of the solid-like
MR gel can be classified into three different deformation regions: elastic deforma-
tion, stress relaxation, and plastic flow regions. Yield stresses under both tension
and compression are sensitive to the particle distributions, the filler concentration,
and the magnetic field. In addition, the magneto-sensitive properties of MR

Figure 9.
The magneto-dependent compressive experiments of MR elastomers with different particle distribution states
[80]. The white hollow arrow represents the direction of compressive loading, and the solid black arrow
represents the direction of magnetic field.
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elastomer and MR gel under impact compression were also studied [11, 87]. The
compressive modulus can still be strengthened by magnetic field even at high
strain rate.

Most magnetic fillers (such as carbonyl iron particles [88], nickel particles [89],
and Fe3O4 particles covered by silver [90]) are conductive at the same time, so most
MR materials also belong to conductive polymer composite. The conductivity of
this kind of magneto-sensitive conductive polymer composite is adjusted through
external magnetic field except for the particle distribution and particle concentra-
tion, presenting a typical magnetoresistance effect [91–93]. Impedance spectros-
copy testing is a nondestructive method to quantitatively detect the evolution of the
microstructure, which is suitable for analyzing the microstructure evolution mech-
anism and the interfacial feature of material. Figure 10 shows a typical experimen-
tal setup to test the magneto-sensitive impedance spectroscopy of conductive
polymer composite. With this magneto-electrical coupling measurement system,
the structure-dependent (Figure 11a) and the magneto-induced (Figure 11b and c)
impedance spectroscopy are obtained, and the microstructure-dependent conduc-
tion mechanism (Figure 11d) can be further analyzed based on the related experi-
mental results [94].

Besides, the investigations on the antioxidation [95], durability [96], and ther-
mal conductivity [6] are helpful to the deep understanding on the magneto-induced
mechanism of MR materials as well as some specific practical applications.

3.2 Magnetorheological mechanism

Magnetorheological effect essentially originates from the discrepancy of mag-
netic permeability between the continuous phase (the carrier matrix) and the dis-
persed phase (ferromagnetic fillers). Particular magnetization model (i.e., magnetic
dipole model) is the most popular microstructural model to explain the magneto-
induced effect of MR fluid [21]. If we ignore the multi-body magnetic interaction
between particles (i.e., only the magnetic interaction between adjacent particles in a
single particle chain is considered) and the multidirectional magnetization in a
single magnetic particle (i.e., simplify the micrometer sized ferromagnetic particles
as magnetic dipole), the magnetic moment of spherical ferromagnetic particle
within the linear magnetization range is:

Figure 10.
The magneto-electrical coupling measurement system.
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m ¼ 4πμ0μcrβa
3H0, (2)

where a is the radius of magnetic particle, μ0 is the permeability of vacuum,
μcr is the relative permeability of carrier matrix, H0 is magnetic field strength, and
β ¼ ðμpr � μcrÞ=ðμpr þ 2μcrÞ is the dimensionless coupling parameter of permeability

(μpr is relative permeability of ferromagnetic particles). As the magnetic field
increased, the magnetization of magnetic particle tends to saturation, and the mag-
netic moment of particle is independent on magnetic field strength, that is

m ¼
4

3
πμ0μcra

3Ms, (3)

where Ms represents the saturation magnetization. The parameter λ is usually
introduced to represent the ratio of magnetic interaction energy to thermal energy
between adjacent ferromagnetic particles [97],

λ ¼
1

4πμ0μcr

m2

r3
1

κT
¼

πμ0μcrβ
2a3H2

0

2κT
: (4)

If λ is far larger than 1, the magnetic interaction between adjacent particles is far
larger than the force induced by Brownian movement, and the particle will generate
chain-like (or column-like) oriented microstructure parallel to the direction of
magnetic field.

When it flows, the rheological properties of MR fluid are related to λ, the volume
fraction of particles ϕ, and Mason number (a dimensionless parameter, Mn).

Figure 11.
Nyquist plots of magneto-sensitive conductive polymer composite with different particle distribution states (a)
and under different magnetic fields (b); the conductivity of magneto-sensitive conductive polymer composite
with different preprocessing methods (c); schematic of magneto-sensitive conductive polymer composites with
different particle distributions and corresponding interfaces (d) [94].
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In a stable shear flow, Mn is defined as the ratio of hydrodynamic drag applied on
the ferromagnetic particle to the magneto-static force [98]:

Mn ¼
8ηc _γ

μ0μcrβ
2H2 , (5)

where ηc is the viscosity of carrier matrix and _γ represents the shear strain rate.
As the most important rheological parameter of MR fluid, the magneto-induced

yield stress can generally be explained from macroscopic and microscopic aspects.
The macroscopic theoretical model is usually derived according to the minimum
principle of energy. It assumes that the ferromagnetic fillers are spherical, cylindri-
cal, or layered and are dispersed evenly in macroscopic theoretical model [99].
These models based on the sub-microstructure only consider the anisotropy of
particle aggregation under small strain while the microscopic models consider the
interaction between magnetic particles [100]. Most microscopic models ignore the
interaction between the structured particle chains and believe that the magnetic
interaction between adjacent particles is the main source of yield stress. Therefore,
the yield stress of MR fluid can be well predicted when particle content is relatively
low, but the assumption is untenable at high particle concentration, which makes a
big deviation between theoretical and experimental results.

Figure 12 demonstrates the schematic of classic single-chain magnetic dipole
model. When the material deforms by shearing, an affine deformation happens on
the particle chain accordingly, which means that the particle moves horizontally
along the direction of arrows as shown in Figure 12a. For this affine deformation,
the distance between adjacent particles is identical before and after deformation.
This assumption simplifies the deduction of magneto-induced yield stress. The
magneto-induced shear yield stress of MR fluid within the linear magnetization
range can be obtained based on the affine deformation assumption:

τy ¼ 2:31ϕμ0M
1=2
s H

3=2
0 : (6)

In the saturated magnetization range, yield stress can be expressed as:

τsy ¼ 0:086ϕμ0M
2
s (7)

The details for the deduction process of magneto-induced yield stress and the
explanation of relevant parameters can be found in the review article about the
magnetorheological mechanism written by Bossis et al. [101].

The abovementioned single-chain magnetic dipole model was introduced
directly into MR elastomer by Jolly et al. [102]. They predicted the

Figure 12.
The schematic of single-chain magnetic dipole model [101]. The affine deformation of particles within a single
chain (a) and the geometrical relationship between adjacent particles (b).
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magneto-induced elastic modulus by this model, and the theoretical results fit well
with the experiment. Davis also calculated the magneto-induced shear modulus by
this model, and he found that the magneto-induced shear modulus reaches a max-
imum if the volume ratio of the ferromagnetic fillers is 27% [103]. However, the
influence of magnetized particle on the surrounding particles is not considered by
the magnetic dipole model, and the bias of theoretical results from the fact is
growing larger with the increasing particle concentration. Shen et al. realized this
problem and modified the single-chain magnetic dipole model by considering all of
the interaction of the particles within a single chain, which is more in line with the
real situation [104]. A finite-column model based on the experimental results was
proposed by Chen et al. [41]. However, this model can only predict the magneto-
induced modulus of MR elastomer with low particle concentration.

The abovementioned models concentrate on the magnetic interactions between
particles, but different from the MR fluid, a strong constraint effect exists between
rubber matrix and magnetic particles for MR elastomer. This constraint will influ-
ence the magnetic interactions between particles to some extent. Therefore, the
theoretical model of MR elastomer considering the coupling effect between rubber
matrix and particles is more reasonable. Chen and Jerrams developed a more gen-
eral magneto-mechanical coupling model of MR elastomer, which includes the
magneto-induced mechanical property of particles, the interfacial slipping effect
between ferromagnetic particles and rubber matrix, and the viscoelastic properties
of rubber matrix [105]. This model could predict the dynamic mechanical proper-
ties of MR elastomer with different particle content or different kinds of rubber
matrix, revealing the response mechanism of material to external magnetic field. It
is a tendency in recent years that constructing the magneto-mechanical coupling
model of MR elastomer bases on the theory of continuummediummechanics [106],
more details about the research progress on the theoretical modeling of MR elasto-
mer can be found in the recent review article [107]. Although the numerical results
can be obtained after complex mathematical derivation, these theoretical models
can deeply reveal the complicated magneto-mechanism coupling mechanism of MR
elastomer, which has guiding significance for the optimal design and the practical
application of this smart material.

A lot of work has been done on the magnetorheological mechanism of MR fluid
and MR elastomer, yet there are little reports on the magnetorheological mechanism
of MR gel. On the one hand, MR gel (especially for the solid-like MR gel) has not
attracted wide attentions as a new MR material, and the research on it is not
enough. On the other hand, the investigation on the magnetorheological mechanism
of MR gel is more difficult than those of MR fluid or MR elastomer due to its
intrinsic complex MR characteristics. MR gel possesses both the characteristics of
mobility of magnetic particles in MR fluid and the stability of oriented microstruc-
ture in MR elastomer. These two features are “contradictory” to some extent, but
they indeed exist in solid-like MR gel at the same time. Although the magnetic
particles are moveable in the carrier matrix of MR gel, the clustering phenomena of
particles in MR gel cannot be interpreted by the theory used in MR fluid because the
viscous resistance of polymer matrix is far larger than the resistance from the
carrier fluid in MR fluid. It is mean that the Mason number of MR gel is far larger
than that of MR fluid, the assumption in fluid is invalid in MR gel. In the meantime,
the viscous resistance of polymer matrix to the particle is much less than the
constraining force of the rubber matrix to the particle in MR elastomer. After
applying a magnetic field, the “solidified” ferromagnetic fillers in MR elastomer can
only move slightly from the original position, while the ferromagnetic fillers in MR
gel can greatly move under a strong magnetic field and a large applied loading; if the
direction of magnetic field is changed, the ferromagnetic fillers can even rearrange
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to generate chain-like or column-like structure along the new direction of magnetic
field. These interesting characteristics that reflect the complexity of MR gel, the
rheological behavior of polymer matrix, the magnetic interaction between adjacent
fillers, and the interfacial problem due to the relative movement of particle and
matrix have to be considered when studying the magnetorheological mechanism of
MR gel. In addition, the “huge” change of microstructure after the rearrangement of
particles will also make the modeling of the magneto-mechanical coupling behavior
of MR gel more difficult.

It is not easy to fully describe the complicated magneto-mechanical coupling
behaviors of MR gels. A field theory was developed by Han et al. to describe the
magneto-sensitive viscoelasticity of ferrogel based on the principles of non-
equilibrium thermodynamics [108]. The responses of ferrogel to different magnetic
fields were analyzed by numerical calculation, and the theoretical results consistent
with the experimental results under the cyclic magnetic field, which indicates that
this theory is reasonable to some extent for the realization to magneto-mechanical
coupling mechanism of MR gel. Zubarev evaluated the free energy of ferrogel after
tension or compression along with the magnetic field direction by standard methods
of statistical physics [109]. The analysis demonstrates that the magnetic field
strength, the initial shape of the sample, as well as the particle concentration and the
magnetic properties of particles determine the type of magneto-induced deforma-
tion (i.e., extension or shrunken). A particle-level molecular dynamics model was
employed by Liu et al. to investigate the particle evolution in MR gel under a stable
uniform magnetic field [110]. A modified magnetic dipole model is introduced to
describe the magnetic interaction between adjacent particles, and this model pre-
sents higher precision than classic magnetic dipole model when processing the
magnetic interaction of particles close to each other. The rheological behavior of the
carrier matrix is described by the Bingham plastic model (Eq. (1)). Some compli-
cated loading methods of magnetic field (such as the rotating magnetic field, as
shown in Figure 13), which are difficult to be achieved by experiment, can be easily
applied through simulation. With this, the 3D evolution of particular microstruc-
ture under complicated magnetic field loading conditions can be obtained, which is
very important to understand the microstructure evolution mechanism of MR gel.

Figure 13.
The evolution process of 3D particular microstructure in MR gel: the initial state before applying magnetic field
(a); the magnetic field is parallel with Z axis (b); the magnetic field rotates 45° in the clockwise direction (c);
and the magnetic field further rotates 180° in the clockwise direction (d) [110].
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The microstructure obtained by the particle-level molecular dynamics model
matches well with the results by experimental observation under the same loading
condition. However, the coupling effect between ferromagnetic fillers and carrier
matrix is not considered in this model, and the Bingham plastic model is also too
simple to describe the complicated rheological behavior of the carrier matrix; so, the
governing equations which describe the physical behaviors of different components
within the MR gel need to be further developed.

4. Conclusions and prospects

As a smart material whose physical properties can be easily controlled, magneto-
sensitive composite (i.e., MR material) attracts more and more attentions in recent
years. Many works concentrating on the magnetorheological mechanism and appli-
cation have been reported. Various MR materials aiming at different practical
applications were developed, which shows great application potential.

However, the inherent defects existed in conventional MR materials (e.g., the
particle sedimentation in MR fluid, the microstructure control of MR elastomer, the
bearing capacity of MR gel as structure unit) preclude their wide application. To
this end, from the perspective of material preparation, on the one hand, we need to
further improve the conventional MR material aiming at the inherent defects; on
the other hand, the novel magneto-sensitive material system which meets the
requirements of engineering applications should be developed, which means that
we could develop multifunctional smart composite that has the magneto-
controllable feature (e.g., magneto-sensitive impact-resistant composite, magneto-
sensitive conductive composite, magneto-sensitive heat-conducting composite, and
so on). From the perspective of mechanism, magneto-sensitive soft material refers
to magneto-electro-thermo-mechanical coupling behavior, and it is difficult to
describe the response to external stimuli. The difficulties can be summarized as
follows: the description of the exact distribution state of dispersed phase before and
after exposed under a magnetic field; the description of the discrepancy of size and
shape of the dispersed ferromagnetic fillers; the interaction model between the
dispersed phase and the continuous phase; the construction of constitutive model of
the polymer matrix in the MR elastomer or solid-like MR gel; and the unification of
multiscale model from microscale to macroscale. Considering the complexity of
true situation, some necessary simplifications have to be made aiming at specific
problem; then, the simplified model which could generally reflects the specific
mechanism can be developed after ignoring the secondary factors. The numerical
simulation is another effective method to investigate the microstructure evolution
mechanism of MR material. It is an important research direction to construct the
constitutive model of MRmaterial, which could accurately describe the complicated
coupling responses to different stimuli (magnetic field, temperature, strain rate,
and so on). It is believed that the engineering applications of magneto-sensitive
multifunctional material will be more widely concerned with the further realization
on the magnetorheological mechanism and the enhancement of the performance of
the material.
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