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Chapter

The Ecophysiology of Abiotic and 
Biotic Stress on the Pollination and 
Fertilization of Cacao (Theobroma 
cacao L.; formerly Sterculiaceae 
family)
Puran Bridgemohan and Majeed Mohammed

Abstract

The cocoa crop growth is highly influenced by environmental conditions, 
viz. temperature, which influence the phenological stages of flowering, 
fruiting, and pod growth. The plant produces caulescent flowers that are 
hermaphrodite and pollinated by insects, mainly Forcipomyia sp. (Diptera: 
Ceratopogonidae), but flowers setting to pods are very low. The efficiency of 
pollination depends on the degree of pollen compatibility and the number of 
pollen grains deposited on the stigma. It is assumed that midge population can 
be a limiting factor in the pollination of cocoa in addition to the environmental 
conditions. However, populations of insect pollinators are often severely dis-
turbed by hurricanes through flooding of essential habitat and the widespread 
loss of existing flowers. This chapter will explore the role of midges [biotic] 
and the effect of climate [abiotic] variables. Understanding these ecological 
dynamics can lead to ways of conserving midge populations, mitigating the 
effects of global climate change and extreme climatic events.

Keywords: phenological, Forcipomyia sp., insect pollinators, Theobroma cacao L.

1. Introduction

Cacao [Theobroma cacao L. (formerly Sterculiaceae family)] is a perennial crop 
in chocolate confectionary industry [1]. There are three main groups of cacao 
varieties, viz. Criollo (T. cacao var. cacao), Forastero (T. cacao var. sphaerocarpum), 
and Trinitario (hybrids of Criollo and Forastero) [2, 3]. The Criollo fruits are 
oblong to ovoid in shape with yellowish-white seeds. The Forastero are ellipsoid 
to round with a smooth surface. The Trinitario hybrid fruits are highly variable 
when the plants are grown by seeds. Breeding improvements have led to the “fine 
or flavour” cocoa beans which have high yield and quality as the Trinidad Selected 
Hybrids (TSH) [4].
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1.1 Cacao stress

Cacao cultivation is challenged by multiple abiotic and biotic stress factors [5], 
as they sessile to physical environment interactions with pest and pathogens [6], 
evapotranspiration [7], soil salinization [8], and climate change [9]. They devel-
oped a multitude of defence mechanisms to adapt and survive stress conditions [10] 
and harmful microorganisms [11].

1.2 Cacao agroecology

The agroecological zones [AEZ] relate to soil fertility cycling and weed, pest, 
and watershed management. The cacao crop growth is specific to the AEZ, viz. 
temperature [12], flooding [13], and water stress [14]. The bimodal seasons influ-
ence the phenological stages of flowering, fruiting, and pod growth [15]. Water 
stress inhibits leaf development and pod setting and induces leaf abscission and 
photosynthetic rate (PR) [16].

1.3 Scope of stress pollination and fertilization

The ecophysiology of abiotic and biotic stress on the pollination and fertilization 
of cacao is specific to four (4) main stages in the crop reproductive cycle, viz. prepol-
lination, pollination fertilization, and postfertilization. This treatise processes from 
pollen germination to ovary fusion to the young pod development or cherelle [4].

The scope of the treatise is limited to the author’s research and critical review of 
the biotic or the internal factors that influence flower and fruit set in cacao. The abi-
otic factors are light intensity, relative humidity (RH), flooding, water stress, and 
cultural practices as shade, intercropping, and crop nutrition. The resilience of the 
pollinator to adapt to climatic changes and crop residue manipulation to increase 
the population dynamics of the cacao midges is examined, as well as advances in the 
area of olfactory sensitivity and cacao pollen odour [17].

2. Botany

2.1 Vegetative stage

Cacao can be propagated by seedling, cuttings, or terminal grafts, reach matu-
rity at 12–18 months [4], and develop juvenile vertical shoot which produces lateral 
branches or “jorquette/chupons”. It is an evergreen understory tree (20–25 m) but is 
shorter under cultivation (3–5 m) [18] and exhibits a flushing-type growth pattern, 
with 2–4 flushes/year. The fruit is a drupe but is referred to as a pod as it is fleshy 
and indehiscent, with internal seeds.

2.2 Cacao floral and fruit phenology

Cacao flowers prolifically (800–1000 caulescent flowers/tree) with 40 flower 
cushions [4]. The flowers dehisce in the afternoon and release pollen to a receptive 
stigma (Figure 1). The non-pollinated flowers abscise 24–36 h after anthesis. The 
flower setting to pods or cherelle is very low (0.5–5%) [19], hermaphrodite, and 
pollinated by insects, mainly Forcipomyia sp. (Diptera: Ceratopogonidae) [20]. The 
position of staminodes is around the style of cocoa flowers, and the stability of cocoa 
flowers is relative to pollination and seasonality [21]. The overall cacao pollination is 
low and is not significantly affected due to the small number of splay staminodes.
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2.3 Cacao BBCH scale

The BBCH scale was used to differentiate the growth stages of cocoa steps, 
as it provides an insight of the floral phenology [4, 17, 22, 23]. The inflorescence 
emergence visible sign (Stage 5) shows flowering, that the buds primordia are 
150 μm wide at the first bud visible (FBV). This continued over 30 FBV days and 
terminated at stage BBCH 59, when the flower bud growth is completed, but the 
bud is still closed. Usually, the individual flower cushion can produce many flowers 
at different stages of development over this growth stage (Figure 2a–d).

2.4 Cocoa reproductive anatomy and physiology

The cocoa flowers emerge as small cushions on the mature branches. The petal curves 
into a tiny hood that fits down around the style. The male flower consists of five double 
stamens, with each stamen consisting of up to four anthers. The female flower consists of 
five united carpels, each containing 4–12 locules (cavities). Due to this anatomical struc-
ture, a large insect like a honeybee in search of nectar could be a difficult venture, and 
only small insect as biting midge (subfamily Forcipomyiinae) would be able to pollinate 
the crop [4, 17]. The flower does not produce nectar, but the midges are attracted to red 
spikes on the flowers as the flower opens at dawn to facilitate the pollen release, and the 
stigma is only receptive to pollination for a period less than 12 hours. Unpollinated flowers 
drop off the next day with <10% successful pollination and 2% fruit development [4, 17].

Figure 1. 
BBCH of cacao flower from first visible observation to fully open. (a) BBCH 60: flowers open (30-31 FBV), 
(b) BBCH 62: 10% of flower open, (c) BBCH 65: 50% of flower open and (d) BBCH 69: 90% of flower open.
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2.5 Crop ecophysiology

Cacao is a specific physiotype occupying a limited and defined ecophysiological 
sphere based on the crop comparative morphology and anatomy, physiology, bio-
chemistry, biophysics, and molecular biology [24, 25]. The crop has its own set of 
complete phenotypical traits generated by a genotype in the morphological domain 
as a morphotype and in the physiological domain as a physiotype.

The crop physiotypical traits basically provide a good explanation of the occur-
rence of plants in their habitats and their relations between the environment and 
the morphological traits. The ecophysiology is influenced by both biotic and abiotic 
factors that affect vegetative growth and subsequent pollination and fertilization. 
The ecophysiology of cacao is measured by the actual behaviour of plants under 
natural environmental conditions, especially photosynthesis and transpiration.

2.6 Crop yield determinant

The cacao pod yield is influenced by photosynthesis and partition of photo-
assimilate [26]. The most important parameters for determinants of cacao yield are 
related to light interception and photosynthesis and photoassimilate distribution. 
These chains of events are modified by abiotic factors particularly during the floral 
phenology of the crop and influence the yield of cocoa. Yields of this crop depend 
upon successful transfer of pollen between flowers. Pollinator availability and 
efficacy can influence fruit set [27]. Recent studies have shown significant pollina-
tion limitation in several regions due to ineffective pollinators [28, 29].

3. Pollination and fertilization

Cocoa flowers are hard to pollinate due its complicated reproductive structure 
[29], and pollination and pod set depend on the degree of pollen compatibility, 
quality [30], and germination [31]. Pollination is the result from the visit of the 
single pollinator [32], and fertilization is influenced by a combination of plant 
morphological traits (biotic) and climatic variables (abiotic).

3.1 Cacao pollination

The main pollinators are midges (Diptera: Ceratopogonidae) and other small 
Diptera (Cecidomyiidae) [33–35]. The flowers are minute, so only a few taxa can be 
effective pollinators (Figure 3). The Ceratopogonidae are effective pollen carriers as 

Figure 2. 
Cocoa cherelle wilt.
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the flower produces no nectar for the midges to collect, and it is suggested that they 
may be attracted to an odour or pheromone [36].

3.2 Pollinator dynamics

Midge population are threatened by tropical hurricanes and flooding. These 
small poor-flight insects are easily swept away by high winds [4, 17]. Midges 
would normally thrive in moist humid environment [37, 38], but excessive rain or 
drought could decimate the natural population. Bridgemohan et al. [4] examined 
the relationship between the midge population, flower pollination, and selected 
weather variables in several different Caribbean cocoa-producing islands. They rec-
ommended the manipulation of cocoa and banana residues as habitat for the adult 
midges to complete their reproductive cycle. This has improved crop yield through 
improved pollination and enhanced fertilization (Table 1).

3.3 Pollination intensity

There is a relationship between pollination intensity, fruit survival, and cocoa 
seed production [39]. The pollen/seed ratio increased with increased pollination 
intensities and seed yield.

3.4 Pollen germination and fertilization

Cacao genotypes are self-compatible and self-incompatible [19]. The pollen 
germination and fruit set will not occur after self-pollination of an incompatible 

Figure 3. 
(a) Response of midges to natural cocoa flower odour and (b) response of midges to synthetic blend mimicking 
cocoa flower odour.

Months Cacao leaf litter Cocoa pods Banana pseudostems   x ̄    [SE]

March 4.75 4.25 4.75 4.6±[0.17]

April 5 4.25 2.75 4.0±[0.66]

May 3.5 3.25 1.5 2.8±[0.63]

June 2.75 1.75 2 2.2±[0.30]

July 5 8.25 7 6.8±[0.95]

August 11.5 9.5 11.75 10.9±[0.71]

  x ̄    [SE] 5.4 ±[1.27] 5.2±[1.23] 5.0±[1.59]

Table 1. 
Population of midges harvested from the Centeno [Trinidad] location.
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genotype. Pollen germination improves (95%) with enclosed pollination due 
accumulation of CO2, but fruit set can be low (45%) and seeds produced from 
self-pollinations are high (95%) compared to the cross-pollination (100%). 
The ovary 48 h after showed that the self-pollination varieties had the majority 
of ovules with a zygote, but some ovules contained unfused male and female 
gametes and polar nuclei.

3.5 Compatibility

Compatibility is highly variable in cacao. Self-incompatibility is higher in Criollo 
and Trinitario types, but Forastero cultivar is self-compatible with a high degree of 
cross-pollination [40]. Pods in self-compatible trees (50%) are cross-fertilized. It 
was inconclusive that all pods were the result of cross-fertilization. The fertilization 
of different flowers by different male parents or by mixed pollen was evident.

3.6 Climatic effects

The impact on pollinator distribution and abundance in tropical agricultural 
system areas are more likely to be affected by climate change with reduced crop 
yields [41, 42]. When rainfall and humidify cannot be managed, it will interfere 
with the efficacy of pollination and fertilization [37].

4. Effects of abiotic factors

Abiotic stresses affect the internal metabolic processes of plant and reduce their 
efficiency in dry matter production, accumulation, and partitioning [43]. There is 
an interaction between climatic variables, crop management, cacao pollination, and 
adult midge pollinators [37].

4.1 Light intensity

Cacao is limited by light interception and photosynthesis due to external and 
internal shade (self-shading) and light extinction inside the canopy [44, 45]. Heavy 
shade reduces seed yield because of low photosynthate production and partitioning 
[46, 47] and increases the incidence of diseases. Cacao is a shade-tolerant plant,  
and appropriate levels of shading could improve photosynthesis and seed yield [4] and  
reduce excessive evapotranspiration [48] and can tolerate decreased humidity and 
high temperature stresses during the dry season [21].

4.2 Relative humidity (RH)

Humidity is predictor of insect abundance, but it is difficult to predict its 
impact on pollination in cocoa [37]. Stomatal opening is related to relative humid-
ity [49] but does not show high stomatal resistance under water stress or low RH 
[50]. Some genotypes are more sensitive to low RH which can be a limiting growth 
factor [49] and result in a reduction of net photosynthesis and low water-use 
efficiency [46, 50].

4.3 Rainfall

The stability of the cocoa flowers depends on the season and % pollination 
[51]. In the dry season, unpollinated flowers showed a low flower stability (72%) 
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compared to the wet season (94%). This improvement indicated that seasonal factors 
(water stress) have drastic effects on yields. The crop requires a high rainfall (1200–
2500 mm/yr), and the rainfall over the previous month is a significant predictor of 
cocoa midge abundance, as the larvae require moist, decomposing vegetation (cocoa 
pods and leaf litter) that is more abundant in the wet season [52, 53].

4.4 Flooding

The tropics have a distinct dry and a wet season with hurricanes, excessive 
rainfall, and flooding [4, 47]. Flooding affects the initial crop growth when the total 
rainfall exceeds evapotranspiration. The hypoxic conditions in the hydromorphic 
soil [13] result in decreased vegetative growth, photosynthesis, flowering, and pod 
production [13, 24, 54, 55].

4.5 Water stress

Almeida et al. [14] found that drought resistance occurred through osmotic 
adjustment in most cacao genotypes and that many maintained relative water 
content (90%) and leaf water potential (Yw = −1.0 MPa) are gradually decreasing 
(55% at −3.5 MPa). They found that there was a significant increase in leaf [K and 
P] during the dehydration process of some genotypes (Yw = −1.5 MPa). Water stress 
affects internal water availability, translocation of assimilates, sink-source relation-
ship, and flower set and cacao bean development [45, 47].

4.6 Shade

As a shade crop, cacao bean yields are considerably low due to shade-intercrop 
competition for water, nutrients, and light [56]. Traditionally, it was assumed 
that shade was critical regardless of yield [46, 57]. However, the cacao can tolerate 
full sunlight and produce more pods than under shade [58]. Under fundamental 
cultural practices, increased in crop density, aeration, and sunlight penetration 
seed production are enhanced [59, 60]. Moderate shade hardly affects bean yield, 
compared to heavy shading (>60%) which reduces yields by 30% [61].

4.7 Intercropping

Intercropping manipulates the agroecological conditions and enhances yield by 
promoting effective mutualism between species. In pure stand/shade tree-cocoa 
systems, there is inconclusive evidence on species interactions and competition 
under two separate shade species (Terminalia superba and Newbouldia laevis) [62]. 
Intercropping had no effect on cocoa biomass production in comparison to mono-
culture cocoa. Shading induced foliage and root formation both with and without 
fertilization. Light affects growth in the absence of underground competition. 
Intercropping can suppress K uptake in cocoa foliage (25%), due to interspecific 
competition.

5. Effects of biotic factors

Biotic stress affects pathogens, and there is an interaction between abiotic and 
biotic factor stresses (osmotic, ionic, or exogenous) [63, 64]. These biotic stress 
factors can affect pollination and fertilization through its physiology, nutrition, pest 
and disease, hormones, and pollinators and predators.
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5.1 Physiological

Environmental factors affect cacao growth (morphology and physiology) in the 
orthotropic phase especially light intensity, photosynthetic capacity, and chloro-
phyll content [48, 63, 65–67]. Shaded leaves exhibit greater variability than full sun-
light [68]. Leaf blade thickens with the increased light intensity regardless of NO3 
concentration, but under shade with high [N] there is a reduction [69]. Under full 
sunlight, rates of leaf expansion are low due to excessive transpiration and fewer 
stomata per unit leaf [58]. Cacao exhibits increased rates of net photosynthesis 
(400–750 μmol m−2 s−1), which reflects 20–30% of PAR at full sunlight, compared 
to shaded (3–4%) [70]. Once the nutritional demands of the crop are met, the yield 
is dependent mainly on solar radiation [71]. Partial pruning of cacao reduces the 
fine root production resulting in a reduction photoassimilation and internal compe-
tition between vegetative flushing and root formation [72].

5.2 Crop nutrition

Mineral deficiencies or surpluses can lead to poor growth and development 
or toxicity to physiological processes, inclusive of pollination and fertilization. In 
cocoa under shade, N, P, and K uptake can be increased by 54, 112, and 71%, respec-
tively. Intercropping with shade trees may not increase cocoa biomass; however, 
nutrient uptake is sustained for N and P due to low interspecific competition [62]. 
The crop utilizes 700 kg K/ha to produce 1000 kg/year of seeds including biomass. 
There is an inverse relationship between leaf transpiration and K doses [72]. Cacao 
trees well supplied with K are more tolerant to adverse water stress [73]. Regardless 
of the source of K, it induced low stomatal conductance and transpiration rate and 
improved WUE but without affecting shoot dry biomass [73].

5.3 Plant growth regulators

Plant hormones in cacao facilitate the adaptation to changing environments through 
mediating nutrient allocation and source/sink transitions [17]. ABA controls abscission, 
and ethylene accelerates it in the presence of ABA, but naphthalene acetic can prevent 
it without inducing fruit set. Cytokinins and auxins effects could be either synergetic or 
antagonistic depending on the interactions to other abiotic stresses. Unpollinated cacao 
flowers (90%) abscised immediately after anthesis due to increased ABA levels [19]. 
Fluridone inhibits ABA production, abscission zone layer, and senescence of the flow-
ers, while ethylene production increases only after anthesis. Aminoethoxyvinylglycine 
(AVG) application can delay abscission compared to NAA + AVG.

5.4 Pollinators and predators

The key pollinator of cacao is the midge (Diptera: Ceratopogonidae) in which the plant 
receives self or outcross pollen and/or exports pollen to a conspecific plant [74]. 
This can be interfered by disturbances to the insect natural habitat and use pesticide  
[4, 47], resulting in low fruit set [75]. Conservation of the pollinator improves crop yield 
by removing practices that alleviate the negative impacts on the insect’s habitat [37]. 
Discarded cacao pod increased the number of fruits/tree (Table 1) indicating a promo-
tion of the pollinator in the ecosystem [4, 17]. Cacao pod residue increases the population 
of the two predators to the midges, viz. spiders and skinks, but these predators do not 
inhibit pollination. Improvements to midge habitat increased the availability of alterna-
tive habitat and food resources for both the pollinators [38]. Biological conservation and 
good agricultural practices improved pollinator efficacy and species conservation [75].
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5.5 Diseases

Cacao is adapted to areas with high humidity climates but is pre-disposed to the 
risk of fungal diseases. In some areas, the cocoa crop is affected by various diseases 
(30–40%) which attack their vegetative parts and fruits. The crop is most susceptible 
at the fruiting cycle regardless of the genotype [76, 77]. Adomako [78, 79] found that 
cocoa experienced high yield loss due to unusable pods (10%), black pods (64%), 
immature ripe pods (30%), rodent damage (4%), and other damages (1.3%) which 
is close to 98  kg  ha−1 yr−1 of dry beans. The four major diseases are witches’ broom 
disease, frosty pod rot, Phytophthora pod rot, and vascular-streak dieback (VSD).

Witches’ broom disease (Moniliophthora perniciosa) attacks growing tissue 
causing cocoa trees to produce branches with no fruit and ineffective leaves. The 
epidemiology is synchronized with the crop phenology, and the spread and repro-
duction of the fungus depend on the availability of water. Basidiospores are released 
at night with high humidity (80%) and temperatures (20–30°C) but have a short 
viability period and are sensitive to light and drying. The pathogen is also spread by 
infected seeds or budwood. Host resistance is the best option for control, such as the 
Trinidad selected hybrids, and treatments of fungicides and phytosanitary pruning 
have proven to be effective [77, 80, 81].

Frosty pod rot (basidiomycete: Moniliophthora roreri) infects young pods (1–3 
months) with a white fungal mat on the pod surface. The dry powdery form of 
spores can be dislodged by water, wind, or physical disturbance of the pod and is 
spread easily. Disease incidence varies with the cultivar, pod age, and high rainfall. 
Application of systemic copper fungicides is essential when the crop is to be propa-
gated by seeds or budwood. All cocoa species are susceptible to this disease, but 
fungicides (Flutolanil) and quarantine of infected fields can be effective [77, 80, 81].

Pod rot or black pod is caused by the fungus Phytophthora spp. (P. palmivora, P. 
megakarya, and P. capsici.) resulting in high yield loss (20–30%) and tree deaths (10%) 
(Figure 4). P. megakarya is the most important pathogen in cocoa in Africa and P. cap-
sici in Central and South America, causing significant rotting or necrosis of pod losses 
especially in favourable environments [77, 80, 81]. Infestation can occur at any stage of 
development with the initial symptoms appearing as small, hard, and dark spots on the 
pod. Internal tissues and the beans are colonized and leaving a shrivelled pod.

Pod infected with P. palmivora produces up to 4 million sporangia which are dis-
seminated by rain, ants, flying insects, rodents, and bats, including contaminated 
pruned branches. P. megakarya sporulation is usually more abundant with a soil 
borne phase which causes root infection and maintains a reservoir of inoculum in 
the soil surface water.

Treatment with systemic copper fungicides (metalaxyl) is frequently recom-
mended together with injections of inorganic salt and potassium phosphonate, 

Figure 4. 
(a) Banana psuedostem as used as breeding site for midges and (b) cacao pod used as breeding site for midges.
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which have proven to be effective against P. palmivora. Farm management practices 
which optimize shade and aeration can reduce surface wetness effectively. The 
complete harvesting, sanitation, and disposal of infected pods and husks can reduce 
the disease [77, 80, 81].

This disease is caused by Oncobasidium theobromae with its characteristic symp-
toms of chlorosis of the leaf. The fungus spreads internally within the plant resulting 
in death. Infected leaf litter in the rainy season is the main source of basidiospore 
discharge and spreads mainly at night and by wind or high humidity [77, 80, 81]. 
The spores have short lifespan. Protective fungicides, open canopy, and control of 
shading which increases aeration and insolation of the foliage are effective.

5.6 Insect pests

Insect pests are less destructive to the cacao floral and reproductive organs 
compared to rodents, birds/parrots, and monkeys. They are classed in three groups, 
viz. cause primary damage, transmit disease, or rise to pest status due to tolerance 
to insecticides. The two major pests are the mirids and the cocoa pod borer (CPB).

Mirids (capsids) are the major cacao insect pests (Distantiella theobroma, 
Sahlbergella singulari, Helopeltis spp., and Monalonion spp.) which reduce yields 
(75%) by feeding on the stem, shoots, and pods producing necrotic lesion causing 
dieback. Female mirids lay up to 60 eggs inside the pod husk, thus spoiling the 
beans. The insect is more attracted to trees in full sunlight but feeds and inhabits on 
the shady areas of trees [27, 82].

The organochlorine insecticides and Imidacloprid (Actellic/Talstar and 
Promecarb) are effective, but reduced insecticide is recommended to allow the 
natural enemies to increase for biological control. Integrated pest management 
(IPM) can control mirid using black ant (Dolichoderus thoracicus) and weaver ant 
(Oecophylla smaragdina).

The cocoa pod borer (Conopomorpha cramerella) causes losses in both young 
and mature cocoa pods. The main symptom of infested pods is premature ripening 
resulting in poor bean quality. Contact pyrethroid or carbamate insecticides on the 
undersides of lower branches can keep economic damage levels to a minimum. The 
fungus Beauveria bassiana can infect larvae and pupae. Traps with synthetic phero-
mones or female pod borer moths are used to reduce male’s population.

5.7 Olfactory sensitivity and cacao pollen odour

The cocoa flowers appear to have no discernible odour like citrus, and it is only 
the pollen and nectar that are the pollinator’s attractants. However, Erickson et al. 
[83] found floral fragrance in cultivated T. cacao consisted of 78 components which 
are mainly saturated and unsaturated hydrocarbons, with 1-pentadecene or n−pen-
tadecane. Arnold et al. [37] found that three species of cocoa midge were attracted to 
the natural odours of cocoa flowers. Dasyhelea cf. borgmeieri was not attracted to a 
synthetic cocoa flower odour suggesting that it is the minor component of the cocoa 
flower’s odour that attracts midges.

6. Cherelle wilt and fruit abortion

Young pods or cherelles are lost to physiological thinning known as cherelle 
wilt [84, 85]. Many of the cherelles die later with cherelle wilt as a natural event or 
become infected by fungi or bacteria. The first cherelle wilt occurs at 7 weeks after 
pollination (WAP) with a second wilt later (10 WAP) and has larger embryos and 
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smaller pod stalk pods. Young fruit abortion is high (10%) with a reduction in bean 
weight (3–10%) [86]. Pollination and assimilate limitation cause low fruit: flower 
ratios in cacao [27]. The “wilting phase” exhibits many changes in the anatomical 
structure including swelling of the pod, enlarged vascular, and lignification of the 
middle pericarp [85]. The xylem of the fruit of cherelle wilt was caused by occlu-
sions in the xylem vessels of the fruit-stalk, which is associated with the oxidative 
activity of a cambial or meristematic tissue [86].

6.1 Biotic effects on cherelle wilt and fruit abortion

It is postulated that both types of wilt arise as a result of biotic and abiotic 
factors. Lachenaud [87] examined the stages between pollen germination and 
ovule fusion and found incomplete pod filling occurred mainly after physiological 
heritage wilt. The amount of fallen flowers with set ovary is insignificant (0.5%), 
suggesting that flowers pollinated with sparse pollen grains fell without setting. 
When fruit setting occurred at the same time on the same trees, wilted cherelles 
contained significantly more fertilized ovules than pods with beans.

The lack of hormones produced by the endosperm causes a decrease in the 
uptake of water and minerals, thereby inducing wilt. Wilted pods contained less 
cytokinin-like substances than healthy pods [88]. Auxin accumulates in deficient 
tissues may be responsible for incomplete filling and parthenocarpy [84]. Wilt 
is associated with increased levels of tricarboxylic acid cycle intermediaries and 
decreased levels of major metabolites in the biosynthetic pathways and regulation 
of abscisic acid and cytokinin levels [24].

There is inverse relationship between the wilt index and endogenous growth 
compounds in cacao [85, 86], with more polyphenol oxidase activity in the inner 
and outer pericarps of pods [84]. The pericarp and seed development are largely 
independent processes except for the inception of fruit growth and the changeover 
from the wilting to the non-wilting phase.

Despite the abundant flowering in cacao, a small number of cacao flowers 
(0.5–5%) become pollinated, and others become cherelles. Further to the low pod 
set of trees, few cherelles develop into mature pods with up to 75% of cherelles 
lost to the thinning condition. This may be due to lower level of assimilates avail-
able to the cherelle due to severe intra-plant competition [38, 89] and inefficient 
partitioning of photoassimilates [4]. Cherelles are attacked by insect (strameno-
pile) and fungi (Phytophthora and perniciosa) in early stages and frosty pod rot 
(Moniliophthora roreri), and rodents, squirrels, and parrots are common in mature 
pods. Pollination efficiency is negatively correlated with the number of flowers, and 
cherelles produced also varied between and within crosses [90]. Higher yielding 
trees were more efficient in converting flowers into pods mainly due to events that 
occur at the late cherelle stage.

6.2 Abiotic effects on cherelle wilt and fruit abortion

There are several environmental or abiotic factors that induce cherelle wilt, but 
these may have an interaction with the crop physiology. The cocoa tree allows as 
many cherelles to develop into mature pods based on nutrient availability, but those 
that do not fall become mummified and decayed [4]. There are significantly higher 
levels of nutrients (N and P) in soils under shaded than in un-shaded, correspond-
ing with lower populations of wilts. Incomplete pod filling seems to be due to 
interactions between nutritional factors and genotypes [91].

Cherelle wilt is higher in un-shaded crop due to moisture stress, higher evapo-
transpiration, and lower nutrient available to support crop yield. There was a little 
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difference between the effects of the wet and dry conditions on flower production 
or setting or on cherelle wilt [92]. Cacao planted during the dry period developed 
few flowers, but initiation was apparently stimulated; in a subsequent wet or 
medium period, flowering was exceptionally heavy, but pod setting was poor and 
cherelle wilt was high [93].

Shaded cocoa has lower light intensity and interception but enhanced nutrient 
cycling and improved healthy pod development [4]. The level of overhead shade 
provided by the forest significantly influences litter fall, decomposition, and soil 
fertility and development of cocoa pods. Under un-shaded farms, litter fall is very 
high, but the rates of litter decomposition are very slow. Cacao fruit losses increase 
due to physiological wilt associated with higher temperatures, but differed between 
genotypes, reflecting genetic variation and also competition for assimilates between 
vegetative and reproductive stages [65].

6.3 Cherelle management

Cherelle wilt can be reduced by improving the health of cocoa trees through the 
application of Fertilizers and mulches and sunscald control. Ethephon application to 
the pedicel of young fruit resulted in morphological changes similar to natural wilt, 
suggesting that cherelle wilt could be reduced with indole butyric acid and gib-
berellic acid [94]. Cherelle wilt will increase due to high crop density and competi-
tion for nutrients, water, and light. Moist but well-drained soils and mulches will 
reduce cherelle. There is a balance between biotic and abiotic factors that determine 
the optimum number of cherelles that a tree can sustain, which is dictated by the 
demands of the “sinks” or developing beans within the surviving pods [4].

7. Conclusion

The interaction of environmental and plant genetic characteristics dictate the 
survival and reproductive efficacy of the cacao. Although the plant can produce 
its optimum yield of flowers, pollination and fertilization efficiency are under the 
influence of the equilibrium of the biotic and abiotic variables and their mutualistic 
interactions. The plant can only sustain a certain number of young pods or cherelles 
to full maturity. However, internally the number of beans/pods is still subjected to 
the partitioning of photoassimilates to ensure optimum bean filling. Regardless of 
the efficiency of pollination and fertilization, intra-plant competition for photo-
assimilates will result in a high number of beans/pod that will be incomplete or 
poorly filled and reduced bean weight and final yield.

The ecophysiology of pollination and fertilization of cacao beans is manageable 
by optimized agrocultural practices. Adequate midge breeding sites using cocoa 
pod and banana pseudostem can improve the insect population and subsequently 
increase pollination and fertilization [95]. This management practice is envisaged 
as the way to increase bean yield. The cocoa flowers are influenced by seasonality, 
weather conditions (abiotic) and pollination (biotic). The dynamics of cocoa pol-
lination involves harmonization pollinator population cycle and the flower phenol-
ogy. However, the numbers of cocoa-pollinating midges are lower in the dry season 
but increase in the wet season, but the natural habitat is pre-disposed to flooding, 
and insect flight is curtailed by high winds and rainfall.

Cocoa leaf litter and the pod husk constitute the bulk of ground material but 
dry up and become unsuitable in the dry season. Also, flower cushion is affected 
by water stress and high relative humidity and encourages flower abortion. In 
the favourable wet season, there could still be reduced pollination due to less 
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pollinators. The crop self manages it photoassimilate and its partitioning to avoid 
significant intra-plant competition, and to obtain functional balance, significant 
amount of flowers are abscised. A better understanding of the biotic and abiotic 
variables of pollination and fertilization processes and the midge biology and ecol-
ogy has led to the development and validation of manipulation of the insect natural 
breeding site with an increase of insect population dynamics. This was amply 
demonstrated with increased pod yield and number of beans per pod.
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