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Chapter

Non-receptor Tyrosine Kinases 
Role and Significance in 
Hematological Malignancies
Ana Azevedo, Susana Silva and José Rueff

Abstract

This chapter presents a review about non-receptor tyrosine kinases, their 
structure, mechanisms of action and physiopathology, and how they are regulated 
and interact with other molecules and other signaling pathways, contributing 
to the regulation of fundamental cellular functions such as cell division and 
differentiation, stress responses, apoptosis, survival, and proliferation, gene 
expression, immune response, inter alia. Special emphasis will be assigned to the 
JAK family, the processes whereby it can be mutated/regulated and aberrantly 
activated, clinical significance and association with hematological disease pro-
gression and malignancy, mainly in myeloproliferative neoplasms. Consideration 
of these mechanisms may have important implications for selection of anti-cancer 
targeted therapies.

Keywords: tyrosine kinase, non-receptor, JAK, mutation, driver mutations, 
myeloproliferative, malignancy, drug resistance

1. Introduction

The existence and homeostasis of all living multicellular organisms depend on 
the existence of critical links established by several complex signaling pathways 
forming a circuitry of regulation.

The development of the Human Genome Project was crucial for the knowledge 
of the protein kinase, responsible for phosphorylation of other molecules, mostly 
proteins which can be grouped in two main classes, tyrosine kinases and serine-
threonine kinases [1].

Tyrosine kinases (TKs) are a family of more than 90 enzymes that act as fun-
damental mediators of all signal transduction processes, contributing to a variety 
of biological mechanisms in response to internal and external triggers, modulating 
cellular growth, differentiation, migration, metabolism, apoptosis, and survival 
[2, 3]. Though their activity is very well regulated in normal cells, recent studies 
have implicated TKs in human neoplastic disorder development and progression, 
including hematological malignancies [4], assuming a dominant oncoprotein status, 
either by acquiring transforming functions due to mutations by enhanced expres-
sion or by autocrine paracrine stimulation [2, 3]. These mechanisms of abnormal 
activation of TKs led to important efforts in the development of newly target-
directed molecules for cancer therapy as selective TK inhibitors [2–6].
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Tyrosine kinases are responsible for the selective phosphorylation of tyrosine 
residues in specific target protein substrates, using ATP, thus allowing transmission 
of signals from the cellular surface to cytoplasmic proteins and the nucleus, to regu-
late physiological circuits [2, 3, 5]. They can be further subdivided into two groups, 
receptor proteins and non-receptor proteins (which will be discussed below).

Briefly, receptor tyrosine kinases (RTKs) include several families, namely, 
epidermal growth factor receptor (EGFR), insulin receptor (IR), fibroblast growth 
factor receptor (FGFR), and platelet-derived growth factor receptors (PDGFR). 
They function as transducers of extracellular signals to cytoplasm and contain 
several domains, multiple extracellular ligand binding (e.g., EGF, PDGF, etc.) sites, 
a cytoplasmic portion with catalytic and regulation features, and a single trans-
membrane hydrophobic disulfide bond that links the two other regions [1, 5]. RTKs 
function as cell surface receptors, being activated by ligand binding to the extracel-
lular domain, with subsequent dimerization of receptors and transphosphorylation 
in the cytoplasmic domain [5]. They constitute also enzymes with kinase activity, 
which are associated with altered gene expression, interfering with cellular divi-
sion, migration, and survival functions [3].

Non-receptor tyrosine kinases (NRTKs) are organized into nine subfamilies 
based on sequence similarities, primarily within the kinase domains, and are able 
to regulate several cellular processes, such as cellular division, proliferation and 
survival, gene expression, and immune response, among others [3]. The role of 
their deregulation, genetic alterations, and abnormal activation in the development 
of hematological malignancies will be covered in this review.

Novel therapeutic compounds able to target kinases have been developed for the 
treatment of patients with this kind of disorders.

2. Non-receptor tyrosine kinase families

Non-receptor tyrosine kinases (NRTKs) are a subgroup of tyrosine kinases, 
intracellular cytoplasmic proteins, or anchored to the cell membrane, which can 
trigger intracellular signals derived from extracellular receptor [3]. They can be 
classified into nine subfamilies according to sequence similarities, primarily within 
the kinase domains. These include ABL, FES, JAK, ACK, SYK, TEC, FAK, SRC, and 
CSK family of kinases, which will be presented below in this section.

Unlike RTKs, NRTKs lack receptor-like features, such as an extracellular ligand-
binding domain and a transmembrane-spanning domain, exhibiting considerable 
structural variability (Figure 1). They comprise a shared kinase domain, which 
spans approximately 300 residues and consists of an N-terminal portion (five 
stranded β-sheet and one α-helix), and a large cytoplasmic C-terminal domain 
(mainly α-helical). Moreover, they often possess several additional signaling or 
protein-protein interacting domains, such as SH2, SH3, and PH domains. The ATP 
molecule binds between the two domains, and the tyrosine sequence of the protein 
substrate links with the residues of the C terminal domain [5].

The activation of NRTKs involves several complex mechanisms of heterologous 
protein-protein interaction to enable cellular tyrosine kinase phosphorylation, 
highly regulated by antagonist effects of tyrosine kinase versus phosphatases, which 
results in the successive activation of specific signaling pathways and messenger 
proteins that regulate cellular functions, such as growth, division, and apoptosis [5].

In the last few years, it has been substantiated that NRTKs can suffer two types 
of oncogenic mutations, namely, intragenic point mutations, duplications, or 
deletions and insertions, or in addition chromosomal rearrangements may occur, 
resulting in the fusion of genes (e.g., most famously BCR-ABL), associated with 



3

Non-receptor Tyrosine Kinases Role and Significance in Hematological Malignancies
DOI: http://dx.doi.org/10.5772/intechopen.84873

the development of hematological malignancies, either leukemia, lymphoma, or 
myeloma [3]. These mutations lead to aberrant kinase activation and signaling or a 
constitutive kinase activity, associated with the formation of oncogenes (or “driver 
mutations”), such as ABL, FES, SRC, and others, implicated in the process of hema-
topoiesis, contributing to cellular prolonged viability and survival [3]. Although 
some NRTK oncogenes exhibit structural, functional, and cellular localization dif-
ferences, many of them share the same molecular pathways for cellular proliferation 
and viability regulation [3]. Later in this revision, we will focus the role of some 
NRTK families, mainly JAK, involved in the development of specific hematological 
malignancies, covering their associated genetic alterations and mutations, deregula-
tion, and abnormal activation.

Recent advances have also been made in the development of specific kinase 
inhibitors and new therapies in order to target mutated kinases and inhibit their 
activity, showing to be very effective and remarkably well tolerated [3].

NRTKs play a crucial role in several cellular mechanisms. Some examples are the 
involvement of JAK family in cell signaling, through activation of signal transduc-
ers and activators of transcription (STAT); the role in cellular growth of nuclear 
TKs (e.g., ABL), through activation of transcription factor Rb, and of ACKs via the 
induction of JAK and SRC; the regulation of cell adhesion and proliferation medi-
ated by FAK; the association of Fyn and ACKs with signal transduction pathways 
and of TEC families with intracellular signaling processes; and the intervention of 
SYK in immune response [3].

While BCR-ABL occurs exclusively in leukemia, many of the subsequently 
discovered tyrosine kinase fusions occur in multiple tumor types, including both 
liquid and solid malignancies [5].

2.1 ABL kinases

The Abelson (ABL) kinase family includes ABL1 and ABL2 (ABL-related gene, 
ARG) proteins, which are ubiquitously expressed and necessary for normal cellular 
function, encoded by ABL1 and ABL2 genes.

Figure 1. 
Domain organization of the major non-receptor tyrosine kinase families (adapted from Siveen et al. [3]). 
Actin, actin-binding domain; Btk, Btk-type zinc finger motif; C, carboxy-terminus; CC, coiled coil motif; 
CRIB, Cdc42/Rac-interactive domain; DNA, DNA-binding domain; FAT, focal adhesion targeting domain; 
FCH, FES/Fer/Cdc-42 interactive protein homology domain; FERM, four-point-one, ezrin, radixin, moesin 
domain; JH2, Janus homology domain 2 (or pseudokinase domain); kinase, catalytic kinase domain  
(or SH1 domain); N, amino terminus; PH, pleckstrin homology domain; pr, proline-rich region; SH2, SRC 
homology 2 domain; SH3, SRC homology 3 domain; SH4, SRC homology 4 domain.
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ABL family is involved in the regulation of several cellular mechanisms, namely, 
proliferation, migration, invasion and adhesion, reaction to DNA lesion and stress, 
and survival, through the interaction of distinct extracellular stimuli with specific 
signaling pathways [7]. Several growth factors, such as PDGF, EGFR, transforming 
growth factor β, and angiotensin subtype 1 receptors, are responsible for the activa-
tion of cytoplasmic c-ABL [8].

The identification of the fusion oncoprotein BCR-ABL1, which results from the 
translocation leading to the Philadelphia chromosome (Ph), by the American geneticist 
Janet Rowley (1925–2013) in 1972, formed by the reciprocal translocation between 
chromosomes 9 and 22 (t(9;22)(q34.1;q11.2)), and in 1985–1986, the knowledge of the 
BCR-ABL1 transcript and its P210 fusion protein product, reinforced the role of ABL 
family in malignant disorders, especially hematological, such as acute myeloid leukemia 
(AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL). 
The translocation of the breakpoint cluster region (BCR) sequences of chromosome 22 
with the c-ABL tyrosine kinase of chromosome 9 gives origin to a fusion gene, respon-
sible for the production of three oncoproteins. The BCR-ABL chimeric gene product 
has an enhanced tyrosine kinase activity, contributing to disease phenotype [2].

In 1996, in the era of the Human Genome Project development, these discover-
ies led Nicholas Lydon (b.1957), a British scientist, and Brian Druker (b. 1955), an 
American physician scientist, to the elaboration and therapeutic use of imatinib 
(a tyrosine kinase inhibitor) in CML [9].

The several products of malignant ABL fusion gene result in constitutively acti-
vated ABL kinases that can lead to cellular transformation and cancer. Activation of 
ABL kinases due to chromosome translocation is very rare in solid neoplasms, but 
usually there is overexpression, upstream oncogenic TKs or other chemokine recep-
tors, inactivation of negative regulatory proteins, and/or oxidative stress [3].

There is a large number of signaling pathways that are activated by BCR-ABL, 
but those critical for BCR-ABL-dependent transformation include Gab2, Myc, 
CrkL, and STAT5 [3].

The first human malignancy to be associated to a specific genetic abnormality 
was chronic myelogenous leukemia, a clonal bone marrow stem cell malignancy, 
which accounts for 15–20% of adult leukemia’s with a frequency of 1–2 cases per 
100,000 individuals. It is more common in men and is rarely seen in children.

The formation of constitutively active chimeric BCR-ABL1 fusion oncoproteins 
leads to the creation of three distinct BCR-ABL variants, namely, p185, p210, and p230. 
The most common variant in CML is p210, in which the first exon of c-ABL has been 
replaced by BCR sequences, encoding either 927 or 902 amino acid, observed in hema-
topoietic cells of CML-stabilized patients, and in ALL and AML [3]. The p230 form is 
associated with acute leukemias, neutrophilic-CML, and rare cases of CML. The p185 
form, containing BCR sequences from exon 1 fused to exons 2–11 of c-ABL, is found in 
about 20–30% of adults and about 3–5% of children with B-cell ALL [3].

BCR-ABL is the most common chromosomal translocation, but several other 
chromosomal abnormalities result in the expression of various fusion proteins, yet 
there are no activating point mutations identified in the ABL1/ABL2 genes [3].

BCR-ABL oncoprotein is the most frequent genetic defect found in adult ALL 
patients. Nearly 3–5% childhood and 25–40% adult cases of ALL have Philadelphia 
chromosome, associated with an aggressive phenotype and a worst prognosis [3].

The identification of BCR-ABL expression as the determinant leukemogenic 
event in CML and the use of BCR-ABL tyrosine kinase inhibitors (TKIs) since 2001 
have changed the course of the disease and the management of patients, leading to 
a reduction in mortality rates and a consequent increase in the estimated prevalence 
of this disorder [10].
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Imatinib mesylate, also known as STI571, was initially the standard of care for 
the first-line treatment of CML patients in chronic phase, due to its high long-term 
response rates and favorable tolerability profile compared with previous standard 
therapies [10]. The majority of kinase inhibitors are currently in clinical use to 
target BCR-ABL [11]. Imatinib is an ATP-competitive inhibitor that works by 
stabilizing the inactive ABL kinase domain conformation. Combining imatinib 
mesylate with standard chemotherapy also increases the overall long-term disease-
free survival in both adults and children [3].

Approximately 15–30% (2–4% annually) of patients treated with imatinib 
discontinues treatment after 6 years due to resistance or intolerance, particularly in 
the accelerated and blast phase [10]. Nilotinib, dasatinib, bosutinib, and ponatinib 
are second-generation TKIs used for imatinib mesylate-resistant cases.

A literature review shows that pre-existing mutations at baseline confer a more 
aggressive disease phenotype and patients with advanced stages of the disease often 
do not respond to therapy or relapse [10].

The role played by efflux ABC transporters in resistance to TKI in CML has 
deserved studies indicating its possible major role in drug resistance, besides the 
acquisition of mutations in the fusion leading to inefficacity of the TKI [12–14].

2.2 Feline sarcoma (FES) kinases

Feline sarcoma (FES) and FES-related (FER) proteins are proteins included in 
another group of NRTKs, called FES kinase family. These kinases are homologous 
to viral oncogenes responsible for cancerous transformation, namely, feline v-FES 
(Feline sarcoma) and avian v-fps (Fujinami poultry sarcoma).

Fer is ubiquitously expressed, while FES is a proto-oncogene expressed mostly in 
myeloid hematopoietic, neuronal, epithelial, and vascular endothelial cells.

There is recent evidence that both kinases are activated in AML blasts and 
regulate vital functions related with internal tandem duplication containing FLT3. 
FES is associated with phosphorylation/activation of STAT family, with signaling 
proteins such as phosphatidylinositol-4,5-bisphosphate 3-kinase, mitogen-activated 
protein kinases, and extracellular signal-regulated kinases and with signaling of the 
mutated oncogenic KIT receptor [15]. It is involved in several cellular mechanisms 
such as migration, survival and immune response, myeloid differentiation, and 
angiogenesis, through interaction with multiple cell surface growth factors and 
cytokine receptors (e.g., IL3, IL4, and GM-CSF receptors) [3]. Fer kinase partici-
pates in cell cycle progression.

FES kinases consist of a unique amino-terminal FCH (FES/FER/CDC- 
42-interacting protein homology) domain, three coiled coil motifs that promote 
oligomerization, a central SH2 domain for protein interactions, and a kinase domain 
in the carboxy-terminal region. FCH domain together with the first coiled coil 
motif corresponds to FCH-Bin-Amphiphysin-Rvs (F-BAR) domain (Figure 1) [16]. 
Although there is no negative regulatory SH3 domain, the catalytically repressed 
state of FES is strongly regulated through a tight interaction between SH2 and 
kinase domain.

Activation of FES kinase requires active phosphorylation of Tyr713 located 
inside the activation loop and of Tyr 811. Hyperactivation of FES kinase is neces-
sary for deregulated proliferation in human lymphoid malignancies, but aberrant 
activation is not associated with human tumors [17].

Four somatic mutations within the kinase domain of FES  were identified in 
colorectal cancers, and Fer mutations have been associated to small-cell lung  
cancer [3].
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2.3 JAK kinases

This family comprises four members, JAK1, JAK2, JAK3, and TYK2, originally 
named “just another kinase.” They owe their name due to the similarity of kinase 
(JH1) and pseudokinase (JH2) symmetrical domains with Janus, the Roman god of 
two faces [18, 19]. TYK2 was the first family member to be identified by Krolewski 
in 1990, through libraries of complementary DNA from human T lymphocytes, 
while JAK1, JAK2, and JAK3 were identified using conserved motif clonation of 
the catalytic domain [18]. They comprise seven homologous JH domains organized 
into four regions: kinase (JH1), pseudokinase (JH2), FERM (four-point-one, ezrin, 
radixin, moesin, including the N-terminal JH7, JH6, JH5, and part of JH4), and SH2-
like (JH3 and part of JH4) (Figure 1) [20]. The carboxy-terminal portion of these 
molecules includes the distinctive kinase domain (JH1) which is catalytically active 
and the catalytically inactive pseudokinase domain (JH2) which is felt to regulate 
the activity of JH1. The other amino-terminal JH domains, JH3–JH7, mediate 
association with receptors. FERM domain regulates the binding to the membrane-
proximal part of the cytokine receptors [21].

In humans, JAK1 gene is located on chromosome 1p31.3, JAK2 gene on 9p24, 
JAK3 gene on 19p13.1, and TYK2 gene on 19p13.2 [9].

JAK proteins interact with different intracellular domains of cytokine 
receptors (discussed below) and are present in a variety of cellular subtypes. 
Expression is ubiquitous for JAK1, JAK2, and TYK2 but restricted to hematopoi-
etic cells for JAK3 [9].

Many malignancies, including hematological neoplasms, are associated with 
deregulated activation of JAK family members, through aberrant cytokine produc-
tion via autocrine/paracrine processes, point mutations within JAKs, or any other 
oncogene upstream of signaling cascade (discussed below).

Several studies reported various JAK mutations, mostly point mutations, 
occurring in all members [22–24]. JAK2 V617F is one of the most studied mutations 
affecting JAK family, strongly associated with myeloproliferative neoplasms, which 
will be discussed in the next section of this chapter, and Hodgkin lymphoma and 
primary mediastinal B-cell lymphoma [3]. Other mutations have been described, 
such as 1) JAK1 A634D, localized in the pseudokinase domain, affecting signaling 
functions (STAT5), in AML, and T-cell and B-cell ALL; 2) JAK3 point mutations 
associated with various T-cell leukemia/lymphomas, poor prognosis and clini-
cal outcome in juvenile myelomonocytic leukemia, and acute megakaryoblastic 
leukemia; 3) TYK2 kinase mutations have been reported in T-cell ALL and promote 
cell survival via activation of STAT1 as well BCL2 upregulation [3].

2.4 ACK kinases

ACKs also known as activated Cdc42 kinases are the fundamental components 
of signal transduction pathways linked to non-receptor tyrosine kinases. There are 
seven different types of ACKs, namely, ACK1/TNK2, ACK2, DACK, TNK1, ARK1, 
DPR2, and KOS1 [25].

The majority of these kinases include both N-terminal and C-terminal domains 
followed by a SH3 domain along with CRIB, which makes them unique NTRKs, and 
finally a kinase domain (Figure 1) [25].

ACK1 (ACK, TNK2, or activated Cdc42 kinase) is one of the most studied and 
well-known members of the ACKs. It is a ubiquitous 140-kDa protein located 
on the chromosome 3q, with the presence of multiple structural domains for its 
functional diversity, including cell survival, migration, growth, and proliferation, 
via acting as an integral cytosolic signal transducer for the array of receptor tyrosine 
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kinases (MERTK, EGFR, PDGFR, IR, etc.) to different intracellular effectors which 
includes both cytosolic and nuclear, and for epigenetic negative regulation on tumor 
suppressors [26]. It has been linked to several forms of human cancers, includ-
ing gastric, breast, ovarian, pancreatic, colorectal, head, and neck squamous cell 
carcinomas, osteosarcoma, hepatocellular carcinoma, and prostate cancers [26].

Mutations in ACK1/TNK2 gene are the main oncogenic cause for AML, atypical 
CML, and chronic myelomonocytic leukemia. TNK1 has both tumor-suppressing 
and oncogenic potential as it can mitigate the growth of tumor cells by downregu-
lating Ras-Raf1-MAPK pathway, induce apoptosis through NF-κB inhibition, and 
activate cellular transformation and growth of neoplastic cells. TNK1 has oncogenic 
potential implicated in hematological carcinogenesis such as in AML and Hodgkin’s 
lymphoma, which may open new targets for therapy [3].

2.5 SYK kinases

Spleen tyrosine kinase (SYK) is one of the important classes of soluble cytosolic 
NRPKs and was first cloned in porcine spleen cells, with high expression hemato-
poietic cells [3]. It is a 72-kDa protein, encoded by SYK gene located on chromo-
some 9q22 and is highest homologous to ZAP-70, formed by two highly conserved 
SH2 domains with N-terminal and one tyrosine kinase domain at C-terminal 
(Figure 1) [3]. Activation of SYK occurs with the intervention of C-type lectins and 
integrins and the downstream signaling cascade, including VAV family members, 
phospholipase Cγ isoforms, the regulatory subunits of phosphoinositide 3-kinases, 
and the SH2 domain-containing leukocyte protein family members (SLP76 and 
SLP65) [27].

The SYK family is important in immune response between cell receptors 
and intracellular signaling mechanisms, through phosphorylation of cytosolic 
domain of the immunoreceptor tyrosine-based activation motifs (ITAMs), 
resulting in the conformational changes and further activation of SYK and signal 
transduction to other downstream target/effector proteins [27]. Its stimulatory 
effect on various survival pathways/signaling molecules supports the crucial role 
that SYK family has in many forms of hematological malignancies [28]. On the 
other hand, they also have a tumor-suppressive effect in the disorders of nonim-
mune origin [29]. Progress can be made in the development of targeted effective 
therapy.

2.6 TEC kinases

TEC kinase family is the second largest subclass of the NRTKs. It includes 
five members, namely, Bruton’s tyrosine kinase (BTK), interleukin 2-inducible 
T-cell kinase (ITK/EMT/TSK), tyrosine-protein kinase (RLK/TXK), bone mar-
row tyrosine kinase on chromosome (BMX/ETK), and tyrosine kinase expressed 
in hepatocellular carcinoma (TEC) [30]. Their structure is characterized by the 
presence of an amino-terminal (PH) that can bind phosphoinositides, enabling the 
interaction between phosphotyrosine-mediated and phospholipid-mediated signal-
ing pathways, and Btk-type zinc finger (BTK) motif followed by two domains, SH3 
and SH2, and a carboxy-terminal kinase domain (Figure 1).

TEC proteins are expressed in hematopoietic cells and involved in cellular signal-
ing pathways of cytokine receptors, RTKs, lymphocyte surface antigens, G-protein-
coupled receptors, and integrins, contributing to cellular growth and maturation of 
blood cells [3]. For example, it has been shown that BTK mutations are associated 
with B lymphocytes and other relevant cells contributing to the tumor microenvi-
ronment (e.g., dendritic cells, macrophages, myeloid-derived suppressor cells, and 
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endothelial cells) development impairment [31, 32], increasing the need of innova-
tive immunochemotherapies, such as BTK inhibitors (e.g., ibrutinib), which have 
improved disease control rates but, unfortunately, not survival [33].

BTK, ITK, and TXK are predominately expressed in bone marrow cells, whereas 
BMX and TEC even extend to normal somatic cells (e.g., cardiac endothelium)  
[3, 30]. BMX is expressed in myeloid lineage hematopoietic cells (e.g., granulocytes 
and monocytes), endothelial cells, and numerous types of oncologic disorders, 
having a preponderant role in cellular survival, differentiation and motility, and 
playing a key role in inflammation and cancer [30]. Furthermore, TEC is expressed 
in hematopoietic cells, namely, myeloid and lymphoid, B and T, lineages; is involved 
in the stabilization, signaling, and activation of lymphocytes [34]; and acts as a 
regulator of pluripotent stem cells, through the regulation of fibroblast growth 
factor-2 secretion, associated with tumorigenesis and hepatocellular carcinoma 
progression [3].

2.7 Focal adhesion kinases

FAK family includes two members, namely, the ubiquitously expressed focal 
adhesion kinase and the associated adhesion focal tyrosine kinase (Pyk2), which is 
expressed in the central nervous system and in hematopoietic cells.

FAK and Pyk2 share a domain structure that includes an N-terminal FERM 
domain, followed by a residue linker region, a central kinase domain, a residue 
proline-rich low complexity region, and a C-terminal focal adhesion targeting 
domain (Figure 1) [35].

FAKs are involved in cell propagation and adhesion and in cell to microenviron-
ment communications [36]. They are associated with B-lymphoblastic leukemia 
and lymphoma cells but are usually absent in leukemias/lymphomas of T-cell origin 
and in myeloma [3]. These kinases are involved in regulation of cellular prolifera-
tion and migration, via response to extracellular stimuli. Interaction with growth 
factor leads to phosphorylation/activation of SRC kinase, which in turn is associ-
ated with various signaling pathways, and modulates proliferation and survival of 
tumor cells in AML and MDS patients [37]. FAK overexpression has been associated 
with leukemic cell migration from the marrow to the circulating compartment, 
drug resistance, and poor survival outcome [3].

2.8 SRC kinases

The SRC family of tyrosine kinases (SFKs) is membrane-associated NRTKs, act-
ing as key mediators of signal transduction pathways and modulators of RTK activa-
tion, promoting mitogenesis. This class includes 11 related kinases: BLK, FGR, FYN, 
HCK, LCK, LYN, c-SRC, c-YES, YRK, FRK (also known as RAK) and Srm [38].

Their structure includes in the amino-terminal region a membrane-targeting 
myristoylated or palmitoylated SH4 domain; a specific domain of 50–70 residues 
different for each member of the family, trailed by SH3, SH2, and kinase domains; 
and a short carboxy-terminal tail with an auto-inhibitory phosphorylation site 
(Figure 1) [39, 40].

BLK, FGR, HCK, LCK, and LYN expression predominates in hematopoietic 
cells, whereas c-SRC, c-YES, YRK, and FYN are highly expressed ubiquitously in 
platelets, neurons, and some epithelial tissues; Srm is found in keratinocytes; and 
Frk is present primarily in the bladder, breast, brain, colon, and lymphoid cells [38, 
39].

SFKs are involved in a wealth of cellular mechanisms, such as cell survival 
regulation, DNA synthesis and division, actin cytoskeleton rearrangements, and 
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motility, through a major role in a variety of cellular signaling pathways activated 
by several RTKs (PDGF-R, EGF-R, FGF-R, IGF1-R, and CSF-R) and G-protein-
coupled receptors [3]. Catalytic activity is exercised upon phosphorylation of a 
critical residue (Tyr419) within the activation loop and of the auto-inhibitory  
site Tyr530 within the carboxy-terminal tail, forming a closed auto-inhibited 
inactive conformation via the association of the SH2, SH3, and kinase domains 
by intramolecular interactions. However, these interactions could be broken by 
mutations or specific cellular triggers that are able to disrupt the inactive confor-
mation of SFKs [3].

There is evidence that SFKs are involved in cancer development, by several 
different mechanisms. They are implicated in the regulation of cell-cell adhesion, 
involving different molecules, such as p120-catenin protein, a substrate of SRC; 
on the other hand, particularly SRC might be involved in the activation of STAT 
(STAT3 and STAT5) transcription factors which regulate cytokine signaling in 
hematopoietic cells and regulation of RAS/RAF/MEK/ERK MAPK and VEGF 
pathways and apoptosis molecules, having a role in the progression of CML, AML, 
CLL, and ALL. SFKs such as focal adhesion kinase, paxillin, and p130CAS have 
been implicated in monitoring of signaling pathways mediated by integrin, whose 
functional alterations are associated with several tumor types [3, 41]. SFKs are also 
associated with the development and signaling of T and B cells, particularly LCK, 
LYN, and FYN [39, 42–44].

Activation of SFKs due to mutation or binding to activating partners such as 
growth factor receptors (HER2/NWU, PDGF, EGFR, and c-kit), adaptor proteins, 
and other NRTKs (focal adhesion kinase and Bcr-ABL) can be detected in several 
cancers [45]. However, oncogenic mutations are rarely observed in the progression 
of hematopoietic malignancies such as leukemia and lymphomas (AML, ALL, 
CML, Burkitt’s lymphoma, etc.), which are especially the result of constitutive 
activation of SFKs and amplification of anti-apoptotic and oncogenic downstream 
signaling pathways [41]. Moreover, there is evidence that SFKs promote cancer cell 
resistance to chemotherapy, radiation, and targeted RTK therapies. For example, 
Lyn and Hck have demonstrated upregulation and interaction with the oncogenic 
BCR-ABL fusion protein in specimens from patients with advanced CML and ALL 
who showed relapse after imatinib mesylate treatment [46, 47].

Due to the importance of SFKs in cancer development, it has been considered 
that inhibition of these proteins in combination with standard therapies may 
represent a great clinical potential in disease control [48].

2.9 C-terminal SRC kinases

C-terminal SRC kinases (CSK) and CSK-homologous kinase (CHK) are the two 
members included in this family of NRTKs. CSK is a 50-kDa protein ubiquitously 
expressed in all cells, primarily present in cytosol, with an amino-terminal SH3 
domain followed by a SH2 domain and a carboxy-terminal kinase domain (Figure 1).  
CSK protein has no site for the activation loop for autophosphorylation nor a 
transmembrane domain or any fatty acyl modifications. However, the mobility of 
CSK to the membrane is a critical step in the regulation of its own activity, so that it 
is achieved by means of numerous scaffolding proteins (caveolin-1, paxillin, Dab2, 
VE-cadherin, IGF-1R, IR, LIME, and SIT1) [49].

Chk is mainly expressed in the brain, hematopoietic cells, colon tissue, and 
smooth muscle cells [3].

The binding of SH2-kinase and SH2–SH3 linkers to the amino-terminal lobe of 
the kinase domain stabilizes the active conformation. CSKs function as the major 
endogenous negative regulators of SFKs, as a result of CSK phosphorylation of 
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the auto-inhibitory tyrosine residues in the SRC family kinase’s C-terminal tail. 
Although its physiological importance is not known, several other signaling pro-
teins such as paxillin, P2X3 receptor, c-Jun, and Lats can also serve as substrates of 
CSK [3].

These proteins have a critical role in the regulation of cell functions, such as 
growth, migration, differentiation, and immune response. Recent studies suggest 
that CSK can have a function as tumor suppressor through the inhibition of SFK 
oncogenic activity [3].

3.  Myeloproliferative neoplasms and their association with non-receptor 
tyrosine kinase families

Myeloproliferative neoplasms (MPNs) are clonal hematopoietic malignancies 
resulting from the transformation of hematopoietic stem cells, leading to abnormal 
amplification of physiological signal transduction pathways and proliferation of one 
or more myeloid lineages. The Word Health Organization (WHO) Classification of 
Tumours of Haematopoietic and Lymphoid Tissues classified MPNs as chronic myeloid 
leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), pri-
mary myelofibrosis (PMF) [50], chronic neutrophilic leukemia, and chronic eosino-
philic leukemia not otherwise specified and MPNs unclassifiable [51]. In addition to 
primary (de novo), myelofibrosis can be secondary to PV (post-PV) or ET (post-ET) 
[52]. In the last revision of the WHO classification, in 2016, some changes were 
introduced, and mastocytosis ceased to be listed under the heading of MPNs [53].

Dameshek (1900–1969) was the first to conceptualize these groups of dis-
orders, in 1951, highlighting the clinical and morphologic similarities between 
CML and Philadelphia-negative MPNs (PN-MPNs), namely, PV, ET, and PMF 
[54]. He realized that these disorders are caused by hyperproliferation in the 
bone marrow of more than one hematopoietic lineage, which proliferates “as a 
unit,” and introduced the term “myeloproliferative disorders,” indicating that 
these entities may correspond to a continuum of related syndromes. Moreover, 
he also postulated that the proliferative activity could be the result of a “hitherto 
undiscovered stimulus.” However, the finding that bone marrow and peripheral 
blood cells from MPN patients can produce erythroid colonies in vitro without 
the stimulus of growth factor addition indicated the cell independent nature of 
these disorders [55].

But the “story” about MPNs had begun a few years before. Previously in  
1845, John Hughes Bennett (1812–1875), an English pathologist working in 
Edinburgh, had described CML, and in 1879, a German surgeon, Gustav Heuck 
(1854–1940), underlined the morphological distinguishing features between 
PMF and CML, namely, the presence of bone marrow fibrosis, osteosclerosis, and 
extramedullary hematopoiesis in the former. Some years later in 1892, Louis Henri 
Vaquez (1860–1936), a French physician, was the first to describe PV, about a 
patient with marked erythrocytosis and hepatosplenomegaly, and in 1903 William 
Osler (1849–1919) took another step forward, distinguishing PV from both relative 
polycythemia and secondary polycythemia. The first description of ET is credited 
to Emil Epstein (1875–1951) and Alfred Goedel, two Austrian pathologists, who in 
1934 published a case report of a “hemorrhagic thrombocythemia” in the absence 
of marked erythrocytosis.

In 1960, Peter Nowell (b. 1928) and David Hungerford (1927–1993), two 
American scientists working in Philadelphia, established the association between 
the Philadelphia (Ph) chromosome and CML [56], in contrast to PN-MPNs (PV, ET, 
and PMF).
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Finally, the description of all four classic MPNs as clonal stem cell diseases was 
achieved by Philip Fialkow (1934–1996), an American physician scientist, through 
his studies developed between 1967 and 1981, on X chromosome inactivation pat-
terns in women with PV, ET, PMF, and CML carrying a polymorphic variant of the 
X-linked glucose-6-phosphate dehydrogenase (G-6-PD) gene [9, 57–59].

To better understand the pathophysiology of these disorders, the role of tyrosine 
kinases in all the process is crucial to elucidate some of the underlying mechanisms.

Hematopoiesis is the process by which multipotent bone marrow-based stem 
cells (HSC) differentiate and mature into fully formed blood cells (namely, lym-
phoid, erythroid, megakaryocytes, and other myeloid cells), in response to external 
stimulus, such as erythropoietin (EPO), thrombopoietin (TPO), granulocyte-
macrophage colony-stimulating factor (GM-CSF), other stimulating growth factors, 
and several interleukins. Growth factors initiate signal transduction pathways (e.g., 
JAK-STAT pathway), which lead to the activation of transcription factors, and elicit 
different outcomes depending on the combination of factors and the cellular stage 
of differentiation.

In a healthy adult person, approximately 1011–1012 new blood cells are produced 
daily in order to maintain steady-state levels in the peripheral circulation. Besides 
bone marrow, in some cases and if necessary, the liver, thymus, and spleen may 
resume their hematopoietic function, in a process called extramedullary hemato-
poiesis, causing these organs to increase in size substantially.

3.1 JAK-STAT signaling pathway

Due to their essential roles as intracellular signaling effectors of hematopoietic 
cytokine receptor activation, the Janus kinase (JAK) family of tyrosine kinases have 
aroused much interest since their discovery more than 20 years ago [60].

JAK proteins (presented above) can link several intracellular domains of cyto-
kine receptors and participate in a variety of cellular mechanisms [9].

Furthermore, a seven-member family of transcription factors named signal 
transducers and activators of transcription (STAT) are also involved in many 
cytokine signaling pathways. In 1994, Darnell and colleagues identified the first 
two members of the family, STAT1 and STAT2, by purification of factors linked to 
interferon (IFN)-stimulated genes, and the other family members were described 
subsequently [18]. These proteins act as transcriptional factors when they form 
homo- and heterodimers, among them, by phosphorylation at tyrosine residues in 
their SH2 domain, induced by upstream JAK proteins, activating different genes 
and regulating downstream the JAK/STAT signaling pathway [18].

The Janus kinase/signal transducers and activators for transcription (JAK/STAT) 
pathway regulate a large plethora of biological processes including cellular prolif-
eration, differentiation, cell migration, and apoptosis [18].

All of these proteins are constitutively present in the cytoplasm without previ-
ous stimuli but can be quickly activated from the cellular membrane to the nucleus, 
by the binding of cytokines, growth factors, or hormones on cell surface receptors 
(Table 1) [18].

Typically, Janus kinases function through their interaction with cytokine 
receptors that lack intrinsic kinase activity. Cytokines initiate signaling when ligand 
binding occurs (e.g., EPO, TPO) to the appropriate cytokine receptor (type 1 or 
type 2 cytokine receptors, e.g., EPO-R, MPL), which results in juxtaposition of 
JAKs, and bind to their specific cellular surface receptors, inducing several impor-
tant conformational changes mainly oligomerization or multimerization of their 
receptors. JAK anchorage to the cytoplasmic domain of the cytokine receptor and 
phosphorylation of a tyrosine residue in the receptor follows, creating a docking site 
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for the recruitment and activation of cytoplasmic signal transducers and activators 
of transcription (STATs: STAT3 and STAT5 in the case of JAK2, which is associ-
ated with PN-MPNs and will be taken as an example), through their SH2 domain. 
While STAT proteins are attached to the cytokine receptor, JAK proteins undergo 
autophosphorylation at a tyrosine residue, detaching the STAT protein from the 
cytokine receptor so that the STATs form homo- and heterodimers through their 
SH2 domain that will translocate to the nucleus. There, they bind to the promoter 
region of genes via specific DNA-binding domains to promote gene transcription.

The net result of STAT3 and STAT5 activation is apoptosis inhibition and a pro-
liferative activity [61], playing an important role in growth factor-induced myeloid 
differentiation. STAT3 regulates cell growth through regulation of cyclins promoting 
cell cycle progression, as cyclin D1, and induces Bcl-2, resulting in an anti-apoptotic 
signal. Moreover, STAT3 may promote cellular differentiation by upregulating the 
expression and enhancing the transcriptional activity of CCAAT/enhancer-binding 
protein alpha (C/EBPα), a key transcription factor that drives myeloid differentia-
tion [62]. STAT3 was also shown to play an important role in megakaryopoiesis, 
mainly through the expansion of megakaryocytic progenitor cells.

Normal differentiation of neutrophils, promoted by G-CSF, is disturbed by 
expression of a dominant negative form of STAT5. It has been suggested that STAT5 
may induce the survival of myeloid progenitors via transcriptional upregulation of 
the anti-apoptotic protein BclxL and Pim kinase, inhibiting apoptosis of megakary-
ocytes, and mediates cell growth through induction of cyclin D1, thereby allowing 
myeloid differentiation to proceed [63].

EPO is secreted by interstitial kidney cells in response to reduction in blood 
oxygen concentration, transported to the bone marrow where it binds its receptor, 
EPO-R, and transmits an intercellular signal through a receptor conformational 
change, which stimulates an increased production of red blood cells [64–66]. 
The JAK2 FERM domain constitutively binds to the EPO-R. EPO-induced EPO-R 
conformational change facilitates cross-phosphorylation and activation of the JAK2 
proteins [67].

The amino-terminal extracellular TPO-R domain has a similar structure to 
EPO-R, which is critical in ligand binding, resulting in a significant overlap between 

Cytokine or factor

JAK 
family

JAK1 IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, IL-11, IL-13, IL-15, IFN-α, IFN-β, IFN-γ, CT-1

JAK2 IL-3, IL-6, IL-11, IL-12, IL-13, IFN-γ, CT-1, growth hormone, prolactin, 
erythropoietin

JAK3 IL-2, IL-7, IL-9, IL-15, IL-4

TYK2 IL-6, I-11, IL-12, IL-13, CT-1, IFN-α, IFN-β, IL-10

STAT 
family

STAT1 IL-2, IL-6, IL-10, IL-27, IFN-α, IFN-β, IFN-γ

STAT2 IFN-α, IFN-β

STAT3 IL-6, IL-10, IL-27, LIF, growth hormone

STAT4 IL-12

STAT5 
a/b

Prolactin, growth hormone, thrombopoietin

STAT6 IL-4, IL-13

Adapted from Becerra-Díaz et al. [18]

Table 1. 
Cytokine and factor stimuli for JAK and STAT family activation.
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EPO- and TPO-stimulated pathways. As in EPO signaling, TPO stimulation causes 
the JAK2-dependent phosphorylation of STAT3 and STAT5, activation of the MAP 
kinase pathway, and activation of the PI3K/Akt survival pathway indirectly and can 
induce transcription of the pro-survival factor BclxL through STAT5- and PI3K-
dependent pathways, promoting megakaryocyte differentiation. Overall, discovery 
of STAT, MAP kinase, and PI3K pathway stimulation downstream of the TPO-R 
gave a framework to understand the considerable overlap in phenotypic response to 
TPO and EPO [68, 69].

JAK2 also serves as an endoplasmic reticulum chaperone for the EPO and TPO 
receptors, transporting them to the cell surface, and increases the total number of 
TPO receptors by stabilizing the mature form of the receptor, enhancing receptor 
recycling, and preventing receptor degradation [70]. On the other hand, nuclear 
JAK2 is involved in epigenetic modifications [18, 60, 71, 72].

The JAK/STAT pathway is tightly regulated and inhibited at multiple levels by 
several protein families—tyrosine phosphatases, suppressors of cytokine signaling 
(SOCS), and protein inhibitors of activated STATs [9]:

1. SOCS, most notably SOCS1 and SOCS3, and CBL interact with activated JAKs 
and phosphorylated receptors or mark JAK for proteasomal degradation. CIS, 
SOCS1, SOCS2, and SOCS3 are members of the SOCS protein family. The syn-
thesis of SOCS is induced by activated STATs resulting in a negative feedback 
loop, through interaction with activated JAKs and consequent inhibition of 
STAT recruitment to the binding sites [73, 74].

2. Hematopoietic cells express SHP1. SHP1 belongs to the family of phosphoty-
rosine phosphatases (PTP); PTP dephosphorylates activated JAKs, STATs, and 
cytokine receptors [75].

3. Protein inhibitors of activated STATs (PIAS) interact with activated STATs, 
inhibit their dimerization, and prevent their binding to target DNA [72].

4. LNK sequesters JAK2 by direct binding [72].

Mutations in all four JAKs have been associated with human diseases. Inherited 
mutated JAK alleles lead to inactivated JAK3 and TYK2 in human immunode-
ficiency syndrome, while somatic mutations in JAK1, JAK2, and JAK3 result in 
constitutively active kinases in myeloproliferative diseases and leukemia/lympho-
mas [60, 72].

A qualitative difference in the signaling state of STAT proteins has been 
described in PN-MPNs. ET progenitors have high phosphorylation levels of STAT1 
and STAT5, whereas PV progenitors have only phosphorylated STAT5. The reasons 
behind this and other phenotypic differences are unclear but are potentially the 
result of a complex interplay between acquired and inherited variations, and pos-
sibly environmental exposure, all unique to each MPN patient [76].

3.2  Philadelphia chromosome-negative myeloproliferative neoplasms 
(PN-MPNs)

PN-MPNs (PV, ET, and PMF) are characterized by the clonal proliferation of 
one or more myeloid cell lineages (erythrocytic, granulocytic, or megakaryocytic), 
predominantly in the bone marrow, without altering the hematopoietic stem cell 
hierarchy, and involving JAK-STAT pathway. There is evidence of a normal and 
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effective maturation, resulting in increased peripheral blood erythrocytes, granulo-
cytes, and platelet counts [77].

Among the different PN-MPN entities, there is a frequent overlap of clinical, 
laboratory, and morphological data. Leukocytosis with neutrophilia, excessive 
megakaryocytic proliferation with thrombocytosis, myelofibrosis, and spleno-
megaly and hepatomegaly associated with the presence of extramedullary hemato-
poiesis can occur in any of these diseases.

PN-MPNs are considered as rare disorders, since their combined incidence is 
lower than 6 per 100,000 individuals per year [78]. Among the existent registries 
in the European Union, PN-MPNs have an annual incidence rate per 100,000 
individuals per year ranging from 0.4 to 2.8 for PV (while the literature estimated 
0.68–2.6), from 0.38 to 1.7 for ET (in the literature 0.6–2.5), and from 0.1 to 1.0 
for PMF [79, 80]. There are few European studies reported on MPNs’ prevalence 
[80]. However, according to the American data published in 2014, the prevalence 
per 100,000 individuals of PV (44–57) and ET (38–57) was much higher than 
that of MF (4–6) or subgroups with MF features (post-PV MF = 0.3–0.7; post-ET 
MF = 0.5–1.1) [81].

These groups of disorders occur in middle- or advanced-age adults, with a 
medium age of diagnosis of 65–67 years for PV, 65–70 years for ET, and 67–70 years 
for PMF [82]. However, it can be diagnosed in younger individuals, particularly if 
there is a familial predisposition [83]. Some reports indicate that ET is more com-
mon in women (particularly at younger ages) and PV in men, while in PMF both 
genders are nearly equally affected [51, 84, 85].

As demonstrated by European and international studies [86, 87], the distinction 
of MPNs in three nosological entities have a relevant prognostic significance. By 
and large, PN-MPN patients have a reduced life expectancy compared with general 
population, with PMF having the lowest overall survival (5.7 years), followed by PV 
with 15 years survival in 65% of cases and ET with an overall survival of more than 
18–20 years [78, 88].

Despite insidious clinical onset, all PN-MPNs are at risk of clonal evolution and 
mortality. This is generally attributed to disease progression that may end in medul-
lary failure (myelofibrosis or ineffective hematopoiesis) or transformation into 
other hematologic malignancies (the most common being acute myeloid leukemia 
(AML) and myelodysplastic syndromes (MDS)) or the occurrence of bacterial 
infections and cardio- and cerebrovascular diseases, especially in younger patients 
[89, 90]. Fortunately, mortality due to these complications has been decreasing in 
the last few years [78].

3.2.1 Driver genes and other mutations

Until 2005 little was known about the etiology of PN-MPNs. The discovery of 
somatic mutations in Janus kinase 2 gene (JAK2), a member of the Janus kinase 
family located at chromosome 9 and first identified in 1993, was crucial. The identi-
fication of exon 14 V617F gain-of-function mutation, made by several independent 
groups of investigators [91–94], was one of the major genetic insights into the 
pathogenesis of the PN-MPNs and transformed the understanding of these disor-
ders. It turned out to be the most important and most frequently recurring somatic 
mutation involved in PN-MPN pathogenesis, with the highest frequency (up to 
95%) in PV, and 50–60% in ET and PMF patients (Figure 2) [9, 23, 55, 72, 95–99].

Although there is no gold standard and the choice of methodology is dependent 
on the application, quantitative real-time PCR is a useful method for detecting 
V617F mutation in JAK2 gene [100].
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After JAK2 V617F discovery in the majority of PN-MPN patients, there may have 
been an assumption of genetic uniformity, but the fact that approximately 50% of ET 
and PMF patients are JAK2 V617F negative prompted the search for other putative 
genes in the JAK-STAT signaling pathway that could be mutated in these patients. 
In 2006, Pikman and colleagues [101] identified the mutations of thrombopoietin 
receptor (TPO-R) in myeloproliferative leukemia (MPL) virus oncogene. Moreover, a 
small proportion of patients with PV are JAK2 V617F negative when tested by sensitive 
allele-specific assays [102], led only 1 year later, in 2007, to the identification by Scott 
and colleagues of a set of JAK2 exon 12 mutations in JAK2 V617F-negative patients with 
PV [103]. Although there is no gold standard and the choice of methodology is depen-
dent on the application, quantitative real-time PCR and high-resolution melt-curve 
analysis are useful methods for detecting this type of mutation in JAK2 gene [100].

One of the most recent discoveries was made by Kralovics in 2013, with the 
identification of calreticulin (CALR) mutation in 73% of MPN patients who do not 
bear the JAK2 or MPL mutation (Figure 2) [106]. The identification of these other 
driver mutations (JAK2 exon 12, MPL, and CALR) contributed to a better clarifica-
tion of the pathophysiology of these disorders, their diagnostic tools, and therapeu-
tic management [9, 91–94, 103, 107, 108]. In the majority of PN-MPN cases, CALR, 
MPL, and JAK2 mutations are mutually exclusive, although rare exceptions can 
occur [70, 109].

It soon became clear that this group of diseases was far more genetically hetero-
geneous and complex than CML. Mutations other than in those driver genes and 
other genetic alterations have also been described in PN-MPNs and have shown to 
contribute to the establishment of the WHO diagnostic criteria, prognosis, and risk 
stratification in PN-MPNs [9, 90, 110, 111]. The majority of those mutations fall 
into one of the two categories—activation of the JAK-STAT pathway (JAK2 V617F, 
JAK2 exon 12, MPL, LNK, and probably CALR) [112] and aberrant epigenetic 
modification (TET2, ASXL1, and EZH2) [113]. A combination of mutations in these 
genes and environmental factors is likely the decisive factor of the development of 
each one of these disorders.

3.2.2 Molecular pathophysiology

The receptors of bone marrow progenitor cells are highly sensitive to EPO 
(stimulates erythroblasts), TPO (induces proliferation and differentiation of 

Figure 2. 
Variation frequency of driver and other mutations in PN-MPNs [78, 104, 105].
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megakaryocytes), stem cell factor (SCF, promotes proliferation and self-renewal of 
multipotent hematopoietic primordial cells), granulocyte-stimulating factor (GSF, 
stimulates proliferation and differentiation of granulocytes), and interleukins. 
Cytokine hypersensitivity leads to monoclonal stimulation of the erythropoiesis, 
megakaryopoiesis, and granulopoiesis.

JAK2 serves as the cognate tyrosine kinase for the EPO and TPO receptors and 
can also be used by the G-CSF receptor, all of which lack an intrinsic kinase domain 
[9, 70]. Moreover, JAK2 is crucial for normal hematopoiesis, as demonstrated by 
abnormal erythropoiesis developed in JAK2-deficient mice [114]. It includes two 
main domains: one is an enzymatically active kinase domain (JAK homology 1 
(JH1)), and the other corresponds to a catalytically inactive pseudokinase domain 
(JH2), which promotes an inhibitory affect that induces the inhibition of the kinase 
activity of JAK2 [114–116].

The most frequent mutation associated with PN-MPNs, JAK2 V617F, is present 
in myeloblasts, granulocytes, erythroblasts, and all EPO-independent erythroid 
colonies. It consists of a gain-of-function missense mutation with a G to T (guanine 
to thymidine) substitution at nucleotide 1849, in exon 14 of the JAK2 gene, resulting 
in the substitution of valine with phenylalanine at codon 617 in the inhibitory JH2 
domain [102]. When V617F mutation occurs, the result is an increased activity in 
myeloid progenitor cells, which leads to proliferation and excessive production of 
mature cells [114, 116–119].

JAK2 V617F activates signaling through the three main myeloid cytokine 
homodimeric receptors (EPO-R, MPL, and G-CSFR), which are involved in eryth-
rocytosis, thrombocytosis, and neutrophilia, respectively. On the other hand, CALR 
or MPL mutants are restricted to MPL activation, explaining why JAK2 V617F is 
associated with PV, ET, and PMF, whereas CALR and MPL mutants are found in ET 
and PMF [120].

In addition, expression of JAK2 V617F results in constitutive activation of 
downstream signaling pathways including the JAK-STAT, MAPK/ERK, and 
phosphatidylinositol-3-kinase (PI3K/AKT) pathways [91–94] and later by interac-
tion with p85, a regulatory subunit of PI3K, promoting proliferation and survival. 
Activated PI3K activates AKT, which in turn activates mammalian target of 
rapamycin (mTor) on Ser2448, which directly phosphorylates ribosomal p70S6 
kinase (p70S6k). p70S6K and mTor are involved in angiogenesis by activation of 
vascular endothelial growth factor (VEGF) [61, 72]. It is known that this pathway 
is commonly activated in leukemia and lymphoma and is involved in inhibiting 
apoptosis in normal human erythroblasts. The PI3K/AKT pathway also induces the 
phosphorylation of BAD, a pro-apoptotic member of the Bcl2 family, via phos-
phorylated AKT (pAKT) and p70S6k, thus inhibiting BAD function and resulting 
in inhibition of apoptosis. BclxL is also activated by this pathway, resulting in 
inhibition of megakaryocyte apoptosis [61].

On the other hand, an increased activation of Ras-Erk signaling pathway was 
also demonstrated in PV patients. Ras is activated and activates Raf-1, which medi-
ates the activation of MEK, which in turn activates extracellular signal-regulated 
kinase (ERK), one of members of the MAPK families. ERK phosphorylation also 
results in the inhibition of apoptosis, by blocking the function of BAD and activa-
tion of Bcl2. Therefore, due to the inactivation of the pro-apoptotic factor BAD and 
activation of BclxL and Bcl2, AKT and ERK together with JAK2 V617F mutation 
suppress apoptosis and promote cellular survival, upregulating megakaryocytes 
and erythropoiesis [61].

In contrast to its effect on the EPO receptor, JAK2 V617F appears to increase the 
quantity of immature MPL while increasing MPL degradation through ubiquitina-
tion and reducing its cell surface expression [70].
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Several studies have shown that expression of JAK2 V617F results in transforma-
tion of Ba/F3 cells, characterized by IL-3-independent growth, unlike wild-type 
JAK2 [91]. Due to JAK2 V617F mutation and other mutations, hematopoietic pro-
genitor cells can proliferate without the presence or induction by cytokines, result-
ing in factor-independent growth of the erythroid cell line and activation of signal 
transduction [102], mostly in PV homozygous cases. Yet, the presence of receptors 
is essential, leading to enhanced functional activity and increased sensitivity to 
cytokines and hematopoietic growth factors, such as interleukin 3 (IL-3), stem cell 
factor (SCF), granulocyte-macrophage CSF, and insulin-like growth factor-1  
[23, 114, 121].

Recently, in 2017, Yao et al. demonstrated that activation of JAK2 mutants can 
differentially link to selective cytokine receptors and change the signaling motifs, 
evidencing the molecular basis for phenotypic variants elicited by JAK2 V617F or 
exon 12 mutations. On the basis of these findings, receptor-JAK2 interactions could 
evidence new targets of lineage-specific therapeutic tools against MPNs, which may 
be considered in other cancers with aberrant JAK-STAT signaling [122].

Recent data also indicate that the JAK2V617F allele might escape negative 
feedback by SOCS3 [72].

Unlike V617F where only a single codon is affected, exon 12 frameshift muta-
tions comprise more than 40 different small deletions/duplications and substitu-
tions of one or more amino acids between phenylalanines F533 and F547 (e.g., lysine 
for leucine at codon 539—K539 L), which are located in a linker between the JH2 
pseudokinase and the SH2 domains [123]. However, just like JAK2 V617F mutation, 
also exon 12 mutant alleles induce cytokine-independent/hypersensitive prolifera-
tion in EPO receptor (EPO-R) expressing cell lines and constitutive activation of 
JAK-STAT signaling [102]. The JAK2 exon 12 mutations contribute primarily to 
erythroid myeloproliferation, associated with increasing levels of phosphorylated 
JAK2, STAT5, and Erk1/2 compared to patients with wild-type JAK2, and even 
higher activated JAK2 and ERK1/ERK2 levels than patients with the JAK2 V617F 
mutation [61, 103, 124].

Although the complete cellular and molecular mechanisms involved in the 
pathophysiology of PN-MPNs have not yet been fully clarified [97, 107, 125–131], 
hyperactive JAK/STAT signaling pathway appears to be a constant, even in the pres-
ence of CALR mutations and the so-called “triple-negative” MPNs (nonmutated 
JAK2, CALR, and MPL), where the driver gene mutation is still unknown [55, 112].

3.3  JAK2 mutation’s role in Philadelphia chromosome-negative 
myeloproliferative neoplasms and other disorders

In humans, JAK2 V617F occurs at the stem cell level and is present in hematopoi-
etic stem cell progenitors from affected individuals, but not usually in the germline, 
suggesting that this mutation is acquired as a somatic disease allele in the hemato-
poietic compartment [102]. It is believed to be myeloid lineage specific because it is 
present in erythroid and granulocyte-macrophage progenitors. JAK2 V617F is not 
specific for an individual PN-MPN, nor does its absence exclude MPNs. Although 
the prevalence of JAK2 V617F mutation differs among PN-MPNs, one of the most 
challenging aspects of the study of these disorders still is the explanation of pheno-
typic heterogeneity and mechanism of progression of the PN-MPNs [97].

About 25–30% of patients with PV and 2–4% with ET [102, 132] are homo-
zygous for the JAK2 V617F allele (loss of heterozygosity) as a result of mitotic 
recombination and duplication of the mutant allele, promoting uniparental 
disomy (UPD). Uniparental disomy of chromosomal locus 9p24, including JAK2, 
had previously been detected in PV, before identification of the JAK2 V617F allele 
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[102]. Mitotic recombination is more likely to occur in PV patients with muta-
tion in exon 14 of the JAK2 gene than in those with exon 12 mutations [133] and 
is an early genetic event in the development of PV, but not ET [102]. Although 
JAK2 V617F homozygous subclones can be identified both in PV and ET patients, 
expression of a dominant homozygous subclone is almost exclusive in PV patients 
(~80% in PV and 50% in ET) [78, 119], originated by additional genetic or 
epigenetic events or, e.g., low levels of circulating erythropoietin in consequence 
of elevated hematocrit [119].

Although in the heterozygous state JAK2 V617F-bearing receptors are still 
responsive to growth factors, in JAK2 V617F homozygosity, these receptors become 
autonomous with respect to growth factor [70], as referred earlier.

Almost all patients diagnosed with PV negative for JAK2 V617F mutation are 
exon 12 positive (95% vs. 2–4%, respectively) [53, 103, 134–141]. Some studies have 
reported that Chinese PV patients have a relatively lower JAK2 V617F mutation 
frequency (82%), in line with a Portuguese study [23], while the mutations in JAK2 
exon 12 are much more pervasive (13%), when compared to Westerns and other 
East Asians [139, 142].

Unlike JAK2 V617F, which can be detected in any of the PN-MPNs, JAK2 exon 
12 mutations are almost exclusive of JAK2 V617F-negative PV patients [24, 103]. PV 
patients who present JAK2 exon 12 mutations, unlike those who are V617F positive, 
are not commonly homozygous [70, 103, 124, 138]. PV patients with the JAK2 exon 
12 mutations are usually younger than those with the JAK2 V617F mutation and 
have a phenotype usually more benign than that of JAK2V617F, usually without 
panmyelosis [53], with normal leukocyte and platelet counts [61, 70]. Although 
JAK2 V617F and exon 12 mutations express through the same C-terminal tyrosine 
kinase of JAK2, they originate very different phenotypic outcomes. These patients 
appear to be associated with a distinct syndrome, with higher hemoglobin concen-
trations, without concomitant leukocytosis or thrombocytosis (or minimal throm-
bocytosis), and isolated bone marrow erythroid hyperplasia [124], independently 
of the mutational variant [24, 124, 140]. The reasons for these various abnormal 
phenotypic readouts also remain unclear and are likely to be complex [124, 140]. 
The fact that exon 12 mutations are more frequently associated with erythrocytosis 
is consistent with their absence in ET but possible existence in PMF or AML second-
ary to PV [138]. However, there are exceptions as evidenced in some clinical reports 
[24]. Despite the phenotypical diversity, the clinical course and outcome seem 
overlapping between JAK2 V617F and JAK2 exon 12-positive patients, with conver-
gent incidences of thrombosis, myelofibrosis, leukemia, and death [140]. There are 
also reports of the coexistence of JAK2 V617F and JAK2 exon 12 mutations as two 
separate clones [70, 140].

As published by Rumi and Cazzola [78], patients with the wild-type genotype 
for JAK2 are extremely rare. However, a recent study [23] demonstrated a preva-
lence of 12.8% of patients with that genotype. This finding is consistent with the 
fact that the JAK2 mutation expression alone may not be sufficient to induce the PV 
phenotype. However, larger studies are required to confirm this hypothesis.

Some reports have also suggested JAK2 V617F clonal involvement of B [143, 144],  
T [143], and NK lymphocytes [83], also confirming the stem cell nature of JAK2 
V617F MPNs [102]. Lower frequencies of V617F mutation occur in PN-CML, 
chronic myelomonocytic leukemia, juvenile myelomonocytic leukemia, and rare 
cases of AML (megakaryocytic and in combination with other well-defined genetic 
abnormalities, such as BCR-ABL1) [145]. There is also evidence of association with 
certain solid tumors (generally non-hematological types) [51, 114, 117, 146–148]. 
Other mutations in the JAK2 pseudokinase domain (including point mutations 
involving R683) have been detected in about 20% of Down syndrome-associated 
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and other acute lymphoblastic leukemia and AML. A number of JAK2 fusion 
proteins, such as TEL-JAK2, PCM1-JAK2, and BCR-JAK2, lead to activation of JAK 
kinase activity and have also been associated with myeloid and lymphoid leukemia 
or atypical CML [60, 72].

Along with other driver mutations connected with clonal expansion of hema-
topoietic cells, JAK2 V617F mutation might also represent a feature of the aging 
hematopoietic system in individuals without a malignant disease [149, 150]. There 
is increasing evidence that JAK2 V617F is relatively frequent in the aging healthy 
population and is presently estimated to be 0.5% [120]. These individuals usually 
present higher erythrocyte, platelet, and leucocyte counts and are more likely to 
develop a hematological cancer. Aging is generally associated with a deregulation 
of hematopoietic stem cells, which lose their function and become myeloid-biased 
and less quiescent as a consequence of intrinsic and environmental changes, with 
JAK2 V617F hematopoietic stem cells having higher competitive properties in this 
context [120, 150].

3.3.1 Prognosis and predictive factors

Besides mutations and other molecular defects, various factors, such as gene 
burden and individual genetic background, may be responsible for predisposition 
for developing an MPN, as well as influence their heterogeneity [78, 97].

Several published data have shown the contribution and influence of JAK2 
V617F mutation allelic burden in the definition of phenotype and prognostic impact 
in PN-MPNs [151, 152]. JAK2 V617F allelic burden corresponds to the ratio between 
mutant and wild-type JAK2 in hematopoietic cells and is on the basis of a stronger 
activation of intracellular signaling pathways [153]. Between MPN patients there is 
a variability in the number of cells carrying the JAK2 V617F mutation, and there is a 
variability in the alleles that carry the mutation.

It is recognized that the allele burden tends to be higher in PV (due to the 
higher number of homozygous cases) and PMF, associated with the presence 
of acquired UPD, with defined hematological and clinical markers indicative 
of a more aggressive phenotype [153]. Indeed, a lower allele burden is generally 
observed in ET patients [97, 119, 152, 154, 155], but when it increases, some of 
them transform over time to PV or PMF. Importantly, ET patients positive for the 
JAK2 V617F mutation have a “PV-like” phenotype compared to ET patients without 
this genetic abnormality. However, patients carrying JAK2 V617F mutation do not 
have a higher risk of evolution to post-PV and post-ET myelofibrosis than patients 
without the mutation [61].

Another possible explanation concerns the concept of a “pre-JAK2” phase in 
which additional somatic mutations or inherited predisposing alleles present before 
the mutation are responsible for the clonal hematopoiesis, determine the pheno-
type, influence the risk of progression to AML, and might even be responsible for 
generating the mutation or act synergistically [55, 61]. In fact, although JAK2 V617F 
mutation is crucial to the pathogenesis of PV, ET, and PMF, the existence of the 
same allele in three clinically distinct entities suggests that there might be additional 
inherited or acquired genetic predisposition. Indeed, a familial tendency has been 
identified in 72 families, which is consistent with an inherited genetic predisposi-
tion to MPNs [156].

On the other hand, the role of the JAK2 V617F mutation in the pathogenicity 
of the various MPNs may differ among different MPNs, involving the JAK2 V617F 
mutation more often than others (e.g., ET vs. PV), which would indicate other 
oncogenic mutations or factors that may be determinant for certain cases other than 
JAK2 V617F [97, 119, 157, 158].
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Moreover, mutations in epigenetic regulators, transcription factors, and signaling 
components modify the course of the disease and can contribute to disease initiation and/
or progression [55]. Some studies performed in mice and humans led to the “host genetic 
factor” concept, acting as modifiers in combination with the mutation, for instance, 
single nucleotide polymorphisms (SNPs) [90, 110, 111, 159, 160]. Even gender could be 
an independent modifier, with women having a lower allele burden than men [61].

Also, the coexistence of autonomous JAK2 mutant and JAK2 wild-type clonal 
populations in the same patient can be an explanation. It is observed that JAK2-
positive AML patients are preceded by evolution to myelofibrosis during their 
disease course, in contrast to JAK2 wild-type AML, which is preceded by chronic-
phase ET and PV patients [61].

On the other hand, the role of the JAK/STAT signaling pathway in the pathogen-
esis of MPNs and other cancers is questionable when taking into account the exam-
ple of rare families hosting germline mutations leading to weak JAK expression. The 
mutations induce a hereditary thrombocytosis, but hematopoiesis is polyclonal, and 
there is no generation of hematological malignancies or solid tumors, indicating 
that JAK/STAT activation alone does not drive malignant disease [147].

In PV and ET, risk factors influencing survival include older age, leukocytosis, 
and thrombosis. In ET, the JAK2 V617F mutation is associated with increased risk 
of thrombosis, leading to inclusion into the International Prognostic Score of 
Thrombosis for ET-thrombosis score [90, 94, 161]. Expansion of JAK2-mutated 
allele promotes the transformation of PV and ET to secondary myelofibrosis [153]. 
Furthermore, the presence of two or more mutations is associated with a worse 
survival and predicts shortened leukemia-free survival [162].

JAK2 V617F has not been correlated to an increased risk of transformation to 
AML [90]; nevertheless, JAK2 V617F-positive patients with MPN diagnosis can 
transform to JAK2 V617F-negative AML [163].

The pathogenesis of thrombosis in PN-MPN patients is complex, involving 
clinical factors such as age, previous history of thrombotic events, obesity, hyper-
tension, and hyperlipemia, as well increased blood cell counts (i.e., leukocytosis, 
erythrocytosis, and thrombocytosis), high hematocrit, and JAK2 mutation [164]. 
The most important risk factor for future arterial and venous thrombosis in MPNs 
is the previous history of arterial and venous thrombosis, respectively [9]. The 
influence of the JAK2 V617F mutational status and allele burden on the thrombotic 
risk has been evaluated and established in several studies among PN-MPNs [90]; 
however, regarding the presence of MPL mutation, the published results are dis-
crepant [164]. Older (age > 60 years) patients are no longer considered “high risk,” 
unless they have a history of thrombosis or are JAK2-mutated [9, 164].

In patients with ET, the frequency of thromboembolic events in different studies 
ranges from 10 to 30% at diagnosis and between 8 and 31% during follow-up [165], 
and the rate of fatal and nonfatal thrombotic events ranged from 2 to 4% patient-
years, with a predominance of arterial events [164], whose risk is higher in patients 
with JAK2 and MPL mutations [90, 166].

Risk factors for fibrotic transformation in PV include JAK2 V617F allele burden 
of >50%; in ET they include advanced age and anemia, with the presence of JAK2 
V617F being associated with a lower risk of fibrotic transformation and CALR with 
a higher risk [9]. JAK2 V617F mutational status may have prognostic significance 
in PV, ET, and PMF [102]. In PV, despite the phenotypic differences, the clinical 
course seems similar between JAK2 V617F and JAK2 exon 12-positive patients, with 
similar incidences of thrombosis, myelofibrosis, leukemia, and death [24, 140]. 
JAK2/CALR mutational status did not affect survival in ET [9]. In PMF and ET, 
triple-negative patients appear to have a less favorable prognosis than patients with 
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a driver mutation (JAK2, CALR, or MPL), whereas patients with CALR mutations 
tend to have a better prognosis than patients with JAK2 or MPL mutations.

Another important concern refers to the increased risk of generation of new 
non-hematological and nonmyeloid neoplasms in MPNs, with an incidence ratio of 
1.2–1.4 and 3.4, respectively, compared to the general population [90, 167]. There is 
evidence that this risk is higher when JAK2 V617F mutation is identified and other 
patient-related factors may be also present.

3.3.2 Therapy management

The discovery of the JAK2 mutations and their relation with the subsequent 
activation of the JAK-STAT pathway was crucial to the understanding of the 
pathogenesis of PV, ET, and PMF. This knowledge has led to the development of 
small-molecular JAK inhibitors to target autoimmune disease/immunosuppres-
sion (anti-JAK1, JAK3) and MPNs and leukemia/lymphoma (anti-JAK2, JAK1), 
which have been tested in several clinical trials, suggesting an overall reduction 
in JAK-STAT signaling and pro-inflammatory cytokines [141, 168, 169]. About 10 
compounds were studied for MPNs, rheumatoid arthritis, psoriasis, and inflamma-
tory bowel disease, all of them targeting the ATP-binding site of JAKs, but none is 
absolutely specific for any JAK [88]. Nevertheless, ruxolitinib (a JAK1, JAK2 inhibi-
tor, trade name Jakavi®) has been approved by the Food and Drug Administration 
(FDA) in November 2011, for use in myelofibrosis, and tofacitinib (a JAK1, JAK3 
inhibitor) has been approved for use in rheumatoid arthritis. The first two random-
ized controlled trials (Comfort I and II) on the effect of the JAK2 inhibitor ruxoli-
tinib versus placebo and versus the best available therapy in intermediate-2 and 
high-risk PMF showed a decrease in spleen size and symptom burden in the experi-
mental arm of both studies. In Comfort I, a survival benefit was also observed in the 
ruxolitinib arm compared to patients on placebo [170, 171]. Although ruxolitinib 
was recently approved for use in hydroxyurea-resistant PV, its role in routine clini-
cal practice remains controversial [9, 52, 95, 172, 173].

The treatment options of PMF patients are currently limited, with stem cell 
transplant being the current treatment of choice for genetically or clinically 
high-risk disease. PMF patients may benefit from JAK2 inhibition with immedi-
ate clinical value in the management of symptoms, through directly modulating 
the pro-growth signals of the JAK-STAT pathway, suppression of hematopoietic 
progenitor cell proliferation, and from downregulating specific pro-inflammatory 
cytokines produced by the affected clone [70, 113].

Ruxolitinib treatment substantially alleviates symptomatic splenomegaly and 
constitutional symptoms and improves quality of life in a significant proportion of 
patients with primary or post-PV/ET myelofibrosis [88]. Surprisingly, treatment 
with ruxolitinib is also effective in patients without mutated JAK2, suggesting that 
other, still unknown, underlying mechanisms are responsible for the increased JAK/
STAT pathway activity in PN-MPN patients. On the other hand, there is no con-
vincing evidence of reduction in mutated allele burden, disease modification, nor 
progression to AML [9, 174].

The identification of JAK2 represented a milestone for the following studies and 
for today’s knowledge, but the ongoing discovery of other mutations in MPNs will 
make possible the establishment of new drug targets and prognostic biomarkers 
that will for certain improve clinical practice and patients’ outcome. All in all, it 
remains to be fully clarified whether JAK2 mutations may be considered as “driver 
mutations” for MPNs or if they can act as “passenger mutations” which may alter-
nate place with the former and have “driver” functions [129].
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4. Conclusions and future perspectives

Non-receptor tyrosine kinases play an important role in the development of 
human malignancies, including hematological and others, and of inflammatory, 
and autoimmune diseases, through their profound involvement in the regulation 
of several vital cellular mechanisms, including cell proliferation, differentiation, 
maturation, apoptosis, and survival.

Targeting dysregulated NRTKs may prevent the process of tumorigenesis. The 
screening and clinical use of tyrosine kinase inhibitors, in combination with con-
ventional treatments, have allowed the potential of targeted-based cancer therapy 
using specific cancer cell molecules, which are less toxic than traditional cytotoxic 
chemotherapy. The establishment of effective strategies in cancer research and 
patient care is mandatory.
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