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Chapter

Memristive Grid for Maze Solving
Arturo Sarmiento-Reyes and Yojanes Rodríguez Velásquez

Abstract

Memcomputing represents a novel form of neuro-oriented signal processing that
uses the memristor as a key element. In this chapter, a memristive grid is developed
in order to achieve the specific task of solving mazes. This is done by resorting to
the dynamic behavior of the memristance in order to find the shortest path that
determines trajectory from entrance to exit. The structure of the maze is mapped
onto the memristive grid, which is formed by memristors that are defined by fully
analytical charge-controlled functions. The dependance on the electric charge per-
mits to analyze the variation of the branch memristance of the grid as a function of
time. As a result of the dynamic behavior of the developed memristor model, the
shortest path is formed by those memristive branches exhibiting the fastest
memristance change. Special attention is given to achieve a realistic implementation
of the fuses of the grid, which are formed by an anti-series connection of
memristors and CMOS circuitry. HSPICE is used in combination with MATLAB to
establish the simulation flow of the memristive grid. Besides, the memristor model
is recast in VERILOG-A, a high-level hardware description language for analog
circuits.

Keywords: memristive grids, symbolic memristor modeling, maze-solving,
analog processors

1. Introduction

For thousands of years, mazes have intrigued the human mind [1]. The laby-
rinths have been used in research with laboratory animals, in order to study their
ability to recognize their environment [2–4]. In the 1990s, artificial intelligence of
robots was studied by examining their ability to traverse unfamiliar mazes [5–7].
Maze exploration algorithms are closely related to graph theory and have been used
in both mathematics and computer science [8, 9].

There are several algorithms for maze solving in the literature, they can be
classified in two very well-defined groups: the algorithms used by a traveler in the
maze without knowledge of a general view of the maze, and the algorithms used for
a program that can have a whole view the whole maze. Some examples of the first
ones are the wall follower, random mouse, pledge algorithm [10], and Trémaux’s
algorithm [11]. In the second group, shortest path algorithms are most useful,
because they can find the solution not only for a simple connected maze, but also
for multiple-solution mazes.

In this chapter, we put a main idea into practice, namely that the topology of a
maze can be mapped onto a memristive grid. By exploiting the analog computations
performed by solving Kirchoft’s Current Laws (KCL) in a parallel manner,
memristive grids have demonstrated their ability for computing shortest paths in a
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given maze, levering on the dynamic adjustment of their intrinsic memristance
[12, 13].

The parallel solution of KCL introduces a resemblance of the memristive grid as
an analog processor [14] in counterposition to a digital approach in which the
processing can also be done in parallel way, but the overhead in additional conver-
sion circuitry is too high.

Two important milestones appear in the history of the memristor. The first one
in 1971 when professor Leon O. Chua introduced the memristor as the fourth basic
circuit element in his seminal paper [15]. It established that the memristor com-
pletes the number of possible relationships between the four fundamental circuit
variables: current, voltage, magnetic flux, and electric charge—as depicted in
Figure 1. Later, an extension to memristive systems was published in [16].

The second milestone occurred in 2008, when a team at Hewlett-Packard Labo-
ratories fabricated a device whose behavior exhibited the memristance phenome-
non [17]. Since the advent of the memristor as an actual device, research and
technological development in several areas related to memristive applications have
been increased.

In the field of signal processing, the memristor has special preponderance in
neuro-computing and artificial neural networks because it allows new architectures
and processing paradigms with important features based on biological neuronal
systems [18–22]. In summary, a novel form of neuro-computing is on scene, namely
memcomputing [23].

Memristive grids represent a family of neuro-computing systems that are able of
achieving in a very flexible way several tasks for analog applications. In the next
paragraphs, we present a specially tailored memristive grid that is focused on
solving mazes.

The rest of the manuscript is organized as follows: in Section 2, the developed
models are recast in a set of fully analytical expressions for the memristance, which
are given as charge-controlled functions that are further used in this application. The
components of the memristive grid are introduced in Section 3. The maze-solving
procedure is introduced in Section 4 by explaining the simulation flow of the
memristive grid. Subsequently, several mazes are solved in order to illustrate the
operation of the memristive grid in Section 6. Finally, a series of conclusions is drawn.

2. Development of a charge-controlled memristor model

In this section, a charge-controlled memristor model is introduced. The model
has been developed by solving the ordinary differential equation (ODE) that
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Figure 1.
Basic circuit elements.
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describes the nonlinear drift mechanism, with a homotopy perturbation method
that yields an analytical expression for the memristance [24–27].

In order to obtain a charge-dependent memristance model, the nonlinear drift
differential equation is expressed in terms of the electric charge:

dx qð Þ

dq
¼ ηκfw x qð Þð Þ (1)

where η defines the direction of the drift and it can be �1. Besides, fw is the
window function used to define the nonlinear and bounded behavior of the state
variable x qð Þ, and it is given as [28]:

fw ¼ 1� 2x� 1ð Þ2k (2)

Figure 2 shows the resulting window plots for various values of k. In addition, κ
is given as:

κ ¼
μRon

Δ
2 (3)

where μ, Ron, and Δ are the mobility, the ON-state resistance, and the dimension
of the device.

The main goal is to obtain a solution to Eq. (1) in the form of an analytical
expression x(q). Once, this is done, this solution is substituted into the coupled
resistor equivalent of Figure 3 which is expressed as [17]:

M tð Þ ¼ Ronx qð Þ þ Roff 1� x qð Þ½ � (4)

where M tð Þ is the total memristance. Besides, Ron and Roff are the on-state and

the off-state resistances respectively.
In order to obtain an analytical solution to Eq. (1), we resort to the methodology

reported in [24, 29], which is based on the homotopy perturbation method (HPM).
HPM finds x qð Þ for a given order of the homotopy method as well as the integer
value of exponent of the window function (k). Furthermore, it should be also
pointed out that the charge may be positive or negative.

As a result, the sign of the charge as well as the direction of the drift (η) allows us
to introduce two operators that are used to simplify the final expressions for the
solution. These operators are denoted as Λ and Θ. Table 1 shows how they are
defined depending on the signs of the charge and η.

Figure 2.
Window function for different values of k.
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As a matter of an example, the expression of x qð Þ for order-1 with k ¼ 1 is given as:

XO1K1 qð Þ ¼ Θ 1þ X0 � 1ð Þ2e8Λκq � X0 � 1ð Þ X0 � 2ð Þe4Λκq
h i

þ 1� Θð ÞX0 �X0e
8Λκq þ X0 þ 1ð Þe4Λκq

� �

(5)

After substituting Eq. (5) in Eq. (4), it results in the memristance expression:

MO1K1 ¼ Θ Rd Xo� 1ð Þ X0 � 2ð ÞeΛ4κq � Xo� 1ð ÞeΛ8κq
� �

þ RON

� �

þ 1� Θð Þ RdX0 X0e
Λ8κq � X0 þ 1ð ÞeΛ4κq

� �

þ Roff

� �

(6)

where the variable Rd is given as:

Rd ¼ Roff � Ron (7)

For order-2 and k ¼ 1, the solution to Eq. (1) is given as:

XO2K1 qð Þ ¼ Θ 1þ X0 � 1ð Þ X2
0 � 3X0 þ 3

� �

e4Λκq � X0 � 1ð Þ2 2X0 � 3ð Þe8Λκq þ X0 � 1ð Þ3e12Λκq
h i

þ 1� Θð Þ X0 X2
0 þ X0 þ 1

� �

e4Λκq � X2
0 2X0 þ 1ð Þe8Λκq þ X3

0e
12Λκq

� �

(8)

Again, after substituting the expression above in Eq. (4) and after some reduc-
tions, it is possible to obtain the memristance for order-2 and k ¼ 1 as:

MO2K1 ¼ MO1K1 þ Rd Θ Xo� 1ð Þ3 �eΛ4κq � 2eΛ8κq � eΛ12κqð Þ
h

þX3
0 �eΛ12κq � 2eΛ8κq � eΛ4κqð Þ 1� Θð Þ

�

(9)

ON (x)R OFF (x)R

α =
R

RON

OFF

doped undoped

Figure 3.
Coupled series equivalent of the memristor.

q≥0 q<0

η
þ Λ ¼ �1

Θ ¼ 1

Λ ¼ 1

Θ ¼ 0

η
�

Λ ¼ �1

Θ ¼ 0

Λ ¼ 1

Θ ¼ 1

Table 1.
Operators for the signs of η and q.
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In a similar way, an expression for the memristance for order-3 and k ¼ 1 can be
obtained:

MO3K1 ¼ MO2K1 þ Rd Θ Xo� 1ð Þ4 �eΛ4κq � 3eΛ8κq � 3eΛ12κq � eΛ16κq
� �

h

þX4
0 �eΛ16κq � 3eΛ12κq � 3eΛ8κq � eΛ4κq
� �

1� Θð Þ
�

(10)

It can be noticed that HPM produces nested expressions of the memristance,
that is to say, a given memristance of a given order is expressed as function of the
memristance of lower orders.

For order-1 and k ¼ 2, the memristance is given as follows:

MO1K2 ¼ RdΘ

4

3
X2

0 þ 1
� �

X2
0 � 2X0 þ 2

� �

e8Λκq � 3 2X2
0 � 2X0 þ 1

� �

e16Λκq

þ2 3X2
0 � 3X0 þ 1

� �

e24Λκq �
4

3
X4

0 �
8

3
X3

0 þ 4X2
0 �

8

3
X0 þ

2

3

� �

e32Λκq � 1

2

6

6

6

6

4

3

7

7

7

7

5

þ Rd

�
1

3
X0 2X3

0 � 6X2
0 þ 9X0 þ 3

� �

e8Λκq

þ3X2
0e

16Λκq � 2X3
0e

24Λκq þ
2

3
X4

0e
32Λκq

2

6

6

6

4

3

7

7

7

5

þ Roff

(11)

In a similar way, the memristance for order-2 and k ¼ 2 is given:

MO2K2 ¼ MO1K2 þ Rd

Θ

P1e
8Λκq þ P2e

16Λκq þ P3e
24Λκq þ P4e

32Λκq

þP5e40Λκq þ P6e48Λκq þ P7e56Λκq

0

@

1

A

�
1

45
X3

0P8e
8Λκq þ 2X3

0P9e
16Λκq � X3

0P10e
24Λκq

þ
8

9
X4

0P11e
32Λκq � 13X5

0e
40Λκq þ

24

5
e48Λκq �

8

9
e56Λκq

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

P1 ¼ �
128

45
X6

0 þ
128

15
X5

0 �
89

9
X4

0 þ
50

9
X3

0 þ
11

3
X2

0 �
226

45
X0 þ

106

45

P2 ¼ 4X4
0 � 8X3

0 � 22X2
0 þ 26X0 � 10

P3 ¼ 8X6
0 � 24X5

0 þ 36X4
0 � 32X3

0 þ 75X2
0 � 63X0 þ 19

P4 ¼ �
16

9
X6

0 þ
16

3
X5

0 �
488

9
X4

0 þ
896

9
X3

0 �
400

3
X2

0 þ
760

9
X0 �

184

9

P5 ¼ 65X4
0 � 130X3

0 þ 130X2
0 � 65X0 þ 13

P6 ¼ 2X2
0 � 2X0 þ 1

� �

X4
0 � 2X3

0 þ 5X2
0 � 4X0 þ 1

� �

P7 ¼
56

9
X6

0 �
56

3
X5

0 þ
280

9
X4

0 �
280

9
X3

0 þ
56

3
X2

0 �
56

9
X0 þ

8

9

P8 ¼ 40X4
0 � 204X3

0 þ 495X2
0 � 630X0 þ 405

P9 ¼ 2X2
0 � 6X0 þ 9

P10 ¼ 4X3
0 � 12X2

0 þ 18X0 þ 9

P11 ¼ 2X3
0 � 6X2

0 þ 9X0 þ 18

(12)
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Eqs. (6), (9)–(12) are indeed the analytical expressions that constitute
memristor models. References [29, 30] contain a proper characterization of the
resulting models.

3. Implementing the memristive grid

A memristive grid is a rectangular array of memristive branches, as shown in
Figure 4. Herein, the memristive branches have been denoted as bricked circuit
elements called memristive fuses. In addition, a memristive fuse is composed of a
series connection of two memristors in anti-series and a switching device [14].

The switch is used to define the structure of the labyrinth, if the switch is in the
ON-state, then the way is free, while if the switch is in the OFF-state then a wall is
encountered. Figure 5 shows the equivalent of the memristive fuse.

In order to illustrate the use of the memristive grid in describing a maze, the
maze of Figure 6a is used. The entrance of the maze is marked by the green arrow
and the output is marked by a red arrow, and the walls are shown in red. The
maze is mapped onto the memristive grid as shown in Figure 6b by denoting the
entrance of the maze as a voltage source, while the output of the maze is given by
the ground node. For sake of clarity, both figures are merged into Figure 6c, where

Figure 4.
Description of the memristive grid.

Figure 5.
Configuration of the memristive fuse for maze solving.
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the blocked paths are represented by memristive fuses in red, on the contrary, the
paths that can be followed are represented by memristive fuses in white. It clearly
results that the walls should be given by memristive fuses with the switch in the
OFF-state (high-resistance), while the open paths are constituted by memristive
fuses with the switch in the ON-state (low-resistance).

On the top of this, the memristive grid can be straightforwardly adapted to other
kinds of mazes. Mazes with multiple entrances are represented with multiple input
voltages. Similarly, mazes with multiple outputs are given by setting multiple
instances of the ground node.

3.1 An algorithmic view

A close look of the solution path in Figure 6a can lead us to a graph-theoretical
explanation on how the memristive grid solves the maze, because the open ways in
the maze can be regarded as an unweighted graph where the solution path is
subgraph. The solution path can be found by using a breath-first-search (BFS)
algorithm in order to traverse the graph which yields indeed the shortest-path
because we deal with an unweighted graph [31].

The application of BFS is illustrated by determining the shortest path between
nodes 3 and 6 of the graph from Figure 7a. Here, node 3 can be regarded as the
input (i) and node 6 as the output (o). The algorithm starts by selecting the initial
node (3). From this, a first level of coloring is achieved by selecting the neighboring
nodes (2, 4, 5). This procedure is repeated until all nodes have been visited. For this
graph, it suffices with 2 levels. The shortest path is defined by the sequence
3!5!6, which is shown in red in Figure 7b.

Figure 6.
Mapping the maze onto the memristive grid. (a) Maze, (b) Grid and (c) Merging the maze and the grid.
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As a result, by representing the graph with the memristive grid, it allows us to
define ways for the current to flow through the open paths by gradually changing
the equivalent memristance of the fuse. Besides, what is more relevant, since the
current is given as the time-derivative of the charge, then the solution of the maze is
always given by the shortest path to ground which represents the path with the
fastest changing memristance.

3.2 Technical specifications of the memristive fuse

The memristive fuse from Figure 5 contains a pair of memristors in anti-series
connection. Such a memristor connection produces an M-q characteristic that is
composed of the overlapping of theM-q curves of the memristor expressions for η�

and η
þ. Figure 8a shows theM-q characteristics for the model of order-1, k ¼ 5 and

Figure 8b shows the schematic curve with the values of Roff and Rinit. Physical

parameters of the memristor model are given by the nominal values of the HP
memristor. A summary of the specs for the memristor model is given in Table 2.

Figure 7.
BFS algorithm to obtain the shortest path. (a) A graph and (b) The BFS algorithm.

Figure 8.
Memristance-charge characteristic of the anti-series connection. (a) MO1K5 and (b) M-q.

μv
m2

Vs

h i

Δ nm½ � Ron Ω½ � Roff Ω½ � Rinit Ω½ � k Order

1� 10�14 10 100 16� 103 1� 103 5 1

Table 2.
Memristor parameters of the anti-series connection.
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It clearly results that the overall performance of the grid in solving mazes is
based on the model of the memristors that form the fuses. Even though the models
are recast in fully symbolic form—which represent a great advantage, numeric
values should be assigned to the parameters of the model, as given in Table 2. Since
variations of the model parameters may appear, it is important to notice that the
anti-series connection alleviates the possible effects of those variations. Specific
sensitivity analysis on the parameter variations of the charge-controlled models are
given in [30].

3.2.1 Switch implementation

In the memristive fuse, an ideal switch can be used in the process of finding the
solution, however, with the aim to have a more realistic switch, a transmission gate
is used instead. The transmission gate is a switch in CMOS technology, it consists of
an NMOS transistor and a PMOS transistor connected in parallel, as in Figure 9a.
Both devices in combination can fully transmit any signal value between Vdd (the
supply voltage of the transistors) and ground. In order to switch, each transistor
requires a complementary control input. Therefore, it is necessary to add an
inverter connected between the control input and the PMOS gate [30, 32].

If the control input is Vdd then the switch is closed, and as a result, the trans-
mission gate can pass the input signal to output because it exhibits a low-resistance.
On the contrary, if the control input is grounded, then the switch is opened and the
transmission gate presents a high-resistance.

In order to simulate the transmission gate of the memristive fuse, a CMOS
180 nm technology is used. The parameters of the two complementary transistors
are shown in Table 3. The equivalent resistance of the transmission gate both states
as a function of the input voltage is shown in Figure 10.

The resistance values are extracted making a sweep of the input voltage and
measure the equivalent average resistance of the transistors in the ON-state

Figure 9.
Transmission gate. (a) Configuration and (b) symbol.

CMOS TG W μm L μm

PMOS 1.44 0.18

NMOS 0.48 0.18

Table 3.
Transmission gate: transistor parameters.
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(switch closed, Figure 10a) and OFF-state (switch opened, Figure 10b). Table 4
shows the selected values for RTG on

and RTG off
.

In addition, it can be noticed that the initial value of the ON-state resistance is
given as:

RTG init
¼ RTG on jVin¼0 ¼ 1:266 (13)

As a result of the specifications above, a couple of parameters are of special
interest, namely, the initial resistance and the maximum resistance of the
memristive fuses. At the start, the fuses present an initial resistance which is given
as the sum of the initial resistance of the memristors in the anti-series connection
plus initial resistance of the ON-state of the transmission gate:

Rfuseinit
¼ 2Rinit þ RTG init (14)

which is 3.266 kΩ.
Moreover, the maximum resistance of the fuse is given as:

Rfusemax
¼ Roff 1

þ Ron2 þ RTG on (15)

It is worthy to notice that the maximum fuse resistance does not contain Roff of

both memristor, but Roff of one memristor and Ron of the other memristor due to the

anti-series connection.

4. Simulation flow

Since the solution path for a given maze is obtained by determining the path
where the fastest change in resistance occurs, the core of the solution process
involves a transient analysis. We have chosen to achieve the electrical simulation of
the memristive grid by using HSPICE. Both memristors of the fuse are defined as
nonlinear resistors in the input netlist.

Figure 10.
Resistance characteristic of the transmission gate for both states. (a) ON-state and (b) OFF-state.

RTG on Ω RTG off
Ω

2:504� 103 10:854� 109

Table 4.
Selected values for RTG on

and RTG off
.
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The simulation flow is shown in Figure 11 and is described as follows:
Maze generator: The first stage in the solution process is to generate the maze

by using a script in MATLAB that generates the maze and it is shown as a plot.
The walls of the maze are shown in green color in the resulting plot. From this
graphical description, the maze can be automatically mapped onto the memristive
grid and an input file for HSPICE is generated. The inputs in the maze are
represented by input voltage sources of 1 V and the exits are connected to ground.

Electric simulation: The netlist obtained by the maze generator is simulated
with HSPICE. Here, a transient analysis for 20 s is carried out, this time is enough to
find the solutions of the mazes under-test, however, the exact time when the
solutions are found depends on the maze dimensions (grid). The transient simula-
tion results are saved in a .tr0 output file.

Graphic display of the results: In order to visualize the results, a script in
MATLAB imports the output simulation signals obtained with HSPICE. The resis-
tance dynamic change (ΔR tð Þ) is calculated at each simulation time and then the
paths of the maze are represented by a graph, where the color in each branch
indicates the level of ΔR tð Þ at a given time. For sake of readiness, we have selected
white for the minimum change and black for the maximum change.

During the transient simulation, the equivalent resistance of the fuses is
obtained at every instant t. It clearly results that ΔR is obtained by calculating the
difference between the measured resistance and the minimum resistance from
Eq. (14):

ΔR tð Þ ¼ R tð Þ � Rfuseinit
(16)

Consequently, the fuses that first reach the highest ΔR define indeed the solu-
tion path of the maze. In mazes with multiple solutions, fuses that belong to the
shortest path reach high values of ΔR more fastly. As time lapses, other solution
paths are revealed reaching high values of ΔR. For a given time, all fuses within the
solution paths reach the maximum ΔR, which is given by

max ΔR tð Þð Þ ¼ R tð Þ � Rfusemax
(17)

5. Mazes under-test

In order to prove the behavior of the memristive grid in maze solving, this
section presents several cases that have been ordered as follows:

• Mazes with a single solution

• Mazes with multiple solutions

Figure 11.
Simulation flow.
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• Maze with two inputs and two outputs

• An octogonal maze with three inputs and a single output

• A 3D maze

5.1 Single-solution mazes

The first set to be solved consists of three mazes with a single-entrance and
single-output and the solution is given by a unique path.

5.1.1 The 5� 5 maze

The first maze, from Figure 12a, is treated in full with the aim of highlighting
the details of the solution procedure. The first stage of the procedure yields the
memristive grid associated to the mapping of the maze, which is shown in
Figure 12b. The resulting netlist of the memristive grid is then simulated in a
transient analysis with HSPICE.

It can be noticed that there are 24 memristive fuses in the open paths of the
maze. The electrical simulation is applied in order to measure the instantaneous
resistance of the fuses. On the one hand, Figure 13a shows the transient behavior
of the resistance of those fuses for the first 1

5s. It can be noticed that all fuses start

with the same resistance at t ¼ 0, namely Rfuseinit
. As a result, at t ¼ 0, ΔR ¼ 0 for all

fuses and the maze is not walked yet and the output display shows the open paths
in white color, as shown in Figure 13b.

As time lapses, at t ¼ 0:197s, only the fuses belonging to the solution path
exhibit significant changes in their resistance. Here, the blue lines correspond to
fuses outside the solution path, while the red lines correspond to fuses that belong
to solution path. These changes are represented in the output display of Figure 13c
for the same time in yellow. The solution path can already be distinguished.

On the other hand, Figure 14a shows R tð Þ of the memristive fuses for 0< t< 20s.
The red lines show that the fuses belonging to the solution path reached a maxi-
mum, while the blue lines remain in low levels of resistance, i.e., they belong to
paths that finish in dead-ends.

Within this time-window, two snapshots of the output display have been taken
at t ¼ 1:3929s and t ¼ 3:7886s—as depicted in the plots of Figure 14b and c,
respectively. In the first display, the solution path is already highlighted in red with

Figure 12.
Mapping the 5� 5 single-solution maze onto the memristive grid. (a) A 5� 5 maze and (b) associated
memristive grid.
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fuses having a value of ΔR≈8:0kΩ. At t ¼ 3:7886s, the fuses of the solution path
show ΔR ¼ 15:0kΩ.

In summary, it can be concluded that the memristive grid achieves the solution
of the maze in a parallel processing by calculating the resistance of the fuses simul-
taneously. The progress of the solution procedure can be regarded as tracking the
dynamic behavior of ΔR, which directly points out the solution path of the maze.
On top of this, the output display allows us to visualize this procedure with the help
of a color scale.

5.1.2 The 10� 10 and 15� 15 mazes

The memristive grid has also been applied to single-solution mazes that have
larger sizes. The first maze is of 10� 10 dimension and it is depicted in Figure 15a
showing these mazes.

The second case is a 15� 15 maze, which is shown altogether with its solution in
Figure 16.

5.2 Multiple solutions mazes

The second set to be solved consists of three mazes that have solutions with
multiple paths.

Figure 13.
Transient analysis of the maze in Figure 12 for small values of t. (a) R tð Þ of the fuses for 0< t<0:197s,
(b) t ¼ 0 s, and (c) t ¼ 0:197 s.

13

Memristive Grid for Maze Solving
DOI: http://dx.doi.org/10.5772/intechopen.84678



5.2.1 The 5� 5 maze with multiple solutions

This maze is shown in Figure 17. It is a very simple example that is explained to
some extent in order to illustrate the procedure for finding the paths that constitute
the solutions.

After carrying out the transient simulation, the resistance of the memristive
fuses is obtained. Figure 18a shows R tð Þ for 0< t<0:65s. Herein, the attention is
focused only on the resistance of the fuses belonging to the solution paths.

Figure 14.
Transient analysis of the maze in Figure 12 for larger values of t. (a) R tð Þ of the fuses for 0< t< 20s,
(b) t ¼ 1:3929 s, and (c) t ¼ 3:7886 s.

Figure 15.
10� 10 maze and solution at t ¼ 1:3929s.
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Furthermore, the red lines show a steepest behavior which is a result that the red
lines are associated to the fuses belonging to the solution with the shortest path.
Besides, the blue lines are associated to fuses for the second solution path.

It can be observed that all paths start from Rfuseinit
when t ¼ 0, i.e., the maze has

not yet been walked—as given in the display of Figure 18b. After 0.2204 s, both
solutions paths are already distinguishable, but the shortest path exhibits higher ΔR,
which denoted by the darkest yellow tones in Figure 18c. After a while, at
t ¼ 0:638, the solution given by the shortest path is perfectly differentiable from the
other solution, which can be compared by using the color bar.

After a larger sweep of time, the resistances of the fuses for both solutions have
coalesced into an asymptotic level, which is the maximum value of the resistance at
t ¼ 20s—as shown in Figure 19.

5.2.2 Other mazes with multiple solutions

In this paragraph, two case studies are presented. The first one is the maze
shown in Figure 20a, which is a 10� 10 maze that has a single entrance and a single
exit, but there are four possible solution paths.

A snapshot at 1.901 s has been taken—see Figure 20b. The four solution paths
are visible in different colors. The shortest path is shown in red exhibiting the
highest ΔR at the time of evaluation. On the opposite, the solution with the longest
path is given in pale yellow. This example shows the usefulness of the color palette

Figure 16.
15� 15 maze and solution at t ¼ 3:7886s.

Figure 17.
A 5� 5 double-solution maze.
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of the output display on its full extent, because all possible solution paths are visible
and it gives more insight on the progress of the solution procedure. After a long
time, all the solutions reach the same resistance value as shown in Figure 20c.

The second example of this paragraph is a maze with two entrances and two
exits that is shown in Figure 21a. We show in Figure 21b a snapshot taken at
1.0276 s. At this point, the memristive grid has been able to find both shortest paths
for the solutions between the entrances and the outputs. After a while, at
t ¼ 8:0716s, the output display shows the connection between both paths—as given
in Figure 21c.

Figure 18.
Progress of the solution search for small t for the maze in Figure 17. (a) R tð Þ for 0< t<0:65s, (b) t ¼ 0s, (c)
t ¼ 0:2204s, and (d) t ¼ 0:638 s.

Figure 19.
Transient analysis for larger values of t. (a) R tð Þ and (b) display at t ¼ 20s.
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5.3 Octogonal maze

A nonrectangular maze is given in Figure 22a, which is an octogonal concentric
maze with three entrances and with the output goal in the center of the maze. The
three entrances are denoted as S, E, and NW. Entrances E and NW cannot reach
the solution, while entrance S does. Given the impossibility of the output display for
dealing with nonrectangular mazes, the octogonal maze is converted into an iso-
morphic view that is given in Figure 22b that shows the solution path in red.

5.4 A 3D maze

In order to illustrate that the memristive grid is able to deal with a three-
dimensional maze, a three-layer maze is solved. For sake of readiness, Figure 23
shows the maze in separated levels in a puzzle-fashion. The ball on the top-layer

Figure 20.
Multiple-solution maze with one entrance and one exit. (a) Maze, (b) t ¼ 1:901s, and (c) t ¼ 20s.

Figure 21.
Multiple-solution maze with two entrances and one exits. (a) Maze, (b) t ¼ 1:0276s, and (c) t ¼ 8:0716s.

Figure 22.
Octogonal maze and solution.
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Figure 23.
A 3D-maze.

Figure 24.
Solutions of the 3D-maze.
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indicates the starting point of the maze, while the ball in the low-layer points out to
the output of the maze. The layers communicate each other with holes that are
depicted as circles on the floor and disks on the roof of them.

The memristive grid that describes this maze counts 16 nodes per layer which
yields a total of 48 nodes. Every layer possesses 24 branches (the external walls do
not count) plus four inter-layer branches, i.e., 78 memristive fuses to describe the
maze.

Finally, the output display given in Figure 24 shows the progress of the solution
procedure.

6. Code for the model

In the following, the code for the memristor model as used within HSPICE is
given.*Charge-controlled models

*INAOE, summer 2018

*Yojanes Rodríguez
.LIB MemModels

*———————————————————————————————————————————————————————

*HPMQ Joglekar k=5 O1

.SUBCKT HPMQK5O1N N+ N-

.PARAM Xo=0.99

.PARAM mu=10f

.PARAM eta=-1

.PARAM Roff=16e3

.PARAM Ron=100

.PARAM Delta=10n

.PARAM kappa=’Ron*mu/(POW(Delta,2))’

.PARAM Pol1=’-(256/45)*POW(Xo,10)+32*POW(Xo,9)-(576/7)*POW(Xo,8)+128*POW

(Xo,7)-

+(672/5)*POW(Xo,6)+(504/5)*POW(Xo,5)-56*POW(Xo,4)+24*POW(Xo,3)-9*POW

(Xo,2)-Xo’

.PARAM Pol2=’(256/45)*POW(Xo,10)-(224/9)*POW(Xo,9)+(352/7)*POW(Xo,8)-(1280/

21)*POW(Xo,7)+

+(736/15)*POW(Xo,6)-(136/5)*POW(Xo,5)+(32/3)*POW(Xo,4)-(8/3)*POW(Xo,3)+

+POW(Xo,2)-(1441/315)*Xo+1126/315’

.PARAM Pol3=’-9*POW(Xo,2)+18*Xo-9’

.PARAM Pol4=’-24*POW(Xo,3)+72*POW(Xo,2)-72*Xo+24’

.PARAM Pol5=’-56*POW(Xo,4)+224*POW(Xo,3)-336*POW(Xo,2)+224*Xo-56’

.PARAM Pol6=’-(504/5)*POW(Xo,5)+504*POW(Xo,4)-1008*POW(Xo,3)+1008*POW

(Xo,2)-504*Xo+504/5’

.PARAM Pol7=’-(672/5)*POW(Xo,6)+(4032/5)*POW(Xo,5)-2016*POW(Xo,4)

+2688*POW(Xo,3)-

+2016*POW(Xo,2)+(4032/5)*Xo-(672/5)’

.PARAM Pol8=’-128*POW(Xo,7)+896*POW(Xo,6)-2688*POW(Xo,5)+4480*POW(Xo,4)-

+4480*POW(Xo,3)+2688*POW(Xo,2)-896*Xo+128’

.PARAM Pol9=’-(576/7)*POW(Xo,8)+(4608/7)*POW(Xo,7)-2304*POW(Xo,6)

+4608*POW(Xo,5)-

+5760*POW(Xo,4)+4608*POW(Xo,3)-2304*POW(Xo,2)+(4608/7)*Xo-576/7’

.PARAM Pol10=’-32*POW(Xo,9)+288*POW(Xo,8)-1152*POW(Xo,7)+2688*POW(Xo,6)-

4032*POW(Xo,5)+

+4032*POW(Xo,4)-2688*POW(Xo,3)+1152*POW(Xo,2)-288*Xo+32’

.PARAM Pol11=’-(256/45)*POW(Xo,10)+(512/9)*POW(Xo,9)-256*POW(Xo,8)+(2048/
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3)*POW(Xo,7)-

+(3584/3)*POW(Xo,6)+(7168/5)*POW(Xo,5)-(3584/3)*POW(Xo,4)+

+(2048/3)*POW(Xo,3)-256*POW(Xo,2)+(512/9)*Xo-256/45’

*Integrator

Ecur Ni 0 VOL = ’I(Rmem)’

R Ni Na 1k

C Na No 1m

Eop No GND GND Na 1Meg

Echarge charge GND No GND -1

Rmem N+ N- R=’(V(charge)>0)?(+(256/45)*POW(Xo,10)*exp(-200*kappa*V
(charge))-

+32*POW(Xo,9)*exp(-180*kappa*V(charge))+(576/7)*POW(Xo,8)*exp(-160*kappa*V

(charge))-

+128*POW(Xo,7)*exp(-140*kappa*V(charge))+(672/5)*POW(Xo,6)*exp(-

120*kappa*V(charge))-

+(504/5)*POW(Xo,5)*exp(-100*kappa*V(charge))+56*POW(Xo,4)*exp(-80*kappa*V

(charge))-

+24*POW(Xo,3)*exp(-60*kappa*V(charge))+9*POW(Xo,2)*exp(-40*kappa*V

(charge))+

+(Pol1)*exp(-20*kappa*V(charge)))*(Roff-Ron)+Roff:((Pol2)*exp(20*kappa*V

(charge))+

+(Pol3)*exp(40*kappa*V(charge))+(Pol4)*exp(60*kappa*V(charge))+

+(Pol5)*exp(80*kappa*V(charge))+(Pol6)*exp(100*kappa*V(charge))+

+(Pol7)*exp(120*kappa*V(charge))+(Pol8)*exp(140*kappa*V(charge))+

+(Pol9)*exp(160*kappa*V(charge))+(Pol10)*exp(180*kappa*V(charge))+

+(Pol11)*exp(200*kappa*V(charge)))*(Roff-Ron)+Ron’

.ENDS

*———————————————————————————————————————————————————————

.ENDL MemModels

7. Conclusions

A specially tailored memristive grid has been used as an analog processor for
solving mazes. The memristives branches of the grid (fuses) are formed by an anti-
series connection of two memristors and a switch. On one side, we have introduced
a family of symbolic models for the memristor that are defined by charge-controlled
functions. The fact that the models are charge-controlled allows us to monitor the
velocity of the variation of the equivalent memristance of the fuses by carrying out
a transient analysis with HSPICE. It is worth to mention that the model has been
recast in VERILOG-A. On the other side, with the aim of producing a more realistic
scenario, the switches are implemented by a transmission gate in CMOS technology.
In this form, the resulting grid is in fact a hybrid CMOS-Memristor circuit.

The simulation flow-work is formed by an input stage developed in MATLAB,
the electric simulation in HSPICE and the output stage again in MATLAB. The input
stage is responsible for mapping the structure of the maze onto the memristive grid.
The outcome of this stage is an input file with the netlist of the grid. The interme-
diate stage executes the transient simulation. The output stage is used to display the
variation of the resistance of the fuses and it literally draws the solution path of the
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maze. The solution is found by sensing the variations of the resistance of the fuses
that belong to the path, which implies that the memristive grid achieves the shortest
path algorithm.

Finally, the maze grid has proven its reliability in solving mazes with different
levels of complexity. A series of examples has been analyzed: single-solution mazes,
multiple-solution mazes, and a 3D maze.
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