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Abstract

Advances in sequencing technology have significantly contributed to shaping 
the area of genetics and enabled the identification of genetic variants associated 
with complex traits through genome-wide association studies. This has provided 
insights into genetic medicine, in which case, genetic factors influence variability in 
disease and treatment outcomes. On the other side, the missing or hidden heritabil-
ity has suggested that the host quality of life and other environmental factors may 
also influence differences in disease risk and drug/treatment responses in genomic 
medicine, and orient biomedical research, even though this may be highly con-
strained by genetic capabilities. It is expected that combining these different factors 
can yield a paradigm-shift of personalized medicine and lead to a more effective 
medical treatment. With existing “big data” initiatives and high-performance 
computing infrastructures, there is a need for data-driven learning algorithms and 
models that enable the selection and prioritization of relevant genetic variants 
(post-genomic medicine) and trigger effective translation into clinical practice. In 
this chapter, we survey and discuss existing machine learning algorithms and post-
genomic analysis models supporting the process of identifying valuable markers.

Keywords: learning algorithms, machine learning, genome-wide association study, 
genomic medicine, biomedical research, post-genomic analysis

1. Introduction

Advancements in the human deoxyribonucleic acid (DNA) microarray 
and genome sequencing technology have resulted in an exponential growth of 
publicly available and accessible biological datasets [1, 2]. These “big data” are 
being explored to systematically uncover useful signals and gain more insights to 
advance current knowledge and answer specific biological and health questions. 
Considering current data delude and relatively increased computing power, it is 
becoming possible to accurately infer desirable features from such data. This high-
lights the need for efficient learning algorithms to process these data for knowledge 
discovery by identifying pertinent patterns related to the comparison and classifica-
tion of different features in these datasets. These learning algorithms should enable 
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the extraction of appropriate features for application in a novel event or situation 
to support decision-making by mapping a given system to an input-output trans-
formation task as shown in Figure 1. Emerging trends in (deep) machine learning 
algorithms have made possible the identification and discovery of new patterns 
and hidden processes in genomic sequences that are essential in the functioning of 
biological systems. The heterogeneity of diseases, such as cancer, requires primarily 
the analysis of genomic data in order to improve diagnosis and to design an optimal 
therapy for an efficient clinical management of the disease. There is an increasing 
need of machine learning techniques in genomic medicine.

Machine learning algorithms can be classified into three main categories, namely 
supervised, unsupervised and reinforcement learning, described below:

Supervised learning algorithms build a mapping function, f, from the input vari-
able, X, to the output result, Y, expressed by: Y = f(X). There exist two main groups of 
supervised learning algorithms, namely classification and regression. Classification 
model is used to predict the outcome of a given sample with categorical output, 
for instance, case or sick individuals, labeled 0, and control or healthy individuals, 
labeled 1. On the other hand, a regression model is used to predict the outcome of a 
given sample with a real-valued output. Examples of supervised learning algorithms 
include logistic and linear regression models, Naive Bayes, classification and regres-
sion trees (CART) [3], K-nearest neighbor (KNN) [4, 5], support vector machine 
(SVM) [6], random forest (RF) [7], and artificial neural networks (ANNs) [8].

Unsupervised learning algorithms retrieve the underlying structure of the 
dataset based on input X only, using unlabeled data, that is, input data with no 
corresponding output. In this type of learning algorithm, we have: clustering, 
dimensionality reduction, and association models. Clustering consists of grouping 
samples so that items within the same cluster are more similar to each other than to 
items from another cluster for a given well-defined metric. Dimensionality reduc-
tion uses feature extraction and selection methods to reduce the number of input 
variables, conveying the most important information and minimizing noise in the 
dataset. Feature selection extracts a subset of useful variables among the original 
variables and transforms data from a high- to a low-dimensional space. Finally, 
association model just computes the probability of the co-occurrence of elements in 

Figure 1. 
Mapping a system to an input-output transformation task through learning algorithms namely supervised, 
unsupervised, and reinforcement learning.
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a collection, thus inferring how likely two different elements are to co-occur in a col-
lection. Unsupervised learning includes hierarchical clustering [9], K-means [10], 
and principal component analysis (PCA).

Reinforcement learning algorithms are a class of learning algorithms allow-
ing an agent to decide the optimal next action based on its current state to control 
an environment or a system [11], by learning behaviors that will maximize the 
reward or outcome [12, 13]. These algorithms interact with a system, for example 
human system under a specific condition which may be disease or treatment, to 
learn the best setting and optimally perform sequential decisions along a timeline 
[11], generally under uncertainty, based solely on the present state of the system. 
It follows that this sequential and dynamic decision-making process is assumed to 
be a Markov decision process [14], in which the present state of the system fully 
describes the system and is sufficient to optimally predict the best next state. 
Reinforcement learning algorithms generally use a dynamic programming method 
following Bellman-based optimality principle [12], which requires optimal sub-
structure for a given optimal option. In clinical research, these algorithms can be 
effective for longitudinal analyses, including retrospective and prospective studies, 
which consist of following a cohort across a specific-time interval [15].

Most of these learning algorithms have been extensively used to overcome sev-
eral issues in genomic medicine, including identification of genetic markers under-
lying disease risk, novel mechanisms for disease prevention, control, diagnosis and 
therapy, building predictive disease models, predicting treatment outcomes, etc. 
Currently, there exist several platforms producing large-scale datasets, including 
genomics, transcriptomics, proteomics, metabolomics, and microbial and epide-
miological data. This provides a unique opportunity of setting models and learning 
algorithms to enable the integration of these different heterogeneous datasets for 
elucidating determinant factors contributing to disease outcome and therapy in 
order to take full advantage of this data wealth in post-genomic medicine. In the fol-
lowing sections, we review some cases where machine and deep learning techniques 
have been used in health era and how post-genomic analysis constitutes a necessary 
route for optimally elucidating mechanisms of disease for an appropriate disease 
clinical management, and for predicting effective therapeutic strategies.

2. Use of machine learning in biology and health domains

As pointed out previously, machine learning algorithms have been success-
fully applied in many areas of biology and health-related research, including the 
identification of previously unknown processes in the genome, identification and 
understanding of several differentially expressed genes, binding specificities, and 
alternative splicing effects on cell processes, gene-gene and gene-environment 
interactions, disease-causing mutations, genetic determinants of diseases, pathway 
analysis, network and co-expression analysis, prediction of new drug-targets 
and response to treatment, etc. Here, we provide some illustrations of the use of 
supervised classification machine learning algorithms such as regression, SVM, 
ANN, and RF in some specific genomic applications, including predicting sequence 
specificities, analyzing gene expression profiles, identifying gene-gene and protein-
protein interactions, and elucidating disease-associated variants.

2.1 Predicting sequence specificities of DNA- and RNA-binding proteins

Sequence specificities of DNA- and RNA-binding proteins are essential for develop-
ing models of regulatory processes in biological systems. Alipanahi et al. [16] present 
the possibility of predicting sequence specificities from experimental data through 
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deep learning. They developed a software tool (DeepBind) based on deep convo-
lutional neural networks that has the ability to discover new patterns in a sequence 
without knowledge of the particular location of the pattern within the sequence. 
DeepBind is also said to have the ability to: learn from very large amounts of sequence 
data through parallel implementation on a graphics processing unit (GPU); use both 
microarray and sequencing data; automatically train predictive models without requir-
ing hand-tuning; tolerate mislabeled data and some noise; and generalize well across 
technologies regardless of existing biases across technologies. Furthermore, DeepBind 
was also used for identifying RNA- and DNA-binding protein sequence specificities, 
and showed resilience to outliers and array biases. This suggests that the issue of 
predicting sequence specificities has been efficiently addressed using the deep learning 
approach.

2.2 Analyzing gene expression profiles

With the increased availability of genome-wide gene expression assays in public 
databases, there is increasing demand for more efficient computational models for 
data interpretation. The use of artificial neural networks in biomedical research is cur-
rently taking precedence over traditional analysis methods, as they have been proven 
to be better classifiers. Deep neural networks, using data from RNA-seq as inputs, 
are being used for prediction modeling. Classic models in applications like predicting 
patient outcomes using gene expression data are still not effective to the expected 
level, thus creating a need for more efficient robust algorithms. Recent studies that 
use deep learning models on gene expression data have indicated better performance. 
Urda et al. [17] illustrated the use of a multi-layer feed-forward artificial neural 
network, shown in Figure 2, in analyzing the RNA-seq gene expression data.

Dincer et al. [18] present a model that uses variational auto-encoders (VAEs) to 
extract latent variables from publicly available expression datasets and use them 
as features for predicting phenotypes. Their system, called DeepProfile, uses deep 
learning to learn a feature representation from large unlabeled expression data 
samples that are not incorporated in the prediction problem. This system was suc-
cessfully used for the prediction of response to cancer drugs based on gene expres-
sion data. It also helped determine the effects of given drugs on specific patients 

Figure 2. 
Example neural network for binary classification. Input layer of P gene expression levels connected to k-hidden 
layers through synaptic weights w.
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and thus provides a tool for precision medicine. The model was trained on gene 
expression data of acute myeloid leukemia, from GEO. Results indicated that low-
dimensional representation (latent variables) generated using VAEs significantly 
outperformed the original input feature representation (gene expression levels) 
in the drug response prediction problem. Therefore, variational auto-encoders 
were shown to be effective in extracting a low-dimensional feature representation 
from unlabeled gene expression datasets and these learned features were found to 
capture important processes relevant to the prediction problem.

It is worth noting that detecting certain differentially expressed genes 
(DEGs) from RNA-seq results still faces challenges despite the quality control 
measures applied during sample preparation and data analysis. Data process-
ing methods can lead to a certain number of false-positives and false-negatives 
that affect the accuracy and sensitivity of DEGs analysis. The combination of 
machine learning techniques with RNA-seq has been shown to significantly 
improve the sensitivity of DEGs [18] and thus help increase the identification 
of DEGs that are missed by traditional RNA-seq techniques. The study by Wang 
et al. [19] used a differential network analysis, based on machine learning, to 
predict stress-responsive genes by learning the patterns of 32 expression charac-
teristics of known stress-related genes. For analysis using machine learning, the 
WEKA 3 data mining software was used for feature selection, classifier training, 
and evaluation. Three feature selection algorithms, correlation feature selection 
(CFS), information gain (InfoGain), and RELIEF [20], were used to identify 
features and five classifiers, logistic regression, random forest, LMT, classifica-
tion via regression, and random subspace, that exhibited better performance 
than other machine learning algorithms, were deployed to predict up- and 
down-regulated genes. With this approach, the authors were able to identify the 
top 23 most informative features.

2.3  Inferring protein-protein interaction and biological networks for knowledge 
discovery

In the context of this chapter, we only focus on protein-protein interaction 
(PPI) network, which is defined as a set of nodes (or vertices), representing 
proteins connected by undirected edges (or links), which are the interactions 
or relationships between them (either direct physical or functional interactions). 
A physical interaction is an interaction that involves physical contact between 
proteins, and on the other hand, functional interaction, which is broad, does 
not necessarily involve direct physical contact, but rather refers to a mechanism 
through which a protein participates in cell functions [21]. Several learning algo-
rithms have been used to infer human and human-pathogen PPIs [22], including 
ANN [23].

There exist several types of PPI networks based on the type of interactions and 
when integrated in a single network, the relationships between proteins in a unified 
network are referred to as functional interactions. Here, we only refer to functional 
interactions, which include physical and genetic interactions, and those inferred 
from knowledge about co-expression and shared evolutionary history or biological 
pathways. Other types of biological networks include signaling networks, gene 
regulatory or DNA-protein interaction networks [24, 25], disease-gene networks 
linking diseases to genes causing the disease, and drug interaction networks 
connecting drugs to their targets [26]. These biological networks have been used 
in several applications and analyzing individual, collective, and sub-network 
behaviors of these biological networks has enabled effective knowledge discovery at 
different levels of biology.
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2.4 Predicting gene-gene and gene-environment interactions

Generally, disease outcome involves multiple genes contributing in every 
stage of disease progression [27]. This suggests the influence of gene-gene and 
gene-environment interactions in the outcome of a disease. Genes interact in large 
networks and some genes in the network are more important or central than others. 
Understanding these interactions is necessary for setting optimal prevention and 
control mechanisms to contain the disease. There have been challenges in identify-
ing the distinctive nature of gene-gene and gene-environment interactions and 
their impact on disease risk, using traditional statistical methods. This has been due 
to the high dimensionality of the data, presence of epistasis and multiple polymor-
phisms leading to complex datasets for analysis. Machine learning methods such as 
SVM, ANN, and RF are used in addressing these challenges.

Neural networks use pattern recognition to address challenges in genomics. In 
the context of predicting gene-gene interaction, the neural network architecture 
depends on the type of interactions [28], shown in Figure 3. Genetic programming 
has been utilized to optimize the architecture of neural networks and back propaga-
tion for modeling gene-gene interactions as illustrated by Ritchie et al. [29]. Genetic 
programing neural nets (GPNN) were found to have more prediction power for 
models with heritability greater than 0.026 as compared to back propagation neural 
nets (BPNNs) which had only 80% power for models with greater than 0.051 herita-
bility. The GPNN also outperformed the BPNN when applied to models containing 
functional and nonfunctional SNPs. Complex nonlinear interactions with binary 
endpoints that have previously been analyzed by logistic regression and classification 
and regression trees (CARTs) can be examined by GPNN. Motsinger et al. [30] dem-
onstrated the use of grammatical evolution neural networks (GENNs) in detecting 
gene-gene and gene-environment interactions in high dimensional data with noise. 
GENN were found to be more vigorous with missing data and genotyping errors.

On the other hand, random forest (RF) algorithm is a flexible supervised 
machine learning algorithm that can be used for classification and regression. The 
RF algorithm is often able to produce good results even with missing values in the 
data and without need for hyper-parameter tuning. Therefore, RF algorithm can 
be well suited for high-dimensional genomic data analysis. This algorithm is also 
useful in reducing the search space of epistatic interactions, thereby creating a 
manageable set of possible combinations of genetic variants.

Finally, support vector machine (SVM) is a machine learning algorithm that uses 
hyper-planes for classification and regression tasks. The SVM approach has been 
applied to detecting gene-gene interactions through learning from the features of 
genetically interacting pairs. For training, SVM takes in two sets of feature vectors 

Figure 3. 
Categories of gene-gene interactions retrieved from Koo et al. [23].
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labeled as positive and negative, indicating presence and absence of genetic interac-
tion, respectively. Feature mapping is done by use of a hyper-plane with maximum 
margin to separate genetically interacting pairs and non-genetically interacting 
pairs. SVM and neural network modeling was used to investigate gene-gene inter-
actions in a study by Matchenko-Shimko and Dube [31]. They used pre-selection 
of SNP-SNP combination to determine the effects of interactions between genes. 
However, the pre-selection strategy did not work well with combinations of low 
disease allele frequencies and low margin effects. It was discovered that larger 
sample sizes are required for determining gene-gene interactions with SNPs having 
low marginal effect sizes as compared to interactions with moderate marginal gene 
effect sizes. Both SVM and ANN models exhibited good performance in increas-
ing allele frequency with low marginal gene effects [31]. SVM was used to identify 
the most promising SNPs and interactions. Shen et al. used it in two stages for 
determining gene-gene interactions where the second stage involves the applica-
tion of logistic regression analysis. It was shown that SVM is also useful in methods 
for case-control studies in which multiple logistic regression performs better than 
traditional logistic regression for each interaction. Additionally, application of the 
SVM in improving the accuracy of cancer classification, through extending the 
SVM pedigree-based generalized multifactor dimensionality, has been functional in 
detecting gene-gene and gene-covariate interactions in limited family samples [32]. 
Moreover, the SVM can also be used to extract known gene-disease associations 
and infer known genes for future experimental analysis using automatic literature 
mining based on dependency parsing and SVM [33].

In addition, the application of SVM in SUPPORTMIX [34], which is a local ances-
try inference method, facilitates gene-gene and gene-environment interactions. For 
instance, Aschard et al. [35] highlighted that local ancestry estimates might provide 
insights into detecting gene-gene interactions, while Florez et al. [36] showed that 
non-European ancestry in the Latino populations is associated with type 2 diabetes 
and lower economic status, illustrating gene-environment interaction. Local ances-
try inference estimates the proportion of alleles that originates from a particular 
population at every chromosomal site of an admixed individual. SUPPORTMIX 
integrates SVM with hidden Markov models (HMMs). Using SVM in SUPPORTMIX 
improves multi-way local ancestry inference overall, since it addresses the challenge 
of few genotyped or existing reference panels [1]. Furthermore, it facilitates both 
gene-gene and gene-environment interactions due to the improved computational 
time as a result of its flexibility and ability to handle “big data.”

2.5 Elucidating disease-causing genetic variants

The identification of disease-causing genetic variants is challenging because 
several of them are found in the non-coding regions of the genome. The role of 
non-coding regions in the maintenance of genome functions is not well understood. 
However, some machine learning algorithms have been designed to annotate coding 
and non-coding genetic variants in order to identify disease-causing mutations. 
Combined annotation-dependent depletion (CADD) is an algorithm designed to 
annotate coding and non-coding variants [37]. CADD trains a linear kernel sup-
port vector machine to separate observed genetic variants from simulated ones. 
However, due to the SVM’s inability to capture nonlinear relationships among 
features, a deep neural network that uses the same feature set and training data as 
CADD is preferred. Deep neural networks are better suited than SVMs for problems 
with large samples and features.

How genetic variants, especially those which are not within protein coding 
regions, affect RNA splicing is not entirely understood. This type of problem can 



Artificial Intelligence - Applications in Medicine and Biology

8

however be addressed by machine learning computational models designed to 
predict splicing during gene expression. Regulation of splicing is very important 
and faulty regulation could lead to several diseases, such as cancer and neurological 
disorders. A computational technique, that scores the magnitude of the effects of 
genetic variants on RNA splicing, was developed by Xiong et al. [38]. The compu-
tational model can be applied to any sequence with a triplet of exons and used to 
determine how splicing is altered by genetic variants. The model computes a score 
that predicts how much a given variant affects splicing.

Linkage and association analysis are types of neural network methods used to 
identify genes associated with diseases. Linkage analysis is used to detect the con-
nection between a disease locus and a marker and uses genotypes as inputs and 
the outputs are phenotype values such as disease status and quantitative clinical 
variables. Association analysis on the other hand is used for detecting the disequi-
librium between disease locus and marker. The data in association analysis are of 
case-control type with a sample comprised of genotypes for multiple markers. In 
most cases, it is useful to integrate genotype information into pathway analysis for 
more effective biological interpretation of these genotype contributions into the trait 
under consideration. In this case, random survival forest pathway hunting algorithm 
can be used to identify signaling pathways in a relatively small sample size [39].

Finally, considering the RF features, the RF algorithm can also be used in 
identifying a set of risk-associated SNPs from a large number of unassociated SNPs 
in models of complex diseases. There are unknown interactions among true risk-
associated SNPs or SNPs and the environment in large-scale genetic data and RF 
can be used to significantly reduce the number of SNPs in the data as pointed out 
previously.

2.6 Applying learning algorithms in clinical decision process

Setting appropriate diagnostic and effective therapeutic regimens is a critical 
clinical decision and essential for setting effective health measures and efficient 
strategies to control a disease. This process is limited by the lack of advanced diag-
nostic tools and approved therapy or vaccine against most existing and emerging 
diseases [40, 41]. Moreover, despite undeniable advances made in understanding 
of human biology, etiology, and pathogenesis of several diseases, and emergence of 
advanced technologies, the translation of the existing biological knowledge toward 
effective new treatments and clinical interventions has not been as fast as expected 
or anticipated. This highlights the need for powerful and general tools for orienting 
these clinical decision processes. Machine learning algorithms are contributing to 
satisfying this need with several advantages in representational power even though 
challenges in biological interpretation still hamper clinical applications [15].

As an initial illustration, Adabor and Acquaah-Mensah [42] introduced the 
median supplement model to appropriately balance a training set with unequal 
numbers of instances associated with each class or group to improve the clas-
sification decision. They also assessed different machine learning techniques in 
predicting the receptor expression status of breast cancer patients, namely pro-
gesterone receptor (PR) status and HER2 expression status using gene expression 
datasets. These receptors are essential in deciding on treatment and predicting the 
treatment outcome. In this chapter, we used results of their performance evalua-
tions to highlight two essential features common to most of the machine learning 
algorithms as shown in Figure 4: (1) as the size of the training set increases, the 
performance of the learning algorithm increases (see Sample Data 1 vs. Sample 
Data 2) and (2) learning algorithm on a balanced training set may perform better 
than on an unbalanced training set (see NB vs. MNB and RF vs. MRF).
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It is worth mentioning that machine learning algorithms have been used in 
several contexts with a common goal of improving healthcare measures and patient 
clinical management. For examples, deep learning algorithms are used to classify 
patients based on clinical healthcare records [43], to predict the effectiveness of 
clinical trials (i.e., likelihood of success or failure of clinical trials) [44], to improve 
and predict patient treatment response and outcome based on pharmaco-genomics 
data [45]. Moreover, Nemati et al. [14] optimized a treatment dosing policy for 
intensive care patients using deep reinforcement learning and Wang et al. [46] 
predicted drug-target binding site interactions using ANN with two hidden lay-
ers taking a drug and a target binding site as inputs. Finally, it is known that drug 
repositioning or re-purposing approach, which examines new therapeutic uses 
for approved drugs, represents an optimal model for suggesting new drugs using 
drug-target interactions [40, 41]. Wang and Zeng [47] used a learning technique 
based on restricted Boltzmann machines to predict novel drug-target interactions 
directing to drug re-purposing.

3. Integrative approaches for post-genomic analysis

Over the years, thousands of genetic associations have been discovered using 
genetic approach, known as genome-wide association studies (GWAS). GWAS 
approaches are mostly based on a single-marker association test model that lever-
ages thousands of genomes of cases and controls (sick and healthy individuals) in 
order to elucidate variants or single-nucleotide polymorphisms (SNPs) with unusual 
significant differences in frequency throughout genomes [48]. This indicates that 
GWAS approaches are based on machine learning techniques, which mostly take 
SNP profiles of cases and controls as inputs, and predict a SNP carrying disease risk. 
Note that these approaches have been successful [49] and several GWAS results have 
helped elucidating genetic determinants of susceptibility to several diseases, includ-
ing complex diseases, such as cancer, and monogenic diseases, such as sickle cell 

Figure 4. 
Performance of different machine learning techniques for predicting progesterone receptor (PR) status 
phenotype of breast cancer patients based on classification rate (proportion of correctly classified instances), 
information extracted from [42]. Sample Data 1 is a smaller-sized dataset as compared to sample data 2, 
containing 162 and 1146 instances of breast cancer patients, respectively. Learning techniques: support vector 
machine (SVM), logistic regression (logistic), Bayesian network (BN), Naive Bayes (NB), random trees (RT), 
random forest (RF), median-supplement Naive Bayes (MNB), and median-supplement random forest (MRF).
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disease. In fact, in case of the breast cancer disease, a genetic testing tool has been 
implemented [50] based on specific genetic variants in breast cancer type 1 (BRCA1) 
and 2 (BRCA2) susceptibility genes in chromosomes 17 (17q21.31) and 13 (13q13.1) 
[51], respectively. It is widely known that the outcome of a disease, in particular a 
complex disease, or a response to a drug is influenced by multiple genes and sig-
nificant contribution from the environment. This strongly argues that using only 
genomic analysis will not be sufficient to entirely embed phenotypic variation and 
heritability, suggesting that genomic analysis alone is not sufficient to elucidate the 
complex structure of the disease [52]. Thus, there is a significant need of integrating 
information derived from environmental studies and other heterogeneous datasets 
into genomic analysis to enhance the predictive power of genomic analysis.

As indicated above, even though genomic information is critical, it is not 
sufficient to completely elucidate disease outcome and progression, which involve 
gene-gene and gene-environment interactions. In this context, the post-genomic 
analysis may provide a new paradigm to genomic analysis and may enable further 
functional characterization of genetic susceptibility to a disease and correlate 
disease-associated (candidate) genes by combining association signals from 
genomic analysis and available knowledge, including functional, environmental, 
epidemiological, and clinical information. This integrative approach increases the 
likelihood of effectively identifying suitable candidate genes [53] and biological 
pathways that may be critical in the etiology and pathogenesis of the disease, and 
in the drug response. The next goal is to integrate large-scale datasets from het-
erogeneous sources [2, 54] to move beyond a single genomic approach and foster a 
whole genome-based integrative approach to achieve global view [55]. A biological 
network, which is a network modeling a biological system as an entity composed of 
sub-units connected as a whole, has become a useful tool enabling the integration of 
heterogeneous datasets into a single framework [26].

4. Challenges and perspectives

Currently, there is an exponential growth of several platforms producing 
large-scale datasets, including genomics, transcriptomics, proteomics, metabolo-
mics, microbial and epidemiological data. These high-dimensional datasets from 
heterogeneous sources create an opportunity of designing appropriate data-driven 
learning algorithms and models to ensure effective post-genomic medicine and 
biomedical research with an increased prediction power. While the use of these 
large-scale post-genomic datasets from heterogeneous sources, such as transcrip-
tomics, proteomics, metabolomics, microbial and epidemiological data, shows 
several potential advantages and opportunities, many challenges still exist in terms 
of computational models, learning algorithms, and biological interpretation of 
result outputs. Furthermore, as discussed previously, learning, reinforcement, and 
deep learning algorithms are quickly evolving with several potential applications 
in biology and medicine (see Section 2.6). Currently, predictions from different 
models are unable to contribute to clinical decision processes as the effectiveness 
of these models still poses problems in the absence of ground-truth, gold standard 
(benchmark) datasets, or experimental validation. This suggests that one of the 
future trend aspects of learning algorithms in biology and medicine will be to make 
possible the integration of predictive models generated by these learning algo-
rithms into dynamic clinical settings. This integration will necessitate that issues 
raised above are addressed systematically and will ensure an effective exploitation 
of the post-genomic datasets and potentially revolutionize the study of human 
disease and health.
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Machine intelligence and deep learning models present more powerful compu-
tational techniques that are able to effectively learn from large complex datasets 
in order to reveal several hidden interactions within cell variables and give more 
insight into the intricate processes linked to diseases [56]. On the other hand, 
despite the current undoubted data wealth, we still have a very limited understand-
ing of the mechanisms underlying the outcome, pathogenesis, and progress of 
many diseases, which is reflected in an existing gap between this data wealth and 
translation toward enhancing treatment and interventions for diseases, leading to 
the paradigm of “world with data wealth and information poor”. This is partly due 
to issues related to different existing datasets, including: (1) increased heterogeneity 
within a dataset as, in general, these datasets are collected across different locations, 
thus lacking a standardized representation of the data and (2) variation of cohorts 
in terms of size across populations and geographical locations. This highlights the 
need for designing adequate meta-analysis models to assist in retrieving useful 
information within each data source. This may also require more advanced machine 
learning techniques to play an important role in genomic medicine and advance our 
knowledge about disease and health.

5. Conclusions

Numerous large-scale platforms have been designed for producing differ-
ent types of high-dimensional datasets, including genomics, transcriptomics, 
proteomics, metabolomics, microbial and epidemiological data. This data deluge 
provides a rich source of information, which can advance our understanding of 
human and pathogenic organisms to enhance post-genomic medicine and biomedi-
cal research. In this chapter, we have provided some illustrations of machine learn-
ing algorithms for knowledge discovery in biological and health areas and discussed 
existing challenges. This discussion highlights the need for adequate meta-analysis-
based post-genomic models to optimally integrate diverse datasets from different 
sources. This clearly suggests that initial machine learning algorithms will need 
to be refined or new ones need to be developed to account for current data chal-
lenges in order to speed up the translation of the current and future knowledge into 
effective new treatment strategies and health measures, enabling efficient clinical 
disease management and ensuring effective post-genomic medicine.
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