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Abstract

Chloroplasts are highly organized cellular organelles after master organelle nucleus. They 
not only play a central role in photosynthesis but are also involved in several crucial cellu-
lar activities. Advancements in molecular biology and transgenic technology have further 
groomed importance of the organelle, and they are the most ideal ones for the expression 
of transgene. No doubt, limitations are there, but still research is advancing to resolve 
those. Certain valuable traits have been engineered for improved agronomic performance 
of crop plants. Industrial enzymes and therapeutic proteins have been expressed using 
plastid transformation system. Synthetic biology has been explored to play a key role 
in engineering metabolic pathways. Further, producing dsRNA in a plant’s chloroplast 
rather than in its cellular cytoplasm is more effective way to address desired traits. In this 
chapter, we highlight technological advancements in chloroplast biotechnology and its 
implication to develop biosafe engineered plants.

Keywords: chloroplast biotechnology, value-added crops, RNAi, trouble-rescue 
organelles, plastid functional genomics

1. Introduction

Food security is a long-lasting challenge for the growing world and is becoming more alarm-

ing in the developing countries where one out of every nine people is malnourished. So-called 

processing (polishing, milling, and pearling) of the cereals makes them even poorer in micronu-

trients [1]. Climate change is another challenge that poses continuous stress on the crop produc-

tivity. Sharply decreasing arable soils and use of heavy inputs to get high crop yield are further 

deteriorating our environment and quality of available food. All this demands availability of 

improved crop cultivars having ability to perform in the changing climate scenario and even 
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with balanced dose of micronutrients. Gene revolution is the only hope for second green revo-

lution to attain these ideal crop cultivars [2]. Since the commercialization of transgenic crops 

in 1994, the area under GM crops is sharply increasing and has now increased to 180 million 

hectares. This includes crops for improved agronomic traits (herbicide tolerance and insect 

resistance, salinity and drought tolerance, and efficient nutrient utilization), enhanced level 
of micronutrients, and for the expression of therapeutic proteins and industrially important 

enzymes. At the same time, emotional or obsolete arguments are there to oppose the use of GM 

(genetically modified) products. Opponents of GM crops have straightforwardly rejected genet-
ically modified products and have produced questionable scientific data to ban their commer-

cialization. Plastid biotechnology has emerged as a competent field of research having potential 
to address all of the questions raised by the opponents of GM crops [3]. This chapter highlights 

significance of plastid transgenic technology to develop valuable crop plants. Further, techno-

logical advancements have been discussed to get an update about the recent research to resolve 

existing bottlenecks in the development and commercialization of transplastomic plants.

2. Chloroplast biotechnology—an overview

Transgenic technology is the technology of the day to develop crop plants with desired traits 

but crucial traits need to be engineered through plastid genome instead of nuclear genome 

[4]. It is an amazing organelle where more than 120 genes from various sources have been 

integrated and expressed. This organellar genome has well been explored for a wide variety of 

applications including crops with elevated level of resistance against biotic (insects, bacterial, 

viral, and fungal diseases) and abiotic stresses (salinity, drought, and cold); phytoremediation 

of toxic metals, cytoplasmic male sterility [5]; and production of biopharmaceuticals, vaccine 

antigens, industrial enzymes, biomaterials, and biofuel [6]. Hyperexpression of recombinant 

protein in plant expression system is only possible through plastid transformation. The high 

ploidy number of the plastid genome results in higher level of protein expression, and up to 

70% total soluble protein is reported to be produced in tobacco [7]. Moreover, hyperexpres-

sion of therapeutic proteins and vaccine antigens in chloroplasts (leaves), leucoplasts (roots), 

or chromoplasts (fruits) makes it ideal organelle for the oral delivery of vaccine antigens 

against tetanus, cholera, anthrax, canine parvovirus, and plague [8]. Other salient advantages 
include possibility of multigene engineering, absence of gene silencing, position effect, epi-
genetic, complete absence of pleiotropic effects due to subcellular compartmentalization, and 
transgene containment due to maternal inheritance of plastids in most of the crops [9].

Plastid transformation was first established in unicellular green algae (Chlamydomonas rein-

hardtii) followed by model tobacco plant. It has now been well established in economically 

valuable crops (rice, brassica, cotton, carrot, spinach, lettuce, etc.) and even in woody plant like 
popular. Small circular plastid genome (plastome) facilitates targeted engineering, which has 

been exploited not only for basic research but also for the applied research [10]. Most of the 

genes present in plastome have been characterized through functional genomics. Organellar 
transcription and translation have been thoroughly elucidated to understand transcriptional 

and translational machinery of the plastids. Even the proteins involved in cross-talk between 

chloroplast and nucleus have been worked out. Further, plastid transformation is the most ideal 
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technology to develop marker-free transgenic plants where antibiotic resistance genes, used for 

the selection of putative transformants, are not acceptable by the ultimate consumer. Different 
techniques have been developed to produce marker-free plants in order to facilitate the accep-

tance of transplastomic crops. In spite of so many advantages of plastid transformation technol-

ogy, there are still difficulties impeding expansion of this technology to economically valuable 
crops particularly monocots. These include lack of species-specific regulatory sequences, ineffi-

cient selection system, metabolic burden in case of hyperexpression and unavailability of green 

plastids in monocots.

3. Making better crops through chloroplast engineering

It is predicted that sharply increasing population necessitates an increase in crop yield at 

30% per annum. In this scenario, chloroplast biotechnology is the most ideal approach to 

develop crop plants with improved photosynthetic performance, enhanced nutritional value, 

improved agronomic traits, and producing valuable fatty acids. Plastid transformation was 
first established in flowering plants almost 30 years ago. Though it has been extended to other 
crop plants, most of the studies have been conducted in tobacco, which is nonfood nonfeed 

crop. This demands further efforts by the scientific community to engineer plastid genome 
of valuable crop plants for desired traits, leading to increased quality and quantity of food.

Most of the efforts to increase crop productivity had been made to improve photosynthetic 
performance of the plants. RuBisCO (the core enzyme of photosynthesis), large subunit, is 
encoded by chloroplasts, whereas small subunit is encoded by nuclease, which is then imported 

to chloroplast. Efforts have been made to engineer RuBisCO large subunit, small subunit, or 
both. Lin [11] attempted to express complete RuBisCO protein in tobacco from Synechococcus 

elongatus by disrupting the host native enzyme. CO2 fixation rate and carboxylase activity of 
the RuBisCO were increased, especially at higher concentrations of CO

2
. Hence, photosyn-

thetic performance can be improved by introducing more competent complete photosynthetic 

system into a plant. Raising concentration of CO
2
 in plastids is another possibility strategy, 

to improve photosynthetic carbon fixation and crop productivity. Cyanobacterial bicarbon-

ate transporter was expressed in tobacco plastid genome, but any considerable improvement 

in photosynthetic performance was not observed. Expression of fructose-1,6-sedoheptulose-

1,7-bisphosphatase in lettuce and tobacco chloroplasts appeared to increase productivity of 
engineered plants. Likewise, chloroplast-encoded chlB gene from Pinus thunbergii was found 

to promote root growth and early chlorophyll pigment development in tobacco [12]. Hence, 

research is in progress to engineer C3 plants to C4 by manipulating RuBisCO large subunit 
and photorespiratory pathway for enhanced biomass production [13].

Insect resistant crops had successfully been grown in the field since 1994. Resistance develop-

ment against Bt crops is an emerging concern, which needs to be addressed through high-dose 

strategy and gene pyramiding. Another possibility to develop insect-resistant transplastomic 

plants is the upregulation of their pathogen defense mechanisms. Expression of β-glucosidase 

in tobacco plastome showed not only growth of the plants but also more resistance against 

insect pests [14]. A novel non-Bt-type insect resistance strategy has been evaluated by 
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expressing dsRNA, targeting an essential insect gene in transplastomic plants. Disruption of 

target gene by RNA interference resulted in 100% mortality in adult beetles and in the larvae 

within 5 days of feeding [15]. Expression of agglutinin gene (pta) in leaf chloroplasts resulted in 

broad spectrum resistance against lepidopteran insects, aphids, and viral and bacterial patho-

gens [16]. A gene stack comprising CeCPI (sporamin, taro cystatin) gene from sweet potato and 

chitinase from Paecilomyces javanicus was introduced into tobacco, and resultant plants showed 

resistance not only against various pests and diseases but also against salinity, osmotic stress, 

and oxidative stress [17]. Expression of osmoprotectant (yeast trehalose phosphate synthase) 

in tobacco plastids resulted in 20-fold higher trehalose accumulation; as a result, plants were 

tolerant to drought and osmotic stress [18]. The overexpression of mdar transgene in tobacco 

plastids and the fusion of such chloroplasts to Petunia cells were suggested to possibly protect 

the plants against oxidative stress. Oxidative stress tolerance was also enhanced in transpla-

stomic tobacco plants expressing flavodoxin (fld) from cyanobacteria. Transplastomic plants 
overexpressing panD not only appeared to produce 30–40% higher biomass but also appeared 

to be more tolerant to increased heat stress. Similarly, expression of arabitol dehydrogenase 

(ArDH) in tobacco chloroplasts enabled them to survive even at 400 mM NaCl [19]. Chilling tol-

erance as well as growth was observed to be increased in tropical forage Stylosanthes guianensis 

expressing chloroplast protein 12 [20]. Recently, plastid transformation has been reported in 

a valuable vegetable Momordica charantia [21], marine microalga Nannochloropsis oceanica [22], 

and Cyanidioschyzon merolae [23], a red alga having ability to survive in high sulfur acidic hot 

spring environments. This may open new horizons in understanding stress adaptability and 

role of transplastomic technology in developing stress-tolerant plants.

4. Chloroplasts as trouble-rescue organelles

Chloroplasts not only are the central hubs for photosynthesis but also have evolved as funda-

mental trouble-rescue organelles. Recent studies have revealed that chloroplasts play a key 

role in switching plants from vegetative mode to defense mode. In addition to intraorganellar 

functions, they also play crucial role in the regulation of extraorganellar processes such as 

plant stress response, apoptosis, and immunity. Both of the cellular organelles (chloroplast 

and mitochondria) evoke their own particular Ca2+ signals [24], have their own Ca2+ bind-

ing proteins, and Ca2+ sensors, which are expected to play a significant role in Ca2+ signaling 

within the plant cell [25]. As a result, they have capacity to sequester and serve as sink for 

Ca2+, which plays a key role in physiological and environmental responses of eukaryotic cells.

Chloroplasts are important intracellular calcium (Ca2+) stores and may accumulate up to 

15 mM or even higher. Most of the plastidic Ca2+ resides within the stroma or thylakoid 

membranes through interaction with calcium-binding proteins [26]. The concentration of free 

calcium was found to be very low when determined by targeting apoaequorin to the stroma 

of tobacco chloroplasts [27]. Hence, stroma is not the major sequester of Ca2+ in chloroplasts. 

This helped to elucidate that chloroplasts have their own active transporters on the envelope 

membranes, which help them to accumulate high concentrations of Ca2+ within the thylakoid 

membranes or some other unidentified Ca2+ stores. Identification of CAS (high capacity Ca2+-

binding protein) in the thylakoid membranes of Arabidopsis thaliana revealed out that active 

Transgenic Crops - Emerging Trends and Future Perspectives4



calcium uptake machinery is present on the membranes; so, the thylakoid membrane may be 

the major sequester of Ca2+ in chloroplasts [28]. It was further elucidated that activity of these 

transporters is regulated by light or photosynthesis, so chloroplasts take up calcium during 

the day and store it in the lumen or some identified sequestering sites. During the night, Ca2+ 

is released from the store houses for long-lasting, dark-induced Ca2+ signals; hence, sensing of 

photoperiod and light/dark transition seems to be regulated by Ca2+ signaling. In addition to 

light, Ca2+ signaling is also influenced by other abiotic stimuli (salinity, cold) and hence plays 
some crucial role in stress tolerance as well.

An active Ca2+ uptake machinery is present in chloroplast, which is regulated by transport-

ers. Much research has not been conducted on these transporters; as a result, only few are 

known, whereas others are still to be elucidated. Two potential membrane transporters 

(Ca2+-ATPase) in Arabidopsis are AtACA1 and AtHMA1. AtACA1 is an autoinhibited Ca2+ 

transporter, which is predicted to be targeted to the chloroplasts. It is specifically expressed 
in the root and is then localized to endoplasmic reticulum or tonoplast. AtHMA1 is a heavy 

metal P-type ATPase in the chloroplast envelope and plays an important role in calcium 

transportation [29]. Recently, another transporter AtGLR3.4 (glutamate receptor) has been 

explored to form Ca2+ permeable nonselective cation channels and is localized in the chlo-

roplasts [30]. In addition, two MscS homologs, localized in the chloroplast, have also been 

evaluated to be essential for plastidic osmoregulation [31]. Since these transporters play a 

key role in the sequestration of calcium ions into the thylakoid lumen, Ca2+/H+ antiporter also 

plays a significant role in Ca2+ uptake via thylakoid proton gradient. Pea thylakoid protein 

(PPF1) is another candidate calcium transporter at thylakoid membrane, which has been 

found to enhance Ca2+ currents when tested in human cultured cells. These findings dem-

onstrate that Ca2+-binding protein and Ca2+ transporters play a significant role in immune 
signal transduction pathway. Anyhow, most of the genes involved in these pathways are 

still to be elucidated.

5. Advances in plastid functional genomics

Plastids are known to get evolved from primitive cyanobacteria through a process known as 

endosymbiosis [32]. Although plastid genomes are much smaller as compared to their cyano-

bacterial progenitors, similarities in gene sequence as well as genome topology are evident. 

Just like cyanobacterial genome, plastid genomes are tightly packed with genes as a circu-

lar molecule [33]. In vivo genes of plastid may be present as a linear molecule or a complex 

branched form, and many copies of plastid genome can be harbor in each organelle. Size of 

plastid genomes varies from <100 to >1000 kbp (kilobase pair). The region of small single 

copy (SSC) and large single copy (LSC) are separated by two inverted repeats (IRs) present 

in the plastid genome (Figure 1). The thymine and adenine residues are often rich in plastid 

genome; a reductive evolution is also seen in those of mitochondrial genomes and bacte-

rial endosymbionts [34]. Noncoding DNAs are abundantly present in some plastid genomes, 

while the others have self-splicing introns. The genome of some dinoflagellates spreads across 
a sea of minicircles; recently, multiple linear chromosomes formed a hairpin structure, which 

have been found in the plastid genome of certain green algae [35].
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A huge portion of the cyanobacterium derivative genes required for plastid function now 

exist in the nucleus, having transferred through a process known as endosymbiotic gene 

transfer (EGT). Subsequently, most of the plastome proteins are introduced posttransla-

tionally. Nevertheless, genomes of plastid normally encode some of their own processing 

machinery, including ribosomal proteins, ribosomal RNAs, bacterial RNAs polymerase, 

and tRNAs—however, land plants also have nuclear-encoded plastid RNA polymerases. 

Remarkably, genome of plastid also encodes many photosynthesis components, such as pro-

teins of photosystem I and II (e.g., psbA gene of photosystem II coding for the D1 unit) as well 

as cytochrome b6f, which facilitates electron transfer between both photosystems I and II [36].

6. Role of synthetic biology in engineering plastid metabolic 

pathways

During past two decades, the synthetic biology approach has brought about several remark-

able accomplishments regarding engineering of biological systems particularly microbes and 

yeast. However, such promising attributes of synthetic biology have not been explored for 

Figure 1. Circular map of chloroplast genome showing one large single copy (LSC), one small single copy (SSC), and 

two inverted repeats (IRa and IRb).
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plastid genome engineering except few striking instances [37]. The future of the recombinant 

DNA technology is linked with advancement and implications of synthetic biology because 

development of novel biological systems is dependent on this area of research. Like tradi-

tional disciplines of engineering, synthetic biologists also use abstraction, standardization, 

and decoupling to design more efficient biological systems [38]. So, to design an organism of 

choice synthetic biology is of fundamental importance. Unique advantages of plastid trans-

formation technology regarding metabolic pathway engineering make it more important than 

nuclear transformation technology. Hence, coalescing synthetic biology with plastid genome 

engineering can be more fruitful and valuable for the production of economical recombi-

nant proteins [39]. However, understanding plastid genomics is equally important in order 

to harvest potential benefits of synthetic biology. The anterograde and retrograde signaling 
(nucleus to plastid and vice versa) of plastid proteins revealed that most of the protein com-

plexes were chimeric and contained both plastid encode subunits as well as nucleus encoded 

subunits. Further, nucleus encoded proteins follow eukaryotic mode of expression, whereas 

plastid encoded proteins follow prokaryotic mode of expression, though plastid genome is 

quite smaller in size than nuclear genome (less than 10%) [40]. Since efforts have been made 
to develop  synthetic plastid genome of minimum size for efficient transplantation into a cell 
without plastids or to replace native plastid genome with engineered operons coding for valu-

able proteins. This requires information about the most essential genes involved in the stabil-

ity and integrity of the plastome. Owing to high cost of synthetic DNA, initially it was used 
only for the optimization of codon usage of transgene, but now it is affordable to synthesize 
complete vector or genome. This not only avoids intensive cloning work but also facilitates 

synthesis of multiple genes with desired regulatory sequences. Use of synthetic expression 

elements has helped to get appropriate expression of transgene in nongreen plastids includ-

ing tubers and fruits [41]. Chloroplast being metabolic center of the cell is the most attractive 
organelle whose metabolic pathways need to be engineered. Further, it has ability to stack 

multiple synthetic operons. Major limitation in this context is size of the transgene as engineer-

ing metabolic pathways require engineering of the multiple genes involved in that particular 

pathway [42–43]. The identification of intercistronic expression elements (minimum sequence 
elements involved in the proper processing of polycistronic transcript into monocistronic) has 

helped to devise workable synthetic operons for the expression of multiple proteins involved 

in the biosynthesis of vitamin E [44], artemisinic acid [45], carotenoids [46], and dhurrin [47] 

or other metabolic pathways [48]. Likewise, synthetic operons can be helpful for the transfor-

mation of C3 photosynthetic pathway into C4, engineering of nitrogen fixation pathway, or 
molecular farming for the production of industrial enzymes and therapeutics [49].

7. Regulation of RNA editing in chloroplasts

An important process of gene regulation is RNA editing. This occurs at posttranscriptional 
level through nucleotide modification for many functional genes. RNA editing restores the 
conserved amino acid residues for functional proteins in plants. Changes in RNA sequence 

of functional gene occurs during RNA editing, through the molecular mechanisms [50]. 
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Cytidine-to-uridine editing and adenosine-to-inosine editing are two types of RNA edit-

ing identified in Arabidopsis thaliana [51]. RNA editing is a rare process where RNA poly-

merase is involved in insertion, deletion, and base substitution of nucleotide within the 

transcript [52–55]. Many studies reported the evidence of RNA editing in tRNA, rRNA, and 

mRNA. However, RNA editing has also been reported in noncoding RNA, like microRNAs 

of eukaryotes. The RNA editing occurs in all DNA-containing organelles like nucleus, mito-

chondria, and plastids. In nucleus, chloroplast and mitochondria RNA editing occurs during 

the process of transcription and posttranscriptional modifications [56, 57]. Caseinolytic pro-

tease complex component (CLPC1) plays a crucial role in RNA homeostasis [58]. Anyhow, 

discrete changes in RNA before its translation into protein occur by RNA editing. Besides this, 

RNA editing is also a vibrant mechanism to produce functional and molecular diversity [59].

In chloroplast gene expression system, RNA editing is an important posttranscriptional modi-
fication. The use of pentatricopeptide repeat (PPR) protein family for RNA editing in chloro-

plast has been reported [51]. Mostly genes in chloroplast are cotranscribed and arranged in 

clusters. To control gene expression, posttranscriptional RNA editing is an essential step, and 
this step is also required for gene function [52]. It has been studied that C-to-U editing is the 

major type of RNA editing in chloroplasts. In chloroplast, etioplast, and amyloplast of maize, 
expression of almost 15 different genes has been affected by 27 C-to-U RNA editing sites. In 
chloroplast, RNA editing plays an important role to correct harmful mutations instead of pro-

ducing protein diversity. Genomic DNA sequence is not changed by C-to-U editing because 

this editing changes the nucleotide sequence only within RNA molecule. RNA polymerase 

is used to produce RNA editing [60]. Insertion, deletion, and base substitution are events of 

RNA editing. That is why RNA editing can reverse harmful genomic mutations in consistent 

RNA transcript. In chloroplast, different sites are edited by C-to-U RNA editing enzymes as 
well [61]. Around 126 C-to-U editing events and 11 U-to-C editing events were identified in 
the chloroplast DNA of moth orchid (P. aphrodite subsp. Formosana). In leaf tissues, 110 edit-

ing events and in floral tissue, 106 editing events were identified. In non-protein-coding RNA 
such as introns, tRNA, and regulatory sequences, RNA editing occurred [62]. Besides C-to-U 

editing, which is mostly reported in chloroplast of plants, adenosine-to-inosine editing in 

plastid tRNA of Arabidopsis thaliana has also been characterized. Adenosine-to-inosine editing 

was recognized in the anticodon of the plastid tRNA-Arg (ACG). AtTadA gene expression is 

involved in adenosine-to-inosine editing in the chloroplast [51].

8. Conclusions and future directions

Chloroplasts are the most important solar-energy-capturing natural systems on earth. They not 

only capture it but also convert it into a form useful for all living organism on earth. Molecular 

oxygen is liberated as a by-product, which is a vital source for respiration of all aerobic organisms. 

Chloroplasts are believed to be evolved from prokaryotic ancestors through a process known as 

endosymbiosis. Chloroplast contains circular genome having compactly arranged genes, which 

are involved in not only photosynthesis but also many other vital biological processes. Keeping 

in view its utmost physiological importance, plant as well as algal plastome has been engineered 

for a number of agronomic as well as pharmaceutical traits [63, 64]. Advancements in molecular 
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biology and transgenic technology have further groomed importance of the organelle, and they 

are the most ideal ones for the expression of transgene. Resolving current limitations including 

vector design, gene regulation control and DNA delivery may further improve this important 

field of biotechnology [65]. Synthetic biology is being explored in this regard, which is expected 

to play a major role in enhancing contribution of chloroplasts not only for sustainable food 
production but also for other important molecules in future.
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