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Abstract

Recently, the marine habitat has been under pollution threat, which impacts 
many human activities as well as human life. Increasing concerns about pollution 
levels in the oceans and coastal regions have led to multiple approaches for measur-
ing and mitigating marine pollution, in order to achieve sustainable marine water 
quality. Satellite remote sensing, covering large and remote areas, is considered 
useful for detecting and monitoring marine pollution. Recent developments in 
sensor technologies have transformed remote sensing into an effective means of 
monitoring marine areas. Different remote sensing platforms and sensors have their 
own capabilities for mapping and monitoring water pollution of different types, 
characteristics, and concentrations. This chapter will discuss and elaborate the 
merits and limitations of these remote sensing techniques for mapping oil pollut-
ants, suspended solid concentrations, algal blooms, and floating plastic waste in 
marine waters.

Keywords: remote sensing, water pollution detection and monitoring, optical 
sensors, oil spill, algal blooms, chlorophyll-a, suspended sediment concentration, 
marine plastic litter

1. Introduction

The oceans act as a natural sink for carbon dioxide and other greenhouse gases. 
However, anthropogenic activities have severely polluted the marine environment 
in the past few decades. Pollutants including plastic, oil, toxic chemicals, radioactive 
waste, and domestic and industrial sewage can be found in marine waters. Marine 
pollution is also caused by the discharge of sewage into rivers and excessive nutri-
ents entering marine waters from agricultural fertilizers and pesticides [1]. These 
pollutants have adverse impacts on marine ecosystem including but not limited 
to sensitive coral reefs, mangroves, and aquaculture [2]. Therefore, in addition to 
reducing pollutant flow into oceans, it is essential to map and monitor marine pol-
lutants to ensure a sustainable marine ecosystem.

Scientists and researchers have been working on detailed ocean monitoring 
for a sustainable blue economy. A variety of sensing systems are now available 
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for ocean monitoring including autonomous underwater vehicles (AUVs), 
profiling floats, gliders, drifters, volunteer measurements from ships, and 
sensing nodes with cable networks [3]. These approaches to marine monitoring 
usually measure temperature, conductivity, pH, salinity, dissolved oxygen, 
fluorescence due to chlorophyll, turbidity, and color dissolved organic matter 
(CDOM). The most common approach for marine pollution measurements is to 
use conventional method of collecting in situ water samples using boats/ships 
from different depths of water with water samplers. The water samples are 
analyzed in the laboratory to determine the physical and chemical properties 
of the water. Such methods are accurate but time-consuming and geographi-
cally constrained and require trained professionals and laboratory analysis. 
However, real-time or near real-time measurements of marine pollutants and 
toxins across a range of spatial scales are necessary for monitoring and manag-
ing the environmental impacts and understanding the processes governing 
their spatial distribution [3].

To overcome these problems, remote sensing technology provides spatially 
synoptic and near real-time measurements that can be effectively used to detect, 
map, and track many pollutants such as oil and chemical spills, algal blooms, and 
high suspended solid concentrations. Aerial and satellite remote sensing has been 
demonstrated as an effective tool in detecting and mapping pollutant spills and for 
providing useful input data for oil spill models, to track pollutants through space 
and time [4–6]. An added advantage of remote sensing is that it provides informa-
tion from remote areas. However, existing remote sensing technology still has some 
limitations, such as estimating pollutants over the vertical dimension of the water 
column.

The initial premise of watercolor remote sensing was to determine optical water 
quality variables such as chlorophyll-a (Chl-a) concentration, diffuse attenuation 
coefficient, and water-leaving radiance spectra [7]. The optical properties of water 
depend on many factors, e.g., suspended organic and inorganic particles and dis-
solved substances. There have been many successful applications of using remote 
sensing sensors for water color monitoring. The coastal zone color scanner (CZCS), 
having a spatial resolution of 825 m for six spectral bands from 443 to 750 nm, was 
the earliest satellite sensor designed and launched in 1978 specially to study ocean 
color. The sea-viewing wide field-of-view sensor (SeaWiFS) was the successor 
to CZCS with a spatial resolution of 1.1 km for eight spectral bands from 402 to 
885 nm. Currently, many satellite sensors provide ocean color data for marine moni-
toring such as the moderate resolution imaging spectroradiometer (MODIS), the 
geostationary ocean color imager (GOCI), the visible infrared imager radiometer 
suite (VIIRS), the ocean and land color imager (OLCI), the Landsat operational 
land imager (OLI), and the Sentinel-2 multispectral instrument (MSI), all of which 
have suitable spectral and spatial resolutions capable of detecting marine pollutants 
and other water quality parameters (Table 2).

In order to track marine pollutants, prior understanding of marine dynamics 
is important, such as ocean current direction and magnitude, direction and speed 
of surface winds, sea surface temperature (SST), and sea surface salinity (SSS). 
Remote sensing now provides multiple satellite and airborne sensors to acquire 
information about marine dynamics over the vast marine regions. Apart from opti-
cal data, scanning radiometers and microwave sounders measure SST data, altim-
eters collect wave height data, and synthetic aperture radar (SAR) can measure the 
sea surface roughness patterns from which information on sea surface winds can be 
derived [31]. These datasets are of critical importance for detection and tracking of 
pollutants.
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2. Remote sensing of water monitoring

Remote sensors capture the response of the electromagnetic interaction with 
water (Figure 1). Absorption and scattering are inherent optical properties (IOP) 
of water; and variations in IOP change the reflectance of water which is captured 
by a remote sensing sensor, and this is known as the apparent optical properties 
(AOP) of water (Figure 2). Reflection, absorption, and transmittance of electro-
magnetic radiation are highly dependent on the concentrations, types, and presence 
of substances in water. Total absorption is the sum of absorption by phytoplankton 
(microalgae), non-algal pigments (NAP), color dissolved organic matter (CDOM), 
and absorption by water, whereas light scattering by water is mainly controlled 
by suspended sediments (SS) present in water. Hence, ocean color represents the 
responses in , green, and red region, and data can be used to estimate the concen-
trations of water constituents [7].

Generally, clear water has low reflectance in the visible spectrum and has 
no reflection in near infrared (NIR) region, as it is absorbed by clear water. 
However, high reflectance measurements in red (600–700 nm) and NIR region 
(750–1400 nm) show a strong correlation with SS concentrations. A high con-
centration of suspended sediments blocks the transmittance to and from lower 
depths and therefore increases reflectance from the water surface. Similarly, high 
concentrations of chlorophyll (a photosynthetic pigment in phytoplankton and 
macroalgae) in water cause high reflectance in the green region (500–600 nm) 
and high absorption in the blue and red regions due to photosynthetic activity 
(Figure 2).

A portion of absorbed incident energy by the earth’s features is also re-emitted 
in the thermal infrared region of the electromagnetic spectrum. Many satellite 
sensors such as MODIS, VIIRS, the advanced very high-resolution radiometer 
(AVHRR), and the sea and land surface temperature radiometer (SLSTR) measure 
the emitted thermal energy to determine sea surface temperature (SST). SST is an 
important parameter for understanding ocean water circulation. In case of large oil 
spills, these data can be effective for pinpointing the oil spilled areas, as they appear 
cooler than water surface due to their lower emissivity [31].

Figure 1. 
Interaction of light with the water surface. a is absorption (aph, absorption by phytoplankton; anap, absorption 
by non-algal pigments; aCDOM, absorption by color dissolved organic matter; and aw, absorption by water), b 
is backscattering (bb, backward scattering; bf, forward scattering), Rrs is remote sensing reflectance recorded by 
sensor, Ed is downwelling irradiance, Lu is upwelling radiance, and Lw is water-leaving radiance [32].
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Fluorescence is another type of energy emitted by a substance when it comes to 
a lower energy level from a higher energy level. The emitted energy is in a longer 
wavelength than the excitation wavelength. Algae absorb visible light for the 
photosynthesis process and emit excessive energy in the form of fluorescence signal 
(681 nm, the fluorescence band) when chlorophyll molecule comes to the non-
excitation state during the photosynthesis process. The fluorescence can be detected 
by optical sensors with fine spectral resolution in the far-red and NIR and has a 
potential source for monitoring changes in the photosynthesis process in plants. 
Furthermore, in laser fluorometry, laser light is used to excite molecules [33]. This 
technique is common to detect oil and chemical spills [31].

2.1 Remote sensing platforms and sensors for water monitoring

There are now several remote sensing platforms for monitoring water pollutants, 
and they can be categorized into two types: airborne and spaceborne.

2.1.1 Airborne sensors

An aircraft flies at relatively low altitudes (a few hundred meters to a few 
kilometers above the surface); therefore, the acquired data always have higher levels 
of detail. Airborne data are particularly useful for real-time monitoring of oil and 
chemical spills. Four common airborne sensors used for spill surveillance [34] are 
listed below:

i. Infrared/ultraviolet line scan (IR/UVLS)

ii. Side-looking airborne radar (SLAR)

iii. Microwave radiometer (MWR)

iv. Laser fluorosensor (LF)

Figure 2. 
Reflectance (Rrs) by clear water (blue), water with chlorophyll content (green), water with CDOM (black), 
and sedimented water (orange) [32].
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Airborne hyperspectral sensors with fine spatial resolution are able to cap-
ture detailed spectral variations. Therefore, they help to select the appropriate 
spectral region to study a specific water quality parameter, design satellite sen-
sors, and improve already developed algorithms. Some airborne hyperspectral 
sensors particularly useful for studying coastal/river water quality are described 
in Table 1.

2.1.2 Spaceborne sensors

Spaceborne sensors can cover extensive and remote areas for water quality 
monitoring. Optical spaceborne sensors used for marine monitoring are mostly in 
sun-synchronous orbit; only GOCI, designed specifically for marine monitoring, is 
placed in geostationary orbit. The spatial coverage of these sensors ranges from tens 
to hundreds of kilometers, and the temporal frequency is from hourly to weekly 
monitoring.

Many algorithms have been developed to retrieve water quality information such 
as primary productivity, Chl-a variability, SS, total suspended solids (TSS), turbid-
ity, total nitrogen, total phosphorus, CDOM, and SST. Table 2 shows the satellite 
sensors most used for the study of water quality parameters related to marine pol-
lution. The major application areas of active spaceborne sensors include, but are not 
limited to, sea surface currents, oil spills, biogenic films (algal blooms), and river 
plumes (Table 5).

Sensor Manufacturer Number 

of bands

Spectral 

range 

(nm)

Spatial 

resolution 

(m)

Studied parameter

Airborne visible 

infrared imaging 

spectrometer 

(AVIRIS)

NASA Jet 

Propulsion 

Lab

224 400–

2500

17 Bottom albedo, 

water absorption, 

backscattering 

coefficients [35], 

Chl-a, CDOM, TSS 

[36]

HyMap Earth Search 

Sciences Inc.

128 400–

2500

3–10 Heavy metals [37]

Portable 

remote imaging 

spectrometer 

(PRISM)

NASA Jet 

Propulsion 

Lab

— 350–

1050, 

SWIR 

band 

(1240 

and 

1640)

0.3 Sediment, CDOM, 

chlorophyll 

fluorescence [38] 

turbidity, Chl-a, 

dissolved organic 

carbon [39]

Airborne prism 

experiment 

(APEX)

VITO 

(Belgium)

313 VIS and 

NIR 

(380–

970), 

SWIR 

(970–

2500)

2–5 Chlorophyll 

fluorescence, SS 

[40]

Table 1. 
Hyperspectral airborne sensors used in water quality assessment.



Monitoring of Marine Pollution

6

Satellite sensor Launch date Spectral bands 

(nm)

Spatial 

resolution 

(m)

Swath 

width 

(km)

Marine 

parameter 

accessed

Satellite sensors with moderate spatial resolution

Landsats 4 and 

5 TM

1 March 

1984

5 (450–1750), 1 

(2080–2350), and 1 

(1040–1250)

30–120 185 Chl-a, SS, Secchi 

depth [8]

Landsat 7 

ETM+

15 April 

1999

6 (450–1750), 1 

Pan (520–900), 1 

(2090–2350), and 1 

(1040–1250)

15–30–60 183 Chl-a, SS, Secchi 

depth, turbidity 

[9]

Terra Aster 18 December 

1999

3 (520–860), 6 

(1600–2430), and 5 

TIR (8125–11,650)

15–30–90 60 Chl-a [10]

EO-1

ALI

November 

2000

(443–2350) 30 Turbidity [11], 

SS [12]

EO-1 Hyperion 1 November 

2000

242 (350–2570) 30 7.5 Chl-a, SS, CDOM 

[13, 14]

PROBA CHRIS 22 October 

2001

19 (400–105) 18–36 14 Chl-a, 

phycocyanin 

[15] behenic 

macroalgae [16]

HICO 10 

September 

2009

128 (350–1080) 100 45–50 Chl-a, turbidity, 

CDOM [17], SS 

[18]

Landsat 8 OLI/

TIRS

11 February 

2013

1 cirrus cloud 

detection (1360–

1380), 5 (430–880), 

1 Pan (500–680), 2 

(1570–2290), 2 TIRS 

(10,600–12,510)

15–30–100 170 Chl-a, SS, 

turbidity, TN, TP 

[19]

Sentinel-2 MSI 23 June 2015 8 (490–865), 1(443) 

coastal aerosol, and 

3 (1375–2190)

10–20–60 290 Chl-a, CDOM, 

DOC [20], SS [21]

Satellite sensors for regional coverage

Orb View 2 

SeaWiFS

1 August 

1997

8 (402–885) 1130 2806 Chl-a [22]

Terra, Aqua 

MODIS

18 December 

1999

2 (620–876), 5 

(459–2155), 29 

(405–877), and 

thermal

250–500–

100

2330 Chl-a, CDOM SS 

[23], turbidity 

[24], TP [25]

ENVISAT-1 

MERIS

1 March 

2002

15 (390–1040) 300–1200 1150 Chl-a, SS [26, 27]

GOCI 26 June 2010 8 (412–865) 500 2500 Chl-a, SS, 

turbidity [28]

Suomi NPP 

VIIRS

28 October 

2011

5 bands (640–1145), 

16 bands 

(412–12,013), DNB 

(500–900)

375–750 3060 Chl-a [29]

Sentinel-3 

OLCI

16 February 

2016

21 (400–1020) 300 1270 Chl-a, SS, CDOM, 

and Secchi depth 

[30]

Table 2. 
Satellite sensors mostly used to retrieve marine water quality parameters.
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3. Remote sensing for marine monitoring

3.1 Chlorophyll (Chl-a) and algal blooms

Most algal species are nontoxic and are always present in coastal and open 
oceans. Planktons are the base of the marine food chain [22]. But, algae do not have 
to produce toxins to be harmful to the environment. The accelerated growth of 
algae produces a large amount of biomass which blocks sunlight and produces an 
anoxic or hypoxic condition (dissolved oxygen is depleted from the water column), 
which is hazardous to marine life. Algal blooms also affect coastal operations such 
as movement of ships, coastal tourism, and coastal sports (Figure 3). Algal blooms 
can persist from a few days to more than a month and spatially they may extend 
from a few meters to tens of kilometers.

The impact of algal blooms on marine life depends largely on the algal species 
involved. In situ field data collected using vessels are important for determining the 
algal species and level of toxicity during the bloom. However, field data are always lim-
ited for estimating the spatial extent as well as the dispersion. Detection of algal bloom 
by estimating the Chl-a concentrations using satellite imagery has been well-researched, 
as remote sensing has been used to observe ocean primary productivity since the launch 
of CZCS in 1978. High spatial and temporal resolutions are the main requirements of 
remote sensing data to study the variability in ocean and coastal Chl-a. By comparing a 
time series of satellite images, researchers can evaluate the spatial and temporal varia-
tions in Chl-a concentration during the bloom. This can also help to understand the 
dynamics of blooms. However, there are still certain conditions for using optical remote 
sensing to detect Chl-a, including (i) no or low cloud cover, (ii) the bloom should be 
near to the surface, and (iii) the bloom must cause the coloration of the water.

Optical remote sensing can observe the coloration of water due to algal pig-
ments. In the open ocean, the color of water is mainly determined by phytoplank-
ton; hence, it is relatively simple to develop algorithms using a bio-optical approach 
and remote sensing reflectance [22]. In the open ocean, Chl-a can be retrieved 
from the ratio of blue and green wavelengths as Chl-a absorption is sensitive to 
blue wavelength and reflectance peak occurs in the green wavelength region [22]. 
However, in coastal waters, the color of water also depends on organic matter 
such as NAP, CDOM, and inorganic solids, and consequently it is more complex 
to determine accurate Chl-a concentrations in coastal/turbid waters. Researchers 
have demonstrated that waters with increased Chl-a concentrations show a lower 

Figure 3. 
Spread of green algae along the coast of Qingdao in 2008, when summer Olympics was planned in this coast 
(source: Corey Sheran/Flickr) (right) and algae visible in MODIS false color image (shortwave, NIR, and Red) 
(source: MODIS rapid response project at NASA/GSFC) (left).
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spectral response at short wavelengths especially in the blue wavelength regions 
[41]. This is due to increased absorption of red and blue wavelengths during 
photosynthetic process. Figure 4 shows the reflectance of water with increasing 
Chl-a concentrations. Thus, in coastal waters, the red/NIR ratio is more effective for 
retrieval of Chl-a due to the presence of suspended solids and the increased spectral 
response of Chl-a pigments at longer wavelengths [43].

Narrow spectral bandwidth is a necessity for accurate retrieval of Chl-a concentra-
tions [7]. The height of the spectral peak between 700 and 710 nm is used as a proxy 
for phytoplankton biomass [44]. Many researchers have used broad wavelength data 
(i.e., Landsat, HJ-1A/1B) as input to regression and neural network approaches for 
estimating Chl-a, achieving reasonable accuracy (70–90%) [9, 19, 45, 46].  
Table 3 shows some studies and datasets used to study Chl-a in marine regions. Lim 
and Choi [19] found that green and NIR bands of OLI are highly correlated with 
Chl-a (R = 0.71) in Korean waters. Nazeer and Nichol [46] also used the red/blue 
ratio to retrieve Chl-a with high accuracy (R = 0.85). Gurlin et al. [43] calibrated 
three models for Chl-a concentrations from 0 to 100 mg m−3 using two bands (red 
and NIR) of MERIS and MODIS reflectance data. They found that a simple two-band 
model achieved a higher accuracy than a complex three-band model. Moses et al. [51] 
also calibrated a red-NIR algorithm for high Chl-a concentrations in productive turbid 
waters. Figure 5 shows Chl-a concentrations in highly turbid Pearl River Estuary and 
connecting rivers, derived using high-resolution MSI data with the method of Moses 
et al. [51].

Recently, machine learning approaches taking advantages of reflectance in 
all bands have also been applied using Landsat [45, 52] and GOCI data [28]. Our 
work also shows the potential use of Landsat TM, ETM+, and OLI with a machine 
learning approach to estimate Chl-a in coastal waters (Figure 6). We have evalu-
ated three machine learning models to estimate Chl-a in the coastal waters of Hong 
Kong, of which artificial neural networks (ANN) performed best resulting in 
higher R (0.91) and lower RMSE (1.4 μg/L) than models based on support vector 
regression (SVR) and random forest (RF) algorithms. Chlorophyll indices such as 
the cyanobacteria index [53], maximum chlorophyll Index [54], and maximum 
peak height algorithm [55] have been demonstrated the robustness for detecting 
algal blooms and surface scum in coastal waters. Lunetta et al. [56] described the 
potential of using cyanobacteria index to measure cyanobacteria cell counts in 
bloom situations using MERIS data. Nazeer et al. [57] used board waveband band 
data (Landsat TM, ETM+, and HJ-1A/1B CCD) along with meteorological data 
as inputs to an artificial neural network model to map phytoplankton cell counts 

Figure 4. 
Changing spectral response of water with different levels of chlorophyll concentration [42].
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during a bloom in the complex coastal waters of Hong Kong and validated the 
model in two lakes in the United States and Japan.

Synthetic aperture radar (SAR) data can also be used to detect large algal blooms 
in cloudy weather as algal blooms may appear as an area of low backscatter com-
pared to surrounding water surfaces [50].

Band combination Sensor Reference

All bands (neural network and other machine learning methods) GOCI [28]

TM, SAR [45]

Multiple bands and their ratios (multiple regression) OLI band (2–5) [19]

OLCI [30]

TM [8]

HICO [17]

Blue (400–500 nm) and green (500–600 nm) ratio In situ [22]

Blue (400–500 nm) and red (600–700 nm) ratio TM, ETM+, HJ-1A/1B 

CCD

[9, 46]

Green (500–600 nm) and red (600–700 nm) ratio TM [47]

In situ (0.70/0.56 μm) [44]

Red (600–700 nm) and NIR (700 μm–900 μm) ratio MERIS, MODIS [43]

HICO [48]

Using a single band Green (500–600 nm) Daedalus Airborne 

Thematic Mapper

[49]

Red (600–700 nm) AVHRR [50]

Table 3. 
Methods used to retrieve Chl-a using remote sensing data in the river and marine waters.

Figure 5. 
Chl-a concentration observed in the Pearl River Estuary and its connecting rivers on 31 December 2017.
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3.2 Turbidity, total suspended sediments, and stormwater runoff plumes

Turbidity is an optical property of water and is highly influenced by concentra-
tions of suspended and dissolved organic and inorganic materials in water, includ-
ing Chl-a, SS, and CDOM. SS is mainly responsible for the light scattering, whereas 
CDOM and Chl-a control the light absorption properties of water [58].

Turbidity and TSS are two important variables of marine systems studies 
because of their direct linkages with photosynthetically available radiation, which 
affects the growth of plankton and other algae [41]. Turbidity has also been used 
to measure fluvial SS concentrations in rivers and river plumes [59]. These fluvial 
SS loads are rich in nutrients and considered a cause of eutrophication. So, it is 
vital to have time series records of suspended sediment concentrations for better 
understanding of land-ocean interactions. High SS loads negatively affect aqua-
culture [59] and are hazardous to benthic invertebrates [60]. These parameters are 
also associated with the diffuse attenuation coefficient (penetration of light, in the 
blue-green region of the spectrum, through water column) and Secchi disk depth (a 
measure of water transparency) [41]. For all these reasons, turbidity and TSS con-
centrations are considered to be critical parameters in the study of marine systems.

Ocean color remote sensing techniques are widely used to monitor spatiotem-
poral variations in SS concentration and for mapping of water turbidity. Figure 7 
shows the changes in ocean color due to high sediment loads in the Yangtze River 
Estuary [60] and the Pearl River Estuary [61]. It is suggested that an algorithm 
using single bands provides a good estimation of TSS concentrations if an appro-
priate band is used [62]. Moreover Novo et al. [63] and Curran et al. [64] have 
demonstrated that a single-band approach may be adopted when water reflectance 
in the single band has a linear relationship with TSS concentrations. However, 
coastal water often consists of a complex mixture of substances and results in large 
variations in reflectance. In this case, multiple spectral bands should be adopted 
for TSS retrieval [62, 65, 66]. These methods using band arithmetic can achieve 
high accuracy around 80% for retrieving TSS concentrations in complex waters 
[67, 68]. The peak of the reflectance curve shifts from the green region to the red 
region with increasing concentration of dissolved and suspended matter; and water 
starts reflecting significantly in NIR region [21] (Figure 8). For water with high 
TSS concentrations, the spectral region between 600 and 900 nm should be used. 
Several studies using Landsat TM, ETM+, and OLI show that the blue, green, red, 
and NIR bands are useful for the determination of TSS [8, 19, 68–70]. Literature 
also shows that TM, ETM+, OLI, and MODIS are the most frequently used sensors 
for developing algorithms to study seasonal TSS variability in coastal and estuarine 

Figure 6. 
Comparison of measured and predicted values from three machine learning models. (a) Chl-a concentration 
using artificial neural network, (b) Chl-a concentration using support vector regression, and (c) Chl-a 
concentration using random forest.
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areas, due to the large amount of archived remote sensing data [24, 71, 72]. The 
recently launched MSI sensor onboard Sentinel-2A and Sentinel-2B provide high 
spatial resolution of 10–20 m with a high temporal resolution of 5 days. The high 
spatial resolution (10 m) red and NIR bands are capable of routine monitoring of 
TSS concentration and turbidity in narrow bays, rivers, and inlets. Figure 9 shows 
the suspended matter concentrations, and Figure 10 shows turbidity in the Pearl 
River Estuary and connecting rivers using MSI data with algorithms of Nechad et al. 
[62] and Nechad et al. [73], respectively.

Methods and algorithms for estimation of TSS and turbidity have been evolved 
from simple methods such as linear/nonlinear regression and principal component 
analysis (PCA) to relatively complex techniques such as genetic algorithms and 
ANN. Nazeer and Nichol [68] initially developed a regression model resulting 

Figure 7. 
Terra-MODIS true color image, captured on 16 September 2000, shows the sediment plume of the Yangtze 
River Estuary (left). The Sentinel-2 true color image, captured on 31 December 2017, shows high sediment 
concentrations in the Pearl River Estuary (right).

Figure 8. 
Remote sensing reflectance (Rrs) spectra of water containing different suspended solid concentration 
(mg/L) [21].



Monitoring of Marine Pollution

12

in an RMSE of 2.60 mg/L. Later, Nazeer et al. [52] evaluated the potential of a 
machine learning model for estimating TSS in the complex coastal area of Hong 
Kong achieving an RMSE of 4.59 mg/L. Our work of machine learning models with 
Landsat TM, ETM+, and OLI data in the same area also shows promising results 
for estimation of TSS (Figure 11). In our work, ANN outperformed the other two 
machine learning approaches, SVR (support vector machine) and RF (random 
forest), resulting in the lowest RMSE of 2.8 mg/L. Table 4 includes some studies 
and methods used to study TSS in rivers, bays, estuaries, and relatively open coastal 
waters.

Stormwater runoff is also a large source of marine pollution as runoffs and 
pollutants from the urban watershed enter into the coastal environment after 
rainstorms. Stormwater runoff and municipal wastewater plumes may sometimes 
be overlooked due to persistent cloud cover in optical imagery. These types of 

Figure 9. 
High levels of suspended matter concentration were observed in the Pearl River Estuary and its connecting 
rivers on 31 December 2017.
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Figure 10. 
High levels of turbidity were observed in the Pearl River Estuary and its connecting rivers on 31 December 2017.

Figure 11. 
Comparison of measured and predicted values from three machine learning models. (a) TSS concentration 
using artificial neural network, (b) TSS concentration using support vector regression, and (c) TSS 
concentration using random forest.
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runoff are often detectable via SAR as they deposit surfactants on the sea surface, 
smoothing the small gravity waves and thus producing an area of low backscatter in 
comparison to the surrounding sea surface [74]. DiGiacomo et al. [74] used high-
resolution SAR to monitor such plumes in the Southern California Bight. In their 
study, the dynamics of runoff plume was modeled using SAR images together with 
meteorological data as a function of cumulative event discharge, timing of the peak 
flow, and total storm precipitation. Holt et al. [75] used multi-platform SAR data 
along with MODIS and precipitation data to study a stormwater plume and its flow 
direction.

3.3 Oil spill

A large oil spill from tankers causes not only significant economic loss but also 
destruction to the aquatic ecosystem. After the spill, oil undergoes several processes 
such as spreading, evaporation, dissolution, drifting, photolysis, biodegradation, 
and the formation of oil-in-water and water-in-oil emulsions [76].

Owing to the dynamic spreading nature of the spill, both remote and station-
based sensors are essential for comprehensive and effective monitoring. Airborne 
survey of an oil spill can be carried out by side-looking airborne radar (SLAR), laser 
fluorosensor (LF), and ultraviolet and thermal infrared video cameras. Ultraviolet, 
microwave, thermal, and optical airborne sensors all exhibit the ability to detect 
oil spills [6]. Ultraviolet sensors are sensitive to oil thickness of 0.01–0.05 μm. Oil 

Band combination Sensor Reference

All bands (neural network and other machine learning methods) GOCI [28]

Landsat TM, 

ETM+, OLI, HJ-1 

A/B CCD

[52]

TM, SAR [45]

Multiple bands and their ratios (multiple regression) Landsat OLI

band (2–5)

[19]

Landsat ETM+ [9]

Multiple green (500–600 nm) and red (600–700 nm) ratio Landsat TM, 

ETM+

[68]

Green (500–600 nm) and red (600–700 nm) ratio HJ-1A/1B CCD [67]

Red (600–700 nm) and NIR (700–900 nm) ratio MODIS [65]

Single band algorithms Green (500–600 nm) SeaWiFS [58]

EO-ALI [12]

Red (600–700 nm) Landsat TM, 

ETM+, HJ-1

[47, 68]

AVHRR, SeaWiFS [58]

MODIS, MERIS, 

SeaWiFS

[24, 62, 65]

HICO [17]

NIR (700–900 nm) MODIS, MERIS, 

SeaWiFS

[62]

Table 4. 
Methods used to retrieve TSS using remote sensing data in marine waters.
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appears as a bright target in this region of the spectrum, and brightness increases 
with the thickness of the oil. Optical sensors can measure thicker oil (2–500 μm) 
and are able to detect oil dispersed in water, whereas thermal infrared sensors 
measure oil with a thickness of about 10–50 μm [34]. Airborne LF and microwave 
radiometers (MWR) are considered to be the most appropriate sensors for oil spill 
detection. SLAR, ultraviolet, and thermal video cameras were used to identify areas 
of thick oil during the Sea Empress oil spill in 1996. Oil also undergoes weathering 
and aging. Multispectral satellite images, taking advantage of fluorescence charac-
teristics of oil, can detect spills and assess the levels of weathering of the oil [31].

Spaceborne synthetic aperture radar (SAR) is commonly used for ocean pollu-
tion monitoring, especially oil spills. Table 5 includes some SAR-equipped satellites 
used for oil spill detection. The advantage of SAR is the capability to take measure-
ments during all day and all-weather conditions. Therefore, they are considered 
superior to optical sensors in this application [5]. The spreading trend of oil highly 
depends on wind direction and speed. An oil spill would break up and disperse 
if the wind speed is greater than 10 m/s [74]. DiGiacomo et al. [74] used ERS-2 
SAR and RADARSAT-1 SAR images to map oil spills in the Southern California 
Bight. Shirvany et al. [77] evaluated the potential of different polarizations using 
RADARSAT-2 data for oil spill detection in the Gulf of Mexico. In another study, 
ENVISAT data was used effectively as an input to a hydrodynamic model to track 
the fate of oil after the Kerch Strait oil spill in 2007 [78]. Figure 12 shows an inci-
dent of large oil spill on the Galicia coast [79] and the Korean coast [80] for which 
spaceborne SAR data was used to access the coverage areas and the damage caused 
by the spills.

3.4 Marine plastic and coastal litter

With the increasing amount of marine plastic litter, its adverse chemical, 
biological, and ecological impacts on the marine ecosystem have raised the public 
concerns [81]. It is estimated that 4.8–12.7 million metric tons of plastic is dumped 
in the sea every year [82] due to increased use of plastic in industry and daily life 
[83, 84]. Although some surveys have been undertaken [85] to estimate the density 
and weight of floating plastic in the oceans globally, there is a lack of long-term and 
large-scale monitoring.

Some research has been conducted using remote sensing technology for the 
detection of floating marine plastic [86]. However, this research domain is still in 
its early stages. The reflectance from water captured by sensors is different from 
that of floating plastic objects. There are several reasons for this, (1) the physical 
properties of water are different from that of plastic, and they have significant 
distinct reflectance; (2) the transmitting ability of light through water is different 

Satellite sensor Operation

Sentinel-1A 2014, operating

Sentinel-1B 2016, operating

TerraSAR-X 2007, operating

ENVISAT advanced synthetic aperture radar (ASAR) 2002, not operating

RADARSAT-1 1995, not operating

European remote sensing (ERS) satellites: ESR-2 1995, not operating

Table 5. 
Active spaceborne sensors mostly used in oil spill detection.
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from that through plastic; (3) the absorption of light by water is different from 
plastic [87]. Figure 13 shows different pathways of incident light after interacting 
with the surface (with and without marine plastic). Some studies have used hyper-
spectral remote sensing to study marine macroplastics [87] and microplastics [88]. 
Goddijn-Murphy et al. [87] considered the spectral signatures and geometric optics 
of plastic and seawater to develop a reflectance model for detecting macroplastics. 
The key is to determine the appropriate reflectance peak of plastic and consider its 
ratio with wavelength bands where water-leaving reflectance is low. Their model 
considers reflectivity of only one type of plastic litter in two dimensions. However, 
there are some constraints for detecting marine plastics in a real scenario since there 
have no standard shape, dimension, color, chemical composition, etc. Nevertheless, 
this study demonstrated the possibility of using remote sensing as a useful means 
for mapping and tracking of marine plastic.

Figure 13. 
Schematic of solar radiance interacting with (A) an open water body and (B) the same water body but with 
floating plastic. Ld is total downwelling radiance (solar beam + diffuse skylight), Lds is subsurface downwelling 
radiance, Lws is subsurface upwelling radiance, Lwr is radiance reflected directly off the water surface, Lwt is 
subsurface upwelling radiance transmitted through the water-air interface, Lpr is radiance reflected off the 
plastic, and Lpt is subsurface upwelling radiance transmitted through the plastic. Lw is total water-leaving 
radiance, Lwr + Lwt, and Lp is total plastic leaving radiance, Lpt + Lpr; subscript ‘0’ indicates all the variables in 
the absence of plastic and FOV is a field of view [87].

Figure 12. 
(a) ASAR wide-swath image of northwest coast of Spain, captured on 17 Nov 2002, at 10:45 UTC showing oil 
from the wrecked tanker approaching Spanish coast (source, ESA), (b) ASAR image of South Korea, captured 
on 11 Dec 2007, at 01:40 UTC, showing oil spill from 146,000 ton damaged crude oil tanker (source ESA).
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Detecting coastal litter near land surface is easier than in open ocean, as its 
reflectance and shape characteristics are not affected by its pitching and rolling 
on ocean waves. Moy et al. [89] used aerial imagery along with spatial analysis to 
categorize and map marine litter deposited along the coasts of the Hawaiian Islands. 
Very high-resolution aerial imagery allowed precise measurements of the quantity, 
location, type, and size of dumped litter (>0.05 m2) (Figure 14). In another study, 
Martin et al. [90] discussed the potential of combining images from unmanned 
aerial vehicles (UAV) and a machine learning approach, to detect and map marine 
litter. Machine learning algorithms are able to detect and classify objects when 
training samples with known training objects are provided. Their results showed 
that a UAV-based beach survey is 39 times faster than beach screening on foot and 
the large footprint of a UAV can cover entire coastlines and beaches including those 
in remote areas.

4. Conclusion

Increased levels of marine pollution due to anthropogenic activities are adversely 
affecting marine sustainability of marine ecosystems. Reviewed literature suggested 
that aerial and spaceborne sensors provide holistic information for monitoring 
many of the major marine pollutants. These include oil and chemical spills, sew-
age, high suspended solids, and algal blooms. Solid waste deposited in coastal areas 
can also be mapped using similar geospatial technology. However, there are some 
technical limitations in assessing detailed information about pollutants. These 
limitations stem from their dynamic nature, limited information of specific spectral 
response of pollutants, substrate response in optically shallow waters, and complex 
physics of light interaction through the water column. Despite these limitations, 
remote sensing is still capable of providing useful information about pollution 
events in sensitive marine areas.

Active and hyperspectral airborne sensors are often considered superior to 
spaceborne sensors for monitoring coastal and estuarine pollutants due to their 
real-time and detailed monitoring capability. Spaceborne sensors are more reli-
able for large-scale ocean, but with the recent development of sensor technology, 

Figure 14. 
Distribution and density of marine litter along the coasts of the main Hawaiian Islands. Areas with 100 and 
more item densities are shown as hotspots of high marine litter [89].
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especially hyperspectral and active sensors with high temporal resolution, the 
applications of spaceborne sensors in coastal regions are also increasing. Presently, 
monitoring of marine waters is offered through numerous satellite sensors such as 
MODIS, VIIRS, AVHRR, OLCI, GOCI, Landsat, and Sentinel-2 with spectral and 
spatial resolutions able to measure marine pollutants and other marine parameters. 
Active satellite sensors such as SAR, altimeters, scanning radiometers, and micro-
wave sounders, which are mostly used in physical oceanography, also possess the 
potential for detection of marine pollution under specific meteorological conditions 
and provide useful data to track and model the impact of these pollutants.

Heavy metal pollution in coastal and estuarine region is another major concern 
of marine managers and researchers. Studies have attempted to use airborne 
hyperspectral data for this task, but satellite remote sensing is not yet able to detect 
these loads directly. However, the core factors causing these pollutants such as river 
plumes, sewerage, and industrial waste entering into these sensitive systems can 
be monitored using satellite remote sensing. If the point source of heavy metals is 
traced by remote sensing, policies and management practices can be applied accord-
ing to the specific pollutants, and their mobilization and transfer of heavy metal 
to sensitive coastal environments can be avoided. Multiple approaches have proven 
reliable for this task.

In addition, recent developments in software and computation power have led 
to the increased use of data captured by remote sensing systems. Computer systems 
can now store and analyze large datasets. Therefore, marine protection agencies 
and government can utilize the full potential of remote sensing data in geographic 
information systems (GIS) and decision support systems (DSS) to manage marine 
resources and pollution. Collaboration between the research community and gov-
ernment is of utmost importance for using the full potential of this data in marine 
pollution management. Different applications of remote sensing such as detection 
of floating marine plastic litter and the use of active remote sensing for detecting 
algal blooms are still in the research. With the advancement of remote sensing sen-
sors, sophisticated methods will be developed in the future for monitoring marine 
pollution.
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