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Chapter

Neuropathology of Traumatic 
Brain Injury and Its Role in the 
Development of Alzheimer’s 
Disease
Sonia Villapol

Abstract

The devastating deficiencies that result from brain injury stem from multiple 
overlapping mechanisms, exacerbated by the fact that there are no effective 
treatments. Traumatic brain injury (TBI) is recognized as the most influential 
environmental risk factor for neurodegenerative disease later in life, including 
dementia of Alzheimer’s disease (AD)-type. However, exactly how TBI triggers and 
strengthens the neurodegenerative cascade of events in AD remains controversial. 
Amyloid deposits and fibril precursor protein are extracellular in systemic amyloid 
A (AA) amyloidosis. In this chapter, I will discuss the neuropathology following TBI 
connected to AD. Additionally, I critically review recent animal and human studies 
regarding how brain trauma affects the potential risks factors for AD progression. 
Furthermore, it will be shown investigate the principal pathological features of 
dementia or AD, specifically focusing on axonal damage and consequent cleavage 
of the amyloid precursor protein (APP), amyloid β plaque formation, or phos-
phorylation and aggregation of tau, neurofibrillary tangles formation, and TDP-43 
accumulation. In summary, despite recent progress more studies are required to (1) 
further understanding of the basic mechanisms and pathophysiology of TBI, (2) 
elucidate the precise association between TBI and neurodegenerative disease, and 
(3) to identify treatments and therapies that can mitigate long-term consequences.

Keywords: tau, TDP-43, neurodegenerative, dementia, amyloid beta, plaques,  
amyloid beta deposition

1. Introduction

Traumatic brain injury (TBI) affects millions of individuals worldwide, with 1.7 
million new cases in the US each year [1]. Although many patients survive the initial 
lesion, TBI initiates a wide variety of pathologies such as neurological deficits, short 
and long-term brain damage, neuroinflammation, cognitive and emotional impair-
ments, all of which depend on the severity of the injury and other various factors 
[2, 3]. Brain injuries are most frequently caused by motor vehicle crashes, sports 
injuries, or simple falls; males are about twice as likely as females to experience a 
brain trauma [4]. At least 5.3 million Americans, or approximately 2% of the total 
US population, currently are burdened with disabilities resulting from TBI [5].  
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Functional deficits caused by TBI result from an initial impact and secondary 
damage that continue to develop over time and provide a therapeutic window for 
treatment to prevent or ameliorate many of the damaging consequences of injury 
[6]. While single compounds have been reported to be effective for short periods in 
standardized rodent models of TBI, therapeutic tools currently available to clini-
cians to treat patients with TBI are minimal.

The neuroinflammatory cascade following TBI contributes to neurodegenera-
tion and death through the cumulative action of multiple damaging processes [7]. 
TBI is one of the most consistent candidates for initiating the molecular cascades 
that result in neurodegenerative diseases, such as Parkinson’s disease (PD) or amyo-
trophic lateral sclerosis (ALS) [8–11]. Notably, there exists a strong epidemiological 
relationship between the occurrence of TBI and the development of Alzheimer’s 
disease (AD) later in life [12–15]. The link between TBI and AD is strengthened 
through the identification of acute and chronic AD-like pathologies in the brain in 
both TBI survivors and animal models of brain injury.

AD is a progressive neurodegenerative disease, which can only be fully diag-
nosed at autopsy. It is characterized, histologically, by the presence of amyloid 
plaques and intracellular neurofibrillary tangles (NFT) in the brain [16]. The 
amyloid plaques consist of aggregated proteinaceous material, a significant com-
ponent of amyloid β (Aβ). The tangles are composed of paired helical filaments 
(PHF) of the microtubule-associated phosphoprotein tau [16, 17]. In this chapter, 
I will describe the main pathological similarities, and differences, between TBI 
and AD. Although the evidence suggests that TBI is a risk factor for dementia, 
very little is known about what type, frequency, or severity of trauma is necessary 
to induce dementia [18].

A chronic disease process is initiated after TBI, known as the secondary injury 
cascade, and as part of this process, neuroinflammation, neuronal loss, or the 
production, aggregation and clearance of Aβ peptides occurs [19]. Several of these 
pathophysiological features have been characterized in patients with AD with 
similar neuropathology. Furthermore, epidemiological studies have shown how 
repetitive injury, or a single mild, moderate, or severe TBI, can cause a wide range 
of proteinopathies [20], and likely contribute to the later onset of debilitating 
neurodegenerative diseases. Indeed, the human pathology of survival from TBI is 
best described as a “polypathology”, featuring Aβ, tau, and TDP-43 pathologies, 
together with white matter degradation, neuronal loss, and neuroinflammation 
[21]. There exist many pathological features common to both acute brain injury and 
AD, including Aβ deposition, tau phosphorylation, neurite degeneration, synapse 
loss and microgliosis [22]. Besides, the susceptibility of the patient may be prede-
termined by multiple factors such as age, sex and the interplay of several genetic 
factors [23–25].

The purpose of this chapter is to discuss the neuropathology and genetic risk 
factors associated with TBI that may collectively shed some light on the risk of 
developing dementia or AD following head trauma, as well as possible treatments in 
animal models and human studies.

2.  Traumatic brain injury, neuroinflammation, and its link with 
Alzheimer’s disease

Postmortem studies in human populations have shown microglia activation 
many years after TBI. Innate activation of microglia generally leads to amyloido-
genic APP processing and the generation of Aβ plaques. Aβ plaques formed during 
the initial weeks after injury may regress with time. In this case, a continuously 
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renewed store of Aβ in degenerating axons can be kept in check through degen-
eration by endogenous mediators or anti-inflammatory phagocytic microglia, or 
macrophages. A deficiency in microglia clearance of Aβ could possibly account for 
this balance shift, especially since aging microglia are known to have a reduction in 
phagocytic capacity and this is also observed in AD, the most common age-related 
dementia [13].

Compelling epidemiological evidence indicates that moderate and severe TBI is 
associated with increased risk of development of progressive disorders of cognitive 
impairment leading to dementia or AD [15, 26–28]. Therefore, TBI is considered as 
a strong epigenetic risk factor for AD [29, 30]. Aβ plaques, a hallmark of AD, are 
found in 30% of patients who do not survive TBI [13]. A history of TBI is a strong 
risk factor for AD, although there remains a lack of clear consensus around this 
topic since a few epidemiological studies have not uncovered such an association 
[31]. However, there exists strong evidence linking TBI to AD-related pathologies 
[32, 33]. Moderate and severe head injury increased the risk of AD for 2.3 and 4.5 
times, respectively [30]. Although there is clinical evidence linking TBI and AD 
pathologies, there is an important lack of knowledge specific to the mechanisms 
driving this link.

In follow up studies, an increased incidence of head trauma in those with AD has 
been found only in males, not in females, and the risk of developing AD after TBI 
focused on injury severity [4, 25]. In studies where these criteria are more broadly 
defined, we can analyze the relative risk from head trauma of differing severity; it 
has been suggested [8] that a prior history of TBI accelerates the onset of AD and 
that the higher the incidence of severe the injury, the higher the risk of developing 
AD. Roberts et al. provided one of the first studies to closely examine Aβ deposition 
after TBI [34] (Table 1). Data from subsequent studies have suggested that even a 
single moderate to severe TBI event is a significant risk factor for the later onset of 
dementia or AD [35, 36].

However, it remains unknown whether patients with prior brain damage 
instead develop a distinct clinical phenotype of dementia, different from that 
of the typical AD. Examination of human brain samples confirmed that TBI 

Patients 

(N)

Category 

of TBI

Pathology associated, postmortem tissue Time 

after 

injury

References

16 Severe TBI 38% Aβ deposits, diffuse plaques 18 days 

of TBI

[34]

152 Severe TBI 30% Aβ diffuse deposits

20% (under 40) Aβ plaques

70% (60–80 age) Aβ plaques (50% controls)

Several 

times

[96]

7 TBI Aβ42 peptide

30% Aβ diffuse deposits

Several 

times

[97]

18 Severe TBI 33% Aβ deposits, Aβ42 peptide, diffuse 

plaques

80% neuronal/glial intracellular Aβ peptides 

tau (PHF-1) axons

2–19 h [36]

18 TBI Aβ42 peptide, axonal damage, APP deposits, 

neurofilament, β-secretase, g-secretase

Tau-positive astrocytes

4 h–5 

days

[22]

11 TBI Tau-positive oligodendrocytes 2 h [107]

Table 1. 
Patients with TBI and associated AD pathology.
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Animals Animal 

injury 

model

Pathology associated 

to AD

Time 

post-

injury

Brain regions References

Mouse 

(Tg2576)

Controlled 

cortical 

impact

Increase Aβ40 and Aβ42 

levels

9–16 

weeks

Cortex [92]

Mouse 

(wild-type)

Controlled 

cortical 

impact

Increase Aβ40 oligomers 

and Aβ42 levels

Increase pTau

3 days Hippocampus [37]

Mouse 

(3xTg-AD)

Repetitive 

mild TBI

Increase pTau 1 day Fimbria [93]

Mouse 

(3xTg-AD)

Controlled 

cortical 

impact

Increase Aβ40 levels

Increase total Tau and 

pTau

1–24 h 

and 7 

days

Cortex [76, 108]

Mouse 

(h-Tau)

Repetitive 

mTBI

Increase pTau 21 d Cortex [77]

Mouse 

(APP-YAC)

Controlled 

cortical 

impact

Decrease Aβ40 levels, 

but not Aβ42

1 week Cortex [109]

Mouse 

(APPNLh/

NLh)

Controlled 

cortical 

impact

Decrease of caspase-3 

by administration of a 

pan-caspase inhibitor

Reduction of caspase-

cleaved APP, Aβ40 and 

Aβ40

Improved histological 

outcome

24 h

14 days

Cortex [43]

Controlled 

cortical 

impact

Administration of 

simvastatin resulted in 

decreased Aβ levels

Decreased hippocampal 

tissue loss

Behavioural outcome 

improved

3 h Hippocampus [110]

Mouse 

(BACE 

knock-out)

Controlled 

cortical 

impact

Increase Aβ40

Improved histological, 

behavioural outcomes 

following injury

Administration 

of a γ-secretase 

inhibitor (DAPT) in 

non-transgenic mice 

improved outcomes

1–7 days Cortex and 

hippocampus

[19]

Controlled 

cortical 

impact

Increase Aβ40 23 days Hippocampus [111]

Mouse 

(PDAPP)

Controlled 

cortical 

impact

Increase Aβ40 and Aβ42 

levels

Increase neuronal 

death and memory 

impairment

No Aβ plaques

2 h–2 

months

Cortex and 

hippocampus

[90]

Controlled 

cortical 

impact

Decrease in Aβ plaques 2, 5 

and 8 

months

Cortex and 

Hippocampus

[91]

Controlled 

cortical 

impact

Decrease in Aβ plaques 16 weeks Hippocampus [103]
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processes were the principal driver of accumulation of Aβ peptides in swollen 
axons shortly after TBI, which persisted for years following the initial trauma 
[13]. In addition to such clinical studies, there exist multiple types of brain 
injuries in different animal models of AD. These animal models have been used to 
examine the formation, aggregation, and accumulation of Aβ after injury; almost 
all of these are demonstrated an elevation in Aβ levels after TBI (Table 2).

Animals Animal 

injury 

model

Pathology associated 

to AD

Time 

post-

injury

Brain regions References

Mouse 

(PDAPP) 

and Tg2576

Controlled 

cortical 

impact

Increase Aβ baseline in 

transgenic and decrease 

Aβ after injury

2–24 h Interstitial 

fluid

[112]

Mouse 

(PDAPP) 

crossed 

with apoE3 

and apoE4

Controlled 

cortical 

impact

56% apoE4:PDAPP: 

increase Aβ deposition 

and amyloid plaques

20% apoE3:PDAPP: 

increase Aβ deposition 

and amyloid plaques

3 months Hippocampus [100]

Mouse 

(ApoE3/

ApoE4), or 

ApoE null 

mice

Closed head 

injury

ApoE4 Die or poorer 

outcomes than apoE3

11 days Cortex [113]

Rat 

(Sprague 

Dawley)

Weight drop 

(open skull)

APP accumulation in 

damaged axons

No accumulating Aβ 

observed intracellularly 

or in plaques

1, 3 and 

21 days

Cortex and 

thalamus

[94]

Lateral fluid 

percussion

APP accumulation in 

damaged axons

No accumulating Aβ 

observed intracellularly 

or in plaques

1 h, 2 h, 

48 h, 1 

week, or 

2 weeks

Cortex, 

striatum, 

cingulum, 

and 

hippocampus

[95]

Lateral fluid 

percussion

Reduction of Aβ 

accumulated in damage 

axons according with 

severity of injury

2 days–1 

year

White matter, 

cortex and 

thalamus

[114]

Lateral fluid 

percussion

Increase pTau 6 

months

White matter, 

cortex

[115]

Weight drop 

(open skull)

APP and Aβ identified 

in damaged axons

No Aβ plaques observed

6 h–10 

days

White matter [44]

Controlled 

cortical 

impact

Increase cleaved Tau 6–168 h Cortex [116]

Swine Rotational 

acceleration 

(model of 

DAI)

APP and Aβ 

accumulation

Diffuse Aβ plaques

Increase total Tau

3–10 

days

White matter 

and cortex

[117]

Rotational 

acceleration 

(model of 

DAI)

Aβ, APP, BACE 

and presenilin-1 

accumulation in 

damaged axons

Diffuse Aβ plaques

3h, 3 

days, 6 

months

Subcortical 

white matter

[65]

Table 2. 
Animal studies on TBI and associated AD pathology.
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3. Neuropathology of TBI: related proteins

TBI regulates the expression patterns of several proteins commonly associated 
with neurodegenerative diseases, such as α-synuclein, amyloid precursor protein, 
Aβ, TDP-43, and tau [37–40] (Figure 1). Besides, the ApoE4 gene and their cleaved 
products are implicated in neurodegenerative disorders, axonal pathology, and 
apoptosis following TBI [41, 42]. TBI also induces caspase-3, which is involved 
in APP processing, contributing to AD [43, 44]. This increase in APP expression 
and neuroinflammatory response following injury may contribute to a cycle of Aβ 
deposition and microglial activation that ultimately result in chronic neuropathol-
ogy [45, 46]. In this section, I will summarize the principal proteins involved in TBI 
and AD and their associated factors in the neurodegenerative process.

3.1 Amyloid precursor protein (APP)

APP and its proteolytic derivatives are important mediators of neuronal syn-
aptogenesis and synapse maintenance [47]. APP functions in the axonal transport 
of vesicles and presenilin (PS) regulate intracellular protein trafficking, highlight-
ing the role of APP as a synaptic vesicle protein [47]. TBI leads to overexpression 

Figure 1. 
Relationship between neuropathological proteins induced after brain injury and the onset of Alzheimer’s 
disease. Schematic diagram showing that traumatic brain injury (TBI) and Alzheimer’s disease (AD) share 
similar pathological pathways (such Aβ pathologies and TDP-43 proteinopathy) and neuroinflammatory 
responses that potentially could explain the vulnerability of TBI patients to the onset of dementia/AD.
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of APP within neuronal cell bodies and APP accumulation within injured axons 
[48] (Figure 2C). Postmortem studies on human brain tissue samples from 
patients who have sustained mild TBI, but died due to other causes, have shown 
that APP accumulation occurs very rapidly (within a few hours) after brain [49]. 
Once mature, APP can be processed by two mutually exclusive complex pathways, 
either the non-amyloidogenic or the amyloidogenic pathway [50]. The non-
amyloidogenic pathway accounts for the majority of APP processing and results 
in the secreted APP (sAPPα) via α-secretase cleavage [51]. The β- and γ-secretase 
pathway is responsible for producing secreted APPβ (sAPPβ) and the toxic Aβ, 
which is found within amyloid plaques in AD [52]. Both axonal APP accumulation 
and long-term accumulation of Aβ has been reported in injured axons following 
TBI [53]. This large reservoir of APP in axons might be aberrantly cleaved to form 
Aβ [49]. Evidence for the role of caspase-3 in APP cleavage and Aβ production has 
come from recent studies examining the effects of caspase inhibition following 
trauma [43]. APP undergoes sequential proteolysis to produce plaque-forming Aβ 
peptides.

3.2 Amyloid β formation and amyloid plaques

3.2.1 Protein amyloid-β

Amyloid is a highly-ordered filamentous protein aggregate generally regarded 
as a misfolding event in which proteins that are soluble accumulate into fibrous 
structures [54]. However, determinants of amyloid formation and toxicity are 
largely unknown.

Edema, inflammatory response, vasculature changes, and deposition of Aβ have 
all been found to be localized pathological changes after TBI [55]. As such, an under-
standing of the mechanism promoting AD risk is important. Although TBI is typically 
believed to be a static pathological insult from a single event, new clinical unrecognized 
clinical symptoms can arise many years after the initial injury. In human studies, TBI 
has been shown to result in amyloid deposits reminiscent of AD pathology.

Aβ immunoreactivity and protein expression increase for as long as a year after 
injury, indicating that Aβ aggregation and plaques formation may continue long 
after APP gene expression returns to normal. Plaques found in TBI patients are 
strikingly similar to those observed in the early stages of AD [13, 14]. However, TBI-
associated plaques can appear rapidly (within hours) after injury, whereas plaques 
in AD develop slowly and are found predominantly in the elderly [13].

Monomeric forms of Aβ can aggregate to form oligomers, protofibrils; these 
fibrils deposit as amyloid plaque (Figure 1), unaggregated oligomeric forms of Aβ 
may contribute to toxicity after TBI [56]. Aβ causes apoptotic cell death of neu-
ronal cells in culture by the induction of caspases, known instigators of apoptotic 
cell death [57]. Accumulation of Aβ deposits, hippocampal damage, and chronic 
inflammation were found mainly in subcortical regions [18]. Early microglial accu-
mulation in AD delays disease progression by promoting clearance of neurotoxic Aβ 
peptides before the formation of senile plaques. However, as AD mice age, microglia 
become dysfunctional, producing proinflammatory cytokines in response to Aβ 
aggregation downregulate genes involved in Aβ clearance [58].

3.2.2 Mechanisms of post-traumatic amyloid-β formation

The intracellular accumulation of Aβ, extracellular deposition of soluble Aβ 
plaques, and aggregation of tau protein have all been observed in patients, some-
times within hours after severe brain injury [59, 60]. Aβ accumulation and amyloid 
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Figure 2. 
Representative immunohistochemical images showing neurodegenerative markers in a mouse model of 
Alzheimer’s disease after brain injury. (A) Aβ plaques detected using Aβ42 antibody in the cortex of AD model 
mice (3xTg-AD, 9 months old mice) (inset in A, high magnification in a). (B) Aβ plaques detected using 
Thioflavin-S staining in the cortex of old 3xTg-AD (B, high magnification in b). (C) Representative broken 
axons stained with APP showing axonal bulbs found acutely following TBI in wild-type mice. (D–F) Aβ42 
diffuse plaques were identifying using an antibody specific for Aβ42 and were not detected by Thioflavin-S 
staining, in the CA1 hippocampal region (D), in the corpus callosum (E), and in the cortex (F) of wild-
type mice. (G–H) Hippocampal neurons were stained using an antibody for phosphorylated tau in the CA1 
hippocampus (G, high magnification in g) and cortical pyramidal layer (H, high magnification in h) after 
TBI in old 3xTg-AD mice. Scale bars: 200 μm (A), 50 μm (B–H), and 20 μm (a, b, f, g, and h).
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deposition precede the cognitive decline in Alzheimer’s disease, with the pathology 
arriving later, and is associated with non-Alzheimer’s disease dementia. Deposition 
of amyloid plaques from Aβ peptide in Alzheimer’s disease or acute phase of TBI 
have previously been reported to involve either mononuclear phagocytes, endocytic 
uptake, or proteolytic processing of the APP during fibril formation [61, 62]. Levels 
of Aβ were found to be high days after TBI and then declined towards control levels 
in the subsequent 2 weeks. It has been suggested that a long-term process of Aβ 
metabolism is initiated by TBI, which can be cleaved to form Aβ. Both species of 
Aβ, Aβ40, and Aβ42, are increased in the first week after injury in the CSF of TBI 
patients; other studies have shown comparatively lower Aβ40 levels compared to 
high levels of Aβ42 [63]. Intracellular Aβ accumulation of non-plaque species of 
Aβ is more common than plaque deposition after TBI. Aβ is produced by sequential 
cleavage of the amyloid precursor protein APP via two enzymes, β- and γ-secretase. 
Depending on the cleavage point of γ-secretase, Aβ peptides of different amino 
acid length are produced. The two most closely linked to AD are Aβ40 and Aβ42 
[64]. The accumulation of Aβ peptides is thought to be a major initiator event in 
AD pathogenesis (Figure 1). TBI leading to impaired axonal transport induces a 
long-term pathological co-accumulation of APP with β-site APP-cleavage enzyme 
1 (BACE1), presenilin 1 and activated caspases, thus providing a possible mecha-
nism for APP cleavage and production of Aβ within axons following TBI [65]. The 
release of Aβ (especially Aβ42) into tissue and plaque formation around damaged 
axons occurs after APP accumulation and Aβ production in damaged axons. Both 
presenilin-1 (PS1) and BACE were found in swollen axons in the swine model and 
in humans (Table 2). Targeting the APP secretase enzymes can prevent the increase 
in Aβ after TBI [19], specifically, Aβ42 was found to accumulate in the axonal bulbs 
of injured brains [22]. BACE1 and PS1 were increased in the damaged axons of TBI 
patients, and our previous studies have also shown that BACE1 and PS1 are consid-
ered the promising targets for the treatment of TBI [19].

Plaques have also been observed in pericontusional tissue surgically excised 
from survivors of TBI. Nevertheless, the key pathological similarity between TBI 
with AD is the observation that Aβ plaques are found in up to 30% of patients 
who die of acute TBI [14]. While TBI-associated plaques largely appear in the gray 
matter, they have also been identified in white matter. Amyloid plaques consist 
primarily of aggregated Aβ peptides, which are surrounded by dystrophic neurites, 
microglia, and reactive astrocytes [66, 67].

3.3 Tau protein and neurofibrillary tangles

The tau protein is associated with microtubules and plays a role in the out-
growth of neuronal processes and the development of neuronal polarity [68]. 
Misfolded and aggregated tau causes a gain of toxic function by hindering normal 
and axonal processes; axonal neurodegeneration due to the loss of tau is caused by 
a decrease in tau microtubule binding capabilities [69, 70]. Tau oligomerization is 
known as a critical mechanism in the development of NFTs, consisting of hyper-
phosphorylated tau proteins with pathological function [71]. AD is also character-
ized by intracellular hyperphosphorylated tau that constitutes the NFTs and senile 
plaques and is one of the most common tauopathies [72]. Furthermore, toxic tau 
proteins increase within hours after clinical brain injury [22], and their release 
and spreading effect may also contribute to the development of tauopathy follow-
ing TBI [73]. It was described that the spatial pattern of the tau-immunoreactive 
pathology observed in chronic traumatic encephalopathy (CTE) is typical of the 
tauopathies [74]. The tau from both TBI and AD brains is phosphorylated at the 
same amino acids, resulting in the proteolytic cleavage of six isoforms known as 
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cleaved tau (c-tau), including the AT8 epitope [75]. Hyperphosphorylated Tau 
has been shown to increase between 1 and 7 days after moderate TBI in triple 
transgenic AD mice [76] and at 3 weeks after repetitive mild TBI in the human Tau 
(hTau) tauopathy mouse model [77] (Table 2). Experimental studies in animal 
models suggest that intra-axonal tau accumulation and tau phosphorylation may 
be in fact the consequences of repeated brain trauma or dementia pugilistica/CTE 
[78]. Today, CTE is used to define the neurological sequelae and neuropathological 
changes that occur as a result of repeat concussive or subconcussive blows to the 
head. Besides, the pathology of CTE is also characterized as a tauopathy, a class of 
neurodegenerative disease caused by the pathological aggregation of tau protein 
[78]. In CTE, NFTs also consist of hyperphosphorylated and ubiquitinated tau [79, 
80]. Tau degradation in boxers with CTE are structurally and chemically similar to 
those seen in AD and frontotemporal lobar degeneration (FTLD) [80]. Treatment 
with γ-secretase inhibitors diminishes amyloid pathology but does not affect 
TBI-induced tangle formation, suggesting that TBI-induced tau pathology is not a 
downstream event of Aβ and plaque formation [81].

3.4 TDP-43 pathology

TAR DNA-binding protein (TDP-43) protein has been identified as a regulator 
of gene expression and exon splicing with DNA and RNA binding capabilities. 
Hence, though TDP-43 is synthesized in the cytoplasm and resides in the nucleus 
of neurons and glia, under pathological conditions TDP-43 is accumulated in the 
cytoplasm in the form of ubiquitinated and hyperphosphorylated inclusions [82] 
(Figure 1). Pathological TDP-43 has been identified as the main disease-associated 
protein in ALS and FTLD. It has also been recognized as a secondary feature in 
many other neurodegenerative diseases, including Huntington disease, AD and 
PD [83]. Axonal damage results in an upregulation of TDP-43 expression, together 
with a redistribution of TDP-43 from the nuclear compartment to the cytoplasm 
[33, 84]. TBI induces TDP-43 abnormalities that can contribute to the neurological 
consequences of TBI, such as worse cell death, and cognitive deficits [85]. TDP-43 
proteinopathy is also part of the acute or delayed pathological sequelae of repeti-
tive mild, concussive TBI or CTE pathogenesis [86, 87]. The TDP-43 proteinopathy 
associated with CTE is similar to that found in FTLD with TDP-43 inclusions [87]. 
Intraneuronal accumulation of non-phosphorylated TDP-43 after a single TBI 
has also been reported [88]. Contrarily, related studies failed to demonstrate an 
association between single TBI and TDP-43 proteinopathy, only with repetitive 
TBI, indicating that just many insults reinforcing acute upregulation are suf-
ficient to cause TDP-43 aggregation. Importantly, aggregates of phospho-TDP-43 
were not increased long-term following TBI [88]. To the best of our knowledge, 
a clear functional role of altered TDP-43 expression levels after TBI has not been 
demonstrated, though this might disrupt signaling pathways involved in neuronal 
dysfunction, as some authors have suggested [89].

4. AD pathology in animal models of brain trauma

Several experimental animal models of TBI have been utilized in the attempt 
to replicate amyloid and tau pathologies, as well as other proteinopathies associ-
ated to AD. Some of these have been summarized in Table 2. Animal models of 
TBI show elevated Aβ levels, Aβ production, and Aβ deposition, specific to the 
brain region and anatomy and varying with the type of injury. Observed in mice 
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that overexpress normal human APP, there is an increase in tissue concentrations 
of Aβ after injury, associated with an increase in hippocampal neuronal death 
and memory impairment [43]. However, TBI alone does not seem to induce acute 
plaque formation systematically. Controlled cerebral impact (CCI) injury in an 
APP transgenic mouse model (PDAPP) has been shown to result in a spike in 
Aβ40 and Aβ42, peaking at 2 h post-injury and returning to baseline by 6 h [90]. 
Studies in PDAPP mice over greater intervals have shown that CCI can decrease 
the deposition of Aβ in the ipsilateral cortex and hippocampus, up to 4–8 months 
after injury, compared to the uninjured side of the brain [91]. Additionally, CCI 
injuries, using in a different APP transgenic mouse model (Tg2576), have been 
shown cause elevated soluble and insoluble cortical Aβ40 and Aβ42 levels as well 
as amyloid plaque deposition [92]. Finally, studies in APPNLh/NLh mice, a gene- 
targeted mouse model that expresses normal levels of human APP, yielded 
elevated Aβ40 levels via inhibition of caspase-3 activity, only for the first 24 h 
after CCI, while Aβ42 levels remain elevated through 14 days [43]. Repetitive 
TBI is known to cause cumulative damage. After mild TBI in mice, during two 
consecutive days, studies have reported delayed recovery from fine motor coor-
dination deficits as well as evidence of enhanced blood-brain barrier breakdown 
accompanied by axonal injury [21]. A recent study in an animal model using a 
triple-transgenic mouse model of Alzheimer’s disease (3xTg-AD), the effect of 
repetitive mild TBI caused an increase of tau hyperphosphorylation and activa-
tion of asparaginyl endopeptidase (AEP), a cysteine proteinase which is known to 
be involved in tau phosphorylation [93].

In contrast, repetitive TBI in a Tg2576 APP-transgenic mice model did result in 
greater Aβ deposition as well as an increase in the production of both soluble and 
insoluble cortical Aβ40 and Aβ42, which may be a result of the higher levels of 
oxidative stress after repetitive TBI [92]. However, TBI does not lead to early amyloid 
plaque formation in transgenic mice, and at later times there is a reduction in amy-
loid plaques in ipsilateral injury regions [90, 91]. Also, Aβ accumulation was identi-
fied in damaged axons shortly after brain injury, albeit still in the absence of Aβ 
plaques [94, 95]. However, the lack of evidence of Aβ deposition in non-transgenic 
animals was attributed, in part, to differences in the Aβ peptides found in differ-
ent species. Experimental results of moderate and severe TBI studies in transgenic 
models of AD are also contrasted with that seen in human TBI (Table 1). First, rapid 
Aβ deposition has not been demonstrated in any of the described transgenic models, 
unlike human studies [34, 36, 96, 97]. Second, increased severity of the injury does 
not result in increased Aβ deposition; instead, it seems to correlate with reduced 
Aβ deposition or possibly resolution of previously established plaques, as reported 
by [98]. In summary, all the animal models mentioned above provide important 
information regarding the potentially detrimental consequences of elevated Aβ 
levels following TBI. However, post-traumatic Aβ deposition has not been observed 
in the majority of non-transgenic animal studies; most failed to identify plaque 
pathology that is commonly observed following human TBI. To better understand 
the effects of repeat trauma on the brain, an animal model that can model the disease 
after repetitive trauma is required. Unfortunately, such an experimental model does 
not yet exist and will be challenging to generate.

5. Apolipoprotein E4 allele and TBI increase the risk of developing AD

The epidemiology of both AD and TBI are dominated by a single genetic 
risk factor, the APOE genotype. In humans, there are three distinct isoforms of 
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the protein: apoE2, apoE3, and apoE4, distinguished by three alleles [99]. The 
apoE ε4 allele confers strong susceptibility for AD and is also the factor for the 
development of amyloid plaques after TBI. Furthermore, the apoE ε4 allele has 
been associated with increased Aβ in the cerebral cortex and unfavorable outcome 
after TBI [100]. ApoE4 individuals were over 10 times more likely to develop AD 
after severe TBI than those who did not posse the allele [101], and the presence 
of an apoE4 allele is linked to poor recovery from extended coma. Professional 
boxers containing the apoE ε4 allele were at increased risk of CTE compared to 
boxers without the apoE ε4 allele [102]. This finding suggests that genetic factors 
may strongly influence the risk of CTE after brain injury. However, the possibil-
ity remains that certain boxers may be innately ‘resistant’ to developing AD or 
dementia following CTE; definitely, not all boxers go on to develop AD, despite 
repetitive injury and having the higher risk genotype. Consistent with a role of 
ApoE protein in amyloid deposition in humans, apoE4 also increases amyloid 
plaque formation in mice. Aβ deposition is also significantly increased follow-
ing head trauma in PDAPP (platelet-derived growth factor promoter expressing 
amyloid precursor protein) mice carrying the human apoE ε4 allele versus those 
carrying apoE ε3 or no apoE (Table 2) [103]. Finally, transgenic APOE ε4 mice, 
which also overexpress APP, show accelerated deposition of Aβ following injury, 
suggesting apoE ε4 may reduce the clearance of Aβ, thereby favoring its deposi-
tion [100] (Table 2). Some recent reports are controversial clinical and preclinical 
studies about the link between poor outcome after severe and mild TBI and the 
APOE4 gene [11, 16, 30, 104, 105].

6. Similarities and differences in the neuropathology of TBI and AD

The similarities and differences in the neuropathology associated to TBI and AD 
are complex. Aβ formation and aggregation, tau phosphorylation, including other 
proteins found in the brain and CSF following TBI, share a lot of similarities with 
AD, but also several evident differences. Principally, the localization and distribu-
tion of proteins in TBI patients are fundamentally distinct from the characteristic 
pattern commonly observed in AD [13]. However, one strong similarity between TBI 
and AD is in the Aβ plaque formation; both are primarily composed of Aβ 41–42, 
furthermore, CSF levels of Aβ are increased similarly for both [106]. However, in 
AD there are numerous, compact, core Aβ aggregates in addition to neurofibril-
lary tangles and neuropil threads, this in contrast to TBI where there appears to be 
a higher prevalence of diffuse Aβ plaques [34, 36]. Notably, Aβ plaques in TBI are 
typically described as diffuse and do not display the histochemical or morphologi-
cal features of the senile plaques that are characteristic of AD [35]. Aβ toxicity only 
emerges when levels exceed a certain threshold, and unaggregated oligomeric forms 
of Aβ may contribute to toxicity. As such, rapid aggregation of Aβ into plaques may 
be a protective event following TBI [73]. In CTE, the tau inclusions are morphologi-
cally most similar to those found in AD, with pyramidal neurons maintaining their 
shape, and tangles consisting of hyperphosphorylated and ubiquitinated tau [84]. 
This phospho-tau staining was also observed in axons and clusters of neuronal cell 
bodies in the cerebral cortex and hippocampus (Figure 2G and H). Such studies 
have also noted the existence of tau-positive reactive astrocytes in AD, a pathology 
that is not usually associated with AD. Finally, the tau immunoreactive profile of 
CTE is characteristically very patchy and irregular, with preferential deposition in 
the superficial neocortical layers, while tangles in AD are found in deep and in super-
ficial layers [33]. In summary, while there are certain important differences between 
mild, moderate, and severe TBI and dementia or AD, given the significant overlap 



13

Neuropathology of Traumatic Brain Injury and Its Role in the Development of Alzheimer’s Disease
DOI: http://dx.doi.org/10.5772/intechopen.81945

in neuropathology, there is still much that can be gleaned by closely comparing the 
molecular and cellular mechanisms involved in both of these neuropathological 
processes.

7. Conclusions

The association between trauma and the onset of neurodegenerative diseases, 
such as AD, is extremely convoluted, further complicated by the absence of 
appropriate animal models able to reproduce human pathologies. Elucidation of 
this nature of this link remains in its infancy, requiring extensive further research 
to chip away at the underlying relationship. Moreover, quantification of the rela-
tive contributions of various risk factors for developing these pathologies, such 
as cellular and molecular mechanisms, frequency and severity of the injury, age, 
sex, and potential genetic predisposition, remain mostly imprecise. Although we 
do not know how TBI fundamentally impacts the long-term outcome and affects 
the risk of dementia, it remains clear that amyloid pathways play an important 
role in secondary injury and acute cell death after trauma. Continued efforts to 
investigate why TBI, and repeat concussions, may lead to AD and other associ-
ated dementias are required. Further understanding of the molecular mechanism 
underlying these events is required, achievable via better designed animal models 
able to more closely and accurately mimic the observed behavioral and patho-
logical changes. Only then will we be well equipped to precisely evaluate novel 
therapeutic agents that may intervene in the disease process. Future research will 
be required to uncover the mechanisms through which TBI increases the risk of 
AD, opening the door to designer treatment strategies for the full scope of post-
traumatic injuries.
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