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Abstract

Cell culture is an indispensable in vitro tool used to improve our perception and 
understanding of cell biology, the development of tissue engineering, tissue morphol-
ogy, mechanisms of diseases and drug action. Efficient cell culturing techniques both 
in vitro and in vivo allow researchers to design and develop new drugs in preclini-
cal studies. Two-dimensional (2D) cell cultures have been used since 1900s and are 
still a dominant method in many biological studies. However, 2D cell cultures poorly 
imitate the conditions in vivo. Recently three-dimensional (3D) cell cultures have 
received remarkable attention in studies such as drug discovery and development. 
Optimization of cell culture conditions is very critical in ensuring powerful experi-
mental reproducibility, which may help to find new therapies for cancer and other 
diseases. In this chapter, we discuss the 2D and 3D cell culture technologies and their 
role in drug discovery.
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1. Introduction

The discovery and development of new drugs is a very lengthy and costly process. The 

cost of developing a new drug and bringing it to the market is between $800 million and 

$2 billion, and can take up to 15 years. In part, termination of the development process is 

due to failure at late preclinical stages of development at great expenditure [1]. The drug 

discovery and development process for new drugs consists of four phases; drug discov-

ery, preclinical development, clinical development and regulatory approval. Most drugs 
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fail at phase II and phase III clinical stages due to poor efficacy and safety issues [2]. The 

high attenuation rates in drug discovery suggest that the main reasons for drug failure are 
inappropriate preclinical testing methods and in vitro models, which do not sufficiently 
produce information needed for prediction of drug efficacy and safety issues [3]. Hence, 

one of the main areas expected to improve the success rate of drug development process 

could be the use of new technologies in preclinical testing and in vitro models, in order to 

get better accurate data.

Cell-based assays are crucial in the drug discovery and development process. Mammalian 

cell culture provides a defined platform for investigating cell and tissue physiology and 
pathophysiology outside of the organism. For over a century, traditional 2D cell culture 

was used in drug discovery. In 2D cell culture, cells are grown on flat dishes optimized 
for cell attachment and growth (Figure 1). Nowadays, 2D cell culture models are still used 

to test cellular drug responses to drug candidates. Although 2D cell culture is generally 

accepted and has increased understanding of drug mechanisms of action, there are limita-

tions associated with it. The main limitation is that the cells grown as a monolayer on flat 
petri plates or flasks. This is a stiff platform, offering unnatural growth kinetics and cell 
attachments. Therefore, natural microenvironments of the cells are not fully represented 
[4]. Recently, significant work by researchers produced improvements in the form of bet-
ter in vitro cell culture models that resemble in vivo conditions. Three-dimensional cell 

cultures are such products and better mimic tissue physiology in multicellular organisms 
(Figure 1) [5].

While traditional monolayer cultures still are predominant in cellular assays used for high-

throughput screening (HTS), 3D cell cultures techniques for applications in drug discovery 
are making rapid progress [6, 7]. In this chapter, we provide an overview of 2D and 3D cell 

culture techniques, and their role in the discovery of new drugs.

Figure 1. Simplified sketch of 2D and 3D cell culture.
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2. Cell culture system

Cell culture involves the dispersal of cells in an artificial environment that is composed of an 
appropriate surface, nutrient supply, and optimal conditions of humidity, temperature and 

gaseous atmosphere [6]. Usually cells are grown for days or weeks in a sterile 37°C humidified 
incubator with 5% CO

2
 until a sufficient number of cells are reached. This system allows the 

study of cellular response to different environmental cues such as physiological stimulants or 
agonists/antagonists, potential drugs or pathogens.

2.1. Two-dimensional (2D) cell culture system

Two-dimensional culture conditions vary widely for each cell type. Appropriate cell culture 

medium suitable for the growth of particular cells has to be used. Various laboratories use 

different recipes of cell culture media prepared in the laboratory or commercially produced. 
The commercially produced cell culture medium is obtained sterile and ready to use in liquid 
or powder form and is usually dissolved in sterile water. Most laboratories obtain commercial 

components, which are mixed in the lab to make a complete culture medium for optimal 

cell growth. In addition, the culture media are usually supplemented with antibiotics and/or 

fungicides to inhibit contamination (Table 1).

Many continuous mammalian cell lines can be maintained on a relatively simple medium such 

as MEM supplemented with serum and antibiotics. However, most laboratories use DMEM 

as mammalian cells can be easily grown in DMEM supplemented with serum as well as anti-

biotics. When working with specialized cell types, a specialized cell culture medium may be 

required to maintain the growth of cells such as RPMI-1640 medium that is mostly used to grow 
cells in suspension such as HL-60 (promyelocytic leukemia) with varying serum amounts.

2.1.1. Sub-culturing cells

As cells reach confluency, they must be sub-cultured or passaged. The first step in sub-cul-
turing adherent cells is to detach them from the cell culture plate or flask. This is done by 
subjecting them to trypsin-EDTA or by physically scraping them off the plate using a sterile 
cell scraper. One must take care because some mechanical and chemical methods have the 

Adherent cells Non-adherent cell lines

Cancer cell lines Non-cancerous cell lines

Cell 

culture 

medium

89% DMEM or MEM with high 

glucose, l-glutamine + 10% FBS + 

1% penicillin/streptomycin

89% DMEM or MEM with 

medium/low glucose, 

l-glutamine + 10% FBS + 1% 

penicillin/streptomycin

89% RPMI-1640 + 10% FBS + 1% 
penicillin/streptomycin

DMEM, Dulbecco’s Modified Eagles Medium; MEM, minimum essential medium; RPMI, Roswell Park Memorial 

Institute; FBS, fetal bovine serum.

Table 1. Common 2D cell culture media recipes.
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potential to damage the cellular structure and possibly kill cells. Once detached, pre-warmed 

medium is added to stop the activity of trypsin-EDTA or to dilute the cell suspension. Varying 

amounts of the cell suspension are then transferred into fresh culture vessels and the appro-

priated amount of pre-warmed medium added and further incubated in 37°C incubator with 

humidified atmosphere of 5% CO
2
.

2.1.2. Two-dimensional cell cultures in drug discovery and development

Many types of in vitro assays are performed in Drug Discovery and Development Research 

(DDDR), however, use of cell cultures receives extensive use. For example, determination of 

drug absorption, distribution, metabolism, excretion and toxicity (ADMETox) or drug phar-

macokinetics is initially assessed in in vitro experiments involving cell cultures. Various cell 

lines in 2D cultures are used to determine different aspects of ADMETox. For instance, the 
Human colon carcinoma cells (Caco-2) are commonly used to determine absorption of drug 

candidates. Cultured Caco-2 cells form tight junctions in a monolayer and mimic intestinal 

epithelium. Additionally, Caco-2 cells express proteins that are involved in drug transport 

making them a good model for testing drug absorption [8]. Another cell line commonly used 

to test absorption is the Madin-Darby canine kidney (MDCK-MDR1) cell line, which mimics 

efflux activity of P-glycoprotein and allows faster performance of transport assays [9]. Hepatic 

metabolism plays a critical role in the removal of xenobiotics. Hepatocytes are usually the best 

model to study drug metabolism [10]. Although immortalized hepatocyte cell lines such as 

HepG2 and HepaRG are used to test drug metabolism and excretion, freshly isolated hepa-

tocytes are the best model as they exhibit complete expression of metabolic enzymes [10, 11].

Although 2D cell cultures are used widely in DDDR and play a big role in preclinical drug test-

ing, data generated from their use often do not translate to what occurs in vivo. Nowadays, 3D cell 

cultures and co-cultures receive more attention as they exhibit protein expression patterns and 
intracellular junctions that are similar to in vivo states compared to classic monolayer cultures.

3. Three-dimensional cell culture system

Three-dimensional cell culture was developed to improve the structure of cells and physiolog-

ical equivalence of in vitro experiments performed. It refers to the culture of living cells inside 

micro assembled devices with a 3D structure mimicking tissue and organ specific microarchi-
tecture [12]. In 3D cell culturing, growth of cells in their 3D physical shape allows better cell-
to-cell contact and intercellular signaling networks [13]. The 3D environment also facilitates 

developmental processes allowing cells to differentiate into more complex structures [14].

3.1. Three-dimensional cell culture techniques

Three-dimensional cell culture techniques are classified as Scaffold-based or non-scaffold-
based techniques. Researchers are required to select the most appropriate model for their 
cell-based assay.
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3.1.1. Scaffold-based cell culture

Scaffold-based culture technologies give physical support to basic mechanical structures 
to extra-cellular matrix (ECM)-like matrices, on which cells can aggregate, proliferate and 

migrate [15]. In scaffold-based techniques, cells are implanted into the matrix and the chemi-
cal and physical properties of the scaffold material mold the characteristics of cell. The ulti-
mate aim of a scaffold is to produce characteristics for the native cell function within the 
ECM. The 3D scaffold is usually biocompatible and it characterizes the shape and function of 
the assimilated cell structure [16]. The design of scaffold is based on the tissue of interest and 
the bigger or complex the scaffold is; the more difficult or harder the extraction of cells for 
analysis becomes [17]. Regardless of the tissue type, there are important factors to consider 

when designing the scaffold as described in Table 2.

Scaffolds are manufactured from natural and synthetic materials by a plethora of fabrica-

tion techniques. The main natural materials used for scaffold synthesis are different compo-

nents of the ECM including fibrin, collagen and hyaluronic acid [22–24]. In addition, natural 

derived materials such as silk and gelatin may also be used [25]. Synthetic materials used 

for scaffold synthesis include polymers, titanium, bioactive glasses and peptides [26–28]. 

Polymers have been widely used as biomaterials for the fabrication of scaffolds, due to their 
unique properties such as high porosity, small pore size, high surface to volume ratio, biodeg-

radation and mechanical properties [29, 30]. Scaffolds are designed to support cell adhesion, 
cell-biomaterial interactions, adequate transport of gases and nutrients for cell growth and 
survival and to avoid toxicity [31]. The fabrication technique for scaffold synthesis depends 
on the size and surface properties of the material and recommended role of the scaffold. The 
relevant fabrication techniques for a particular target tissue must be identified to facilitate 
proper cell distribution and guide their growth into 3D space. The various techniques for 
scaffolds fabrication are given in Table 3.

Scaffold-based 3D culture can be broadly divided into two approaches—hydrogels and solid-
state scaffolds.

Property Purpose References

Biocompatibility Ability to provide normal cellular function [18]

Bioactivity Ability to activate fast tissue attachment to the implant surface [18]

Biodegradability Allow cells to produce their own ECM [19]

Mechanical response Scaffold should be strong enough to allow surgical handling during 
implantation and must have enough mechanical integrity for the 

completion of the remodeling process

[20]

Scaffold architecture Porous interconnected structure provide cellular penetration and 
adequate diffusion of nutrients to cells and mean pore size should large 
enough to allow cells to migrate into the structure

[21]

Table 2. Scaffold requirements.
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3.1.1.1. Hydrogel scaffolds

Hydrogels are water swollen polymeric materials formed by chemical reactions of monomers 

that generate main-chain free radicals that make cross-link junctions or by hydrogen bonding 

[46]. Hydrogels are one of the most used scaffolds because they mimic the ECM to a certain 
extent [17]. Hydrogels are highly hydrated hydrophilic polymer networks with pores and void 

space between the polymers [47]. The hydrophilic structure facilitates absorption and retention 

of large quantities of water. It is regarded as a powerful method when applied for biomedical 
purposes [48]. Because hydrogels have properties such as soft and rubbery consistence, low sur-

face tension and high water content, they are more suitable substitutes for natural tissues [49]. 

Sources of hydrogels can be natural, synthetic or a mixture of both (hybrid) materials, offering 
a broad spectrum of chemical and mechanical properties. The natural materials used for hydro-

gels are collagen, gelatin, alginate, fibrin, hyaluronic acid, agarose, chitosan and laminin [50–53]. 

Natural hydrogels confer l adhesive properties, high cell viability, controlled proliferation and 

differentiation. Collagen is the most widely used natural polymer for hydrogel preparation and 
it is the main component of tissues such as ligament, bone, cartilage skin and tendon [54, 55].

Synthetic hydrogels can mimic biological properties of ECM and are ideal material to use for 

3D scaffolds. They have well defined chemical, physical and mechanical properties to achieve 
stiffness and porosity [56]. The main synthetic materials used to formulate hydrogels are 

polyacrylic acid, polyethylene glycol (PEG), polyvinyl alcohol, polyglycolic acid (PGA) and 
poly (2-hydroxy ethyl methacrylate [57–60]. Synthetic hydrogels are the most used hydrogels 

because of their longer service life, high gel strength and water absorption capacity [61]. PEG 
and its derivatives are used mainly for synthetic hydrogels [62].

Scaffold fabrication techniques Advantages References

Solvent casting/particulate 

leaching

Easy method, pore size can be controlled, desired crystallinity, 

highly porous structure

[32]

Melt molding Able to construct scaffolds of any shape by changing the mold 
geometry, free of organic solvents, controlled pore size and 

porosity

[33]

Gas foaming Controlled porosity and pore size, free of strong organic solvents [34, 35]

Fiber bonding Large surface area for cell attachment, interconnected fiber 
structure and high porosity

[36]

Freeze drying High porosity and interconnectivity, controlled pore size, leaching 

step not required, work at low temperature
[37, 38]

Electrospinning Controlled over porosity and pore size, produces ultra-thin fibers 
with special orientation and large surface area

[39, 40]

Fiber mesh Variable pore size, large surface area for cell attachment [41, 42]

Porogen leaching High porosity, controlled pore size and geometry, bigger pore size 

and increased pore interconnectivity

[43, 44]

Micro molding It is biologically degradable, mechanical and physical complexity [45]

Table 3. The different scaffold fabrication techniques and their advantages.
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3.1.1.2. Solid state scaffolds

Culturing cells into a solid scaffold provides 3D space and helps generate natural 3D tissue-
like structures. Solid scaffolds for 3D culture can be designed with different materials such as 
ceramics, metals, glass and polymers. Polymers are mainly used to construct solid scaffolds of 
different sizes, varying shapes, porosity, stiffness and permeability [63]. The main advantage 

of solid scaffolds is their ability to create organized positioning of cells in vitro in a control-

lable and reproducible manner [64]. The cell adhesion, growth and behavior in solid scaffold 
significantly depends on factors such as scale and topography of the internal structure, mate-

rial used for its construction, the surface chemical properties, permeability and mechanical 

properties [65]. Solid scaffolds are commercially available, and are distributed sterile and 
ready to use. One of the main solid scaffolds is described below. An example is the porous 
scaffold. Porous scaffold creates a 3D microenvironment for cells to enter and maintain their 
natural 3D structure. It has a homogenous interconnected pore network, allowing cells to 

interact effectively to create tissue like structures and provides improved nutrient supply to 
the center of the device [64]. Sponge or foam porous scaffold have been especially used for 
bone regrowth and organ vascularization. Porous scaffold can be synthesized with specific 
porosity, pore size, crystallinity and surface area to volume ratio [66]. Synthetic biodegrad-

able polymers such as polylactic-co-glycolic acid (PLGA), polyether ester (PEE ), poly-l-lactic 

acid (PLLA) and PGA are the main materials used for porous scaffolding [67].

3.1.2. Scaffold-free 3D cultures

3.1.2.1. Scaffold-free 3D spheroid cultures

Scaffold-free-based 3D systems facilitate the development of multi-cellular aggregates, com-

monly known as spheroids, and can be generated from wide range of cell types [68]. Common 

examples of spheroids comprise tumor spheroids, embryonic bodies, mammospheres, neuro-

spheres and hepatospheres. A cellular spheroid 3D model has a variety of properties such as 

(i) naturally mimicking/imitating various aspects of solid tissues; (ii) establishing geometry 

and ideal physiological cell-to-cell interactions; (iii) cells form their own ECM components 

and better cell-ECM interactions; (iv) excellent gradient for efficient diffusion growth factors 
as well as the (v) removal of metabolic waste [69]. The size of the spheroid can be based on 

the primary number cells seeded and it can increase in size where until they show oxygen 

and nutrient gradients similar to target tissue [70]. Spheroids are either self-assembling or are 

forced to grow as cell clusters [71]. Spheroids can be easily analyzed by imaging using light 

fluorescence, and confocal microscopy and that is an added advantage of spheroids com-

pared to other 3D models. There are different approaches for facilitating spheroid cultures as 
described below.

Hanging drop method co-culture used to generate tissue-like cellular aggregates for molecu-

lar and biochemical analysis in a physiological suitable model. The hanging drop method was 

first developed in 1994 and became the basis of the non-scaffold method for the formation 
of multicellular spheroids. In hanging drop method, cells are cultured in a drop of media 

suspended on the lid of a cell culture dish, which is carefully inverted and placed on top of the 
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Figure 2. (a) A schematic of the hanging drop plate and (b) Schematic of spheroid formation techniques for hanging 
drop spheroids.

dish containing media to maintain a humid atmosphere. Suspended cells then come together 

and form 3D spheroids at the apex of the droplet of media [72, 73]. This method has many 

advantages such as cost effectiveness, controlled spheroid size, and various cell types can be 
co-cultured and produced into spheroids [74, 75]. Moreover, it has been reported that 3D cell 

culture generated with hanging drop method have 100% reproducibility [69]. Due to limited 

volume of droplets generated with this technique, it is difficult to maintain spheroids and 
change the medium. Presently, there are many commercial devices for hanging drop culture 
(Figure 2).

The use of low adhesion plates helps to promote self-aggregation of cells into spheroids [76]. 

Low adhesion plates have been developed as the commercial product of the liquid overlay 
technique, which is a low cost highly reproducible culture method that easily promotes 3D 
aggregates or spheroids [77]. Low adhesion plates are spheroid microplates with round, 

V-shaped bottoms and very low attachment surfaces to generate self-aggregation and spher-

oid formation. Plates are designed with hydrophilic or hydrophobic coating, which reduces 
cell from attaching to the surface. The main advantage of low adhesion plates is the potential 
to produce one spheroid per well making it appropriate for medium-throughput screening, 
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as well as creating defined geometry suitable for multicellular culture [78]. These plates have 

initial higher volume capacity than hanging droplets and there is no need to manipulate the 

spheroids.

Spheroids can also be cultured by using bioreactors under specific dynamic conditions [79]. 

The dynamic conditions are generated by stirring or rotating using spinner flask or NASA 
(National Aeronautics and Space Administration) rotating wall vessel, respectively [80]. The 

rotating wall vessel produces larger sized spheroids than spinner flask [81]. Bioreactors pro-

vide greater spheroid production control and reproducibility [82]. However, production of 

spheroids through this method requires expensive instruments and high quality cell culture 
medium.

3.1.2.2. Scaffold-free organoid cultures

Organoids are in vitro derived 3D cell aggregates that are capable of self-renewal, self-orga-

nization, and exhibit organ functionality [83]. Organoids are produced either from stem cells 

or primary tissues by providing suitable physical (support for cell attachment and survival) 
and biochemical (modulate signaling pathways) cues [84]. Organoids are classified into tissue 
organoids and stem cell organoids, based on how the organ buds are created [85]. Distinctive 

examples of tissue organoids culture are intestine, prostate, mammary and salivary glands. 

Stem cell organoids are created from either embryonic stem cells or primary stem cells (neo-

natal tissue) or induced pluripotent cells. Presently, different in vitro organoids have been set 

to simulate numerous tissues such as functional organoids for pancreas [86], liver [85], intes-

tine [87], kidney [88], lung [89], retina [90], stomach [91] and thyroid [92]. Organoids mimic 

some of the structure and function of real organs [83]. Several approaches have been used 

to obtain organoids. The first approach is to culture cells as a monolayer on an ECM coated 
surface; organoids are then produced after the cells differentiate. The second is a mechani-
cally supported cell culture to provide further differentiation of primary tissues. The third 
approach is to produce embryoid bodies through hang drop culture or on the low adhesion 

plates [93]. The main disadvantages of organoids are the lack of vasculature, lack of key cell 

types found in vivo and some organoids only replicate early stages of organ development [83].

3.2. Three-dimensional cell culture in drug discovery and development

Cell-based assays are the major tool used to evaluate the potency of a new compound in drug 

discovery. Three dimensional cell culture technologies have been used in different stages of 
drug discovery including diseases modeling, target identification and validation, screening, 
target selection, potency profiling and toxicity assessment. Table 4 indicates the 3D models 

used in different stages of drug discovery. Three-dimensional culture models behave simi-
larly to the cells in vivo, and are therefore used in the early stage of the drug discovery process, 

especially in cytotoxicity tests [94] such as MTT, Flow Cytometry and so on. The most effec-

tive cell-based assays with 3D cultures are cell viability, proliferation, signaling and migration 

[95]. It is now broadly accepted that cells act differently in 3D environments compared to 
2D ones, especially when it comes to drug discovery—many prospective cancer therapeutics 
look favorable in the 2D cell culture dish, but fall painfully later on in clinical development. 
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Three-dimensional cell cultures promise to bridge the gap between traditional 2D cell culture 

and in vivo animal models. Studies have shown that cellular response to drug treatment in 

3D cell culture are more similar to what occurs in vivo compared to 2D cell culture [96–98]. 

In addition, a number of studies show that cells cultured in 3D models are more resistant to 

anticancer drugs than those in 2D cultures [99, 100]. For example, the cell viability of ovarian 

cancer cells in 3D spheroid cell cultures after paclitaxel treatment was reduced by 40%, while 

the same treatment led to 80% reduced cell viability in 2D cell cultures [101]. The stronger 

drug resistance in 3D culture can be attributed to different factors including, phenotype and 
genotype changes [100], signals from cellular interactions between cells and ECM [102], acti-

vation of genes involved in cell survival and drug sensitivity due to limited diffusion through 
the spheroid [103].

Spheroid 3D cell cultures have been used for modeling the microenvironments, signaling, 

invasion and immune characteristics of cancer, also for studying cancer stem cells [104]. 

Studies have shown that cancer cell line spheroids have been used to analyze different char-

acteristics of the cancer invasion process such as endothelial cell to tumor cell contact [116] 

and invasion of cells in a spheroid into the nearby 3D ECM structure [117]. Additionally, 

organoid cell cultures have been used to model number of diseases infectious diseases, 

neurodevelopmental and neuronal degeneration disorders [83]. For example, intestinal 

organoids were used to investigate genetically reconstituted tumorigenesis [118], gastro-

intestinal infection with rotavirus [119], Cryptosporidium parvum infection [106], and colon 

cancer stem cell biology [107]. A large number of genetic disorders that have not been 

possible to model in animals can be modeled using organoid 3D cultures. For example, 

intestinal organoids derived from patient biopsies have been used to understand onset and 

progression of genetic disorders [120, 121]. Organoid 3D culture model is also a power-

ful tool for modeling neurodevelopmental disorders such as microencephaly, caused by 

Zika virus infection at early stages of brain development. Moreover, brain organoid model 

of neural stem cells was used to understand implications of Zika virus infection during 

neurogenesis [122]. These are some examples of uses of 3D cell cultures as models to study 

disease.

Drug discovery stages 3D model References

Disease modeling Spheroids [104, 105]

Organoids [106, 107]

Target identification Spheroids

Organoids

[108]

Screening Spheroids [109–111]

Efficacy profiling Spheroids [112]

Toxicity profiling Spheroids [114, 115]

Organoids [113, 114]

Table 4. Three-dimensional culture techniques used in different stages of drug discovery.
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Gene expression patterns seen in 3D systems are more similar to in vivo conditions compared 

to 2D cell culture systems [123]. For instance, analysis of gene expression in mesothelioma 

cell lines cultured in spheroids shows the basic cause of chemoresistance in malignant meso-

thelioma [108]. In addition, cancer cell lines grown in 2D and 3D models show different gene 
expression levels of various genes responsible for proliferation, chemo sensitivity, angiogene-

sis and invasion [63]. Ovarian cells grown in 3D system shown higher level of gene expression 

of the cell receptors integrins compared to 2D cell culture [99]. Moreover, 3D cell cultures are 

cost effective and time saving for drug screening because they decrease drug trail time whilst 
generating accurate representation of in vivo conditions [6]. Screening using cell-based assays 

has been the initial point for identifying the potential compounds in the early stage of drug 

discovery. Most 3D cell culture models, together with HTS and HCS (high-content screening) 

processes shows promise in identifying clinically relevant compounds.

Characteristics 2D cell culture 3D cell culture References

Morphology Cells grow on a flat surface 
and have flat or stretched 
shape

Cells grow naturally into 3D aggregates/

spheroids in a 3D environment and natural 

shape retained

[126]

Cell shape Single layer Multiple layers [6]

Cell to cell contact Limited cell to cell contact, 

only on edges

Physiologic cell to cell contact similar to in vivo [127]

Distribution of 

medium

Cells receive an equal 
amount of nutrients and 

growth factors from the 

medium during growth.

Cells do not receive an equal medium during 
growth. The core cell receive less growth factors 

and nutrients from the medium and tend to be 

in a hypoxic state, which is very similar to in 

vivo tissues, especially in tumors

[115, 127]

Cell proliferation Generally, cells proliferate 

at a fast rate than in vivo

Cells proliferate faster or slower depending on 

the type of cell or 3D system used

[128–130]

Protein/gene 
expression

Protein and gene 
expression profiles differ 
compared with in vivo 

models

Protein and gene expression profiles more 
similar to in vivo models

[131]

Cell differentiation Moderately differentiated Properly differentiated [132]

Response to stimuli Poor response to 
mechanical stimuli of cells

Good response to mechanical stimuli of cells [133]

Viability Sensitive to cytotoxin Greater viability and less susceptible to external 

factors

[134]

Drug sensitivity Cells are more sensitive to 

drugs and drug show high 

efficacy

Cells are more resistant to drugs and drug show 

low potency

[135]

Cell Stiffness High stiffness Low stiffness [105]

Sub-culturing time Allows cell to be grown in 

culture for up to 1 week

Allows cells to be grown in culture for almost 

4 weeks

[136]

Table 5. Characteristics of 3D cell culture versus 2D cell culture.
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Three-dimensional cell culture models have been shown to be more accurate in assessing 

drug screening, selection and efficacy than 2D models of the diseases [115, 124]. For instance, 

spheroids obtained from patients were used to identify an effective therapy for 120 patients 
with HER2-negative breast cancer of all stages. The results indicated that spheroid 3D culture 

models display present guideline treatment recommendation for breast cancer [113]. In addi-

tion, 3D cell culture models are very powerful in analyzing drug induced toxicity. Organ 

buds of heart, liver, brain and kidney can be used to identify drug toxicity [83]. For instance, 

liver cell spheroid 3D culture used for investigating drug induced liver injury, function and 

diseases. Spheroids generated from human primary hepatocyte found to be phenotypically 

stable and retained morphology and viability for almost 5 weeks, providing toxicity analysis 

of drug molecules [115]. Liver spheroids and organoids also have been used to understand 

the metabolism of drug molecules.

However, many challenges remain in 3D cell culture technologies in the drug discovery pro-

cess. Three-dimensional culture are different in terms of size, morphology, complexity and 
protocol for assaying compared to 2D cell culture, which can lead to challenges in systematic 

assessment, culture and assay protocol standardization. It also has complexity of identifying 

specific phenotypes for drug screening [125]. Moreover, some 3D models have limited perme-

ability, which can impact cell viability and functions thus making it difficult to have accurate 
automated system for HTS. A summary of the differences between 2D and 3D cell cultures is 
given in Table 5.

4. Conclusion

Two-dimensional and 3D cell culture models have been widely used for improving the pro-

ductivity of pharmaceutical research and development. It is evident that 3D culture systems 

hold great potential as a tool for drug discovery compared to 2D cell culture. This is due to 

the improved cell-cell and cell-ECM interactions, cell populations and structures that similar 

to in vivo. However, there are still hurdles to overcome before 3D systems can be widely used 

in industry. More studies are needed to promise reproducibility, high throughput analysis 

and compatibility to demonstrate standardized and validated 3D culture models. In future, 

development of screening compatible 3D models would help to identify early physiological 

relevant efficacy and toxicity data in drug discovery.

List of abbreviations

ADMETox absorption, distribution, metabolism, excretion and toxicity

CaCo-2 human colon carcinoma

CO
2
 carbon dioxide

DDDR drug discovery and development research
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DMEM Dulbecco’s Modified Eagle Medium

ECM extracellular matrix

EDTA ethylenediaminetetraacetic acid

HCS high-content screening

HEP-G2 liver hepatocellular carcinoma

HER-2 human epidermal growth factor receptor 2

HTS high-throughput screening

MDCK-MDR1 Madin-Darby canine kidney cells

MEM minimum essential medium

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PEE polyether ester

PEG polyethylene glycol

PGA polyglycolic acid

PLGA polylactic-co-glycolic acid

PLLA poly-l-lactic acid

RMPI Roswell Park Memorial Institute medium

2D two dimensional

3D three dimensional
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