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Abstract

Production of chemicals and fuels based on CO2 conversion is attracting a spe-
cial attention nowadays, especially regarding the fast depletion of fossil resources 
and increase of CO2 emissions into the Earth’s atmosphere. Recently, plasma 
technology has gained increasing interest as a non-equilibrium medium suitable 
for CO2 conversion, which provides a promising alternative to the conventional 
pathway for greenhouse gas conversion. The combination of plasma and catalysis 
is of great interest for turning plasma chemistry in applications related to pollution 
and energy issues. In this chapter a short review of the current progress in plasma-
assisted catalytic processes for CO2 reduction is given. The most widely used 
discharges for CO2 conversion are presented and briefly discussed, illustrating how 
to achieve a better energy and conversion efficiency. The chapter includes the recent 
status and advances of the most promising candidates (plasma catalysis) to obtain 
efficient CO2 conversion, along with the future outlook of this plasma-assisted 
catalytic process for further improvement.

Keywords: green energy, plasma-based CO2 conversion, plasma catalysis, oxygen 
vacancies, synergistic effect

1. Introduction

The utilization of CO2 for production of fuels, energy storage media, chemicals 
or aggregates is attracting interest worldwide due to the essential contribution of the 
greenhouse gases to the global warming. CO2 capture and utilization are considered 
as a promising option for the mitigation of CO2 emissions, which provides a lower 
carbon footprint for the synthesis of value-added products than those produced 
by conventional processes using fossil fuels. In spite of the continuously increasing 
interest for CO2 recycling, there are significant challenges to overcome due to its 
stable molecular structure and low chemical activity. There are several methods 
that can be used to convert CO2, including traditional catalysis, photochemical, 
biochemical, solar thermochemical, electrochemical and plasma chemical. Snoeckx 
and Bogaerts recently made a detailed comparison of these technologies as shown 
in Table 1 [1]. They concluded that the plasma technology fares very well in this 
comparison and is quite promising. Indeed, nonthermal plasma has attracted much 
attention of the scientific community as a non-equilibrium medium suitable for CO2 
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conversion, which provides an attractive alternative to the conventional pathway for 
CO2 recycling, such as traditional catalysis and solar thermochemical process.

Nonthermal plasmas have been successfully utilized in many applications for 
the environmental control (such as gaseous pollutant abatement), material science 
(such as surface treatment) and medical applications (such as wound and cancer 
treatment) [1–3]. Nowadays, an increasing interest has been focused on examin-
ing their use for CO2 utilization [3–54]. In comparison to the other processes, 
plasma process is fast: plasma has the potential to enable thermodynamically 
unfavorable chemical reactions (e.g. CO2 dissociation) to occur on the basis of its 
non-equilibrium properties, low-power requirement and its capacity to induce 
physical and chemical reactions at a relatively low temperature. In addition, plasma 
can be ignited and shut off quickly, which enables plasma technology powered by 
renewable energy to act as an efficient chemical switch for the conversion purposes. 
Although plasma technology shows great potential, there is always a trade-off 
between the energy efficiency and conversion efficiency in plasma-only process. 
Last but not least, the conversion efficiency can be significantly improved by 
combining plasma with catalyst while maintaining high-energy efficiency.

Plasma catalysis (also referred to as plasma-enhanced catalysis, plasma-driven 
catalysis or plasma-assisted catalysis) has gathered attention as a way of increasing 
energy efficiency and optimizing the byproduct distribution [55]. On one hand, the 
catalyst can increase reaction rates and overall process selectivity. The nonthermal 
plasma can provide energy to drive highly endothermic processes. Plasma-catalytic 
processes have great potential to reduce the activation barrier of different reac-
tions and improve the conversion rates. In addition, the nonthermal plasma itself 
can influence the acid–base nature of the supports, enhance the dispersion of the 

aBio- and photochemical processes can also rely on indirect renewable energy when they are coupled with artificial 
lighting.
bElectrochemical cells are turnkey, but generally the cells need to operate at elevated temperatures and the cells are 
sensitive to on/off fluctuations.
cThe need for post-reaction separation for the electrochemical conversion highly depends on the process and cell type used.
dBiochemical CO2 conversion requires very energy-intensive post-reaction separation and processing steps.
eThe need for post-reaction separation for plasma technology highly depends on the process.

Table 1. 
Comparing the advantages and disadvantages of the different technologies for CO2 reduction (adapted  
from [1]).
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supported metals and even adjust the microstructure of the metal nanoparticles 
and metal-support interface [56, 57] and in this way change the catalyst proper-
ties. All these factors contribute in different ways to the enhancement of energy 
efficiency of the plasma process as well as the catalyst stability, due to a synergy that 
occurs between the catalyst and the plasma [58]. This novel technique combines the 
advantages of high product selectivity from thermal catalysis and the fast startup 
from plasma technique. Plasma catalysis has been widely investigated for many 
applications. Figure 1 briefly summarizes the main application areas of plasma 
catalysis. In the domain of energy applications, the use of plasma catalysis for dry 
reforming, CO2 reduction, hydrogen production, methanation and ammonia (NH3) 
synthesis has been intensively studied. In this chapter, however, we focus only on 
their application for CO2 conversion into value-added chemicals and fuels.

2. Brief theoretical background

2.1 CO2 dissociation chemistry

As mentioned in Introduction, nonthermal plasma shows a great potential for an 
efficient CO2 utilization. Different routes for CO2 conversion have been investigated 
using plasma-catalytic process. Table 2 summarizes some of the main reactions 

Figure 1. 
Applications of plasma catalysis.

Process Reaction Enthalpy (∆H)

kJ mol−1

Enthalpy (∆H)

eV/molecule

CO2 splitting CO2 → CO +    1 _ 
2
    O2 279.8 2.9

Dry reforming of methane CO2 + CH4 → 2CO + 2H2 247.4 2.6

Methanol synthesis CO2 + 3H2 → CH3OH + H2O −128 −1.3

Methanation CO2 + 4H2 → CH4 + 2H2O −164.8 −1.7

Reverse water-gas shift 

reaction

CO2 + H2 → CO + H2O 41.2 0.4

Water-gas shift reaction CO + H2O → CO2 + H2 −41.2 −0.4

Methanation CO + 3H2 → CH4 + H2O −205.8 −2.1

Water spitting H2O → H2 +    1 _ 
2
    O2 250.9 2.6

Table 2. 
Chemical reactions related to CO2 reduction and their enthalpies.
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usually considered in plasma chemistry for CO2 reduction using different pathways 
(such as dry reforming of methane, hydrogenation of CO2). Significant attention has 
been given to plasma-catalytic dry reforming of methane (DRM) using supported Ni 
catalysts. However, most of these studies focused primarily on identifying plasma-
catalytic chemical reactions to maximize process performance. Optical emission 
spectroscopy and plasma chemical kinetic modeling should be used to achieve a better 
understanding on the formation of a wide range of reactive species in this plasma-
catalytic reforming process. Recently, Chung et al. had described the mechanisms of 
catalysis promotion, elucidated the synergistic effects between catalyst and plasma and 
proposed possible approaches to optimize DRM process performance [2]. As explained 
by Fridman [3], cumulative vibrational excitations of the CO2 molecule can result in 
a highly energy-efficient stepwise dissociation. Thus, CO2 splitting using nonthermal 
plasmas has been considered as another promising pathway to produce synthetic fuels 
via CO, as an intermediate product. As well-accepted in the literature, dissociation of a 
CO2 molecule in plasma is represented by the following global reaction [3]:

   CO  2   → CO +   1 _ 
2
    O  2  , ∆H = 2.9 eV / molecule  (1)

The main pathways for decomposition of CO2 molecule include the electron 
impact dissociation:

   CO  2   → CO + O, ∆H = 5.5 eV / molecule  (2)

which is often accompanied by the further recombination of atomic O:

  M + O + O →  O  2   + M  (M is a particle)   (3)

In addition to this, the vibrationally excited CO2 molecules may also undergo 
decomposition via the collisions with atomic O:

  O +   CO  2     
vibr  → CO +  O  2  , ∆H = 0.3 eV / molecule  (4)

as well as with the plasma electrons:

  e +   CO  2     
vibr  → CO +   1 _ 

2
    O  2    (the energy required is << 1 eV)   (5)

Traditionally, to characterize the process efficiency, two main parameters 
reflecting the conversion efficiency and energy efficiency are used. The conversion 
efficiency ( χ ) and energy efficiency ( η ) of CO2 are defined as follows:

  χ =   
 moles of  CO  2   input − moles of  CO  2   output 

   ______________________________________________________________   
moles of  CO  2   input

    (6)

  η =   
χ ∗ 2.9 eV 

 __________________ 
SEI

    (7)

Here the specific energy input (SEI) per molecule is given by the ratio of the 
discharge power (P) to the gas flow rate (F) through the discharge volume.

2.2 Plasma catalysis

When catalysts are combined with plasmas, they can be classified into three 
systems, i.e. single stage, two stage, and multistage, depending on the location of 



5

Progress in Plasma-Assisted Catalysis for Carbon Dioxide Reduction
DOI: http://dx.doi.org/10.5772/intechopen.80798

the catalyst [59, 60]. These three configurations are illustrated in Figure 2. In all 
cases, the plasma can be used to supply energy for catalyst activation, and it can also 
provide the reactive gas species needed for reactions on the catalyst surface. The 
single-stage type is constructed by coating catalyst on the surface of electrode(s) 
or packing catalyst within the plasma zone, which is also called in-plasma catalysis 
(IPC). The catalysts could completely or just partially overlap with the plasma zone. 
In this manner, the plasma and catalysis could directly interact with each other. 
This single-stage system is also easy to combine with the UV irradiation, which is 
known as plasma photo catalysis, as shown in Figure 2. For the two-stage type, the 
catalyst is placed after the plasma discharge region; it is also called post-plasma 
catalysis (PPC). The plasma provides chemically reactive species for catalysis or 
pre-converts reactants into the easier-to-convert products to accelerate the catalysis. 
In the nonthermal plasma catalysis system, the long-lived reactive species produced 
by plasma, e.g. vibration-excited species, radicals, and ionized molecules, can react 
with the catalyst to induce catalytic reactions via either the Eley-Rideal mechanism 
or Langmuir-Hinshelwood mechanism [2, 59]. The multistage plasma catalysis 
system is a promising option for the industrial use in the future. Different functions 
of the catalysts can be combined to achieve certain expected reaction in the multi-
stage system.

In the context of plasma catalysis, the synergy is referring to a surplus effect of 
combining the plasma with catalyst, namely, when the resulting effect has a higher 

Figure 2. 
Schematic diagram of different plasma-catalyst configurations according to the catalyst bed position and 
number.
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impact than the sum of their individual impacts. In several studies, the combination 
of plasma and catalysts has been found to have synergistic effects [34, 35, 61, 62]. A 
highly important synergistic effect of plasma catalysis is promotion of catalyst activ-
ity at reduced temperatures, and hence, a significant reduction in the energy cost 
for activating the catalyst [34]. For example, Wang et al. illustrated such synergy 
for plasma catalysis of dry reforming methane (DRM) in the single-stage system 
with Ni/Al2O3 catalyst but did not observe this synergy in the two-stage system or 
when the catalyst is only placed at the end of the plasma zone [62]. Typical syner-
gistic effect factors of 1.25–1.5 were obtained. Zhang et al. presented the results on 
the plasma-catalyst synergy in the case of dry reforming methane using different 
Cu-Ni/γ-Al2O3 catalysts [63]. The effect was observed on the conversions of CH4 and 
CO2, where the result for the plasma-catalytic reaction was greater than the sum of 
the catalyst-only or plasma-only results. The selectivity towards H2 and CO produc-
tion was also enhanced by the use of plasma catalysis. In general, the enhanced 
performance of plasma catalysis can in part be attributed to vibrational excitation 
of CO2 in the plasma, which enables easier dissociation at low temperature on the 
catalyst surface. The plasma electrons in turn affect the catalyst properties (chemical 
composition or catalytic structure). Synergistic effects in the plasma and catalyst 
are illustrated in Figure 3. Plasma can alter the physicochemical characteristics of 
catalyst via several routes, which are induced mainly by energetic electron genera-
tion. In the meantime, a catalyst can induce electric field concentration due to its 
pore structure and dielectric properties. Hence, both electric field distribution and 
catalyst characteristics are modified to have better DRM performance.

3. Plasma-assisted catalytic conversion of CO2

Nonthermal plasma technology provides an attractive alternative to the other 
(classical) technologies for converting inert carbon emissions. Different types of 
plasmas have already been used for CO2 reduction, including dielectric barrier 
discharges (DBDs), glow discharges, radio frequency (RF) discharges, microwave 
(MW) discharges and gliding arc plasma (GAP) and corona discharges [8–39]. In 
this section, the most widely used discharges for CO2 conversion are presented.

Figure 3. 
Interaction between catalyst and plasma.
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DBDs have been known for more than a century. They were first reported in 
1857 by Siemens for the use in ozone production and were originally called ‘silent’ 
discharges [64]. The DBD is the most widely used discharge type for CO2 conversion 
among the variety of other plasma sources because it is easy to handle with relatively 
cheap equipment and it operates at atmospheric pressure [34]. Even though the con-
version efficiencies obtained in DBDs are generally quite low [1, 4, 5, 8, 9, 12, 13], the 
possibility to work at atmospheric pressure under non-equilibrium conditions is still 
a very strong advantage of these discharges. Combined with plasma catalysis, these 
discharges should also improve the selective production of the targeted compounds.

An atmospheric pressure GAP discharge can be formed between two flat knife-
shaped electrodes with a gas flowing between them. These discharges are suitable 
for applications that require relatively large gas flows (several l/min). The gliding 
arc plasma can be operated in the thermal and nonthermal regime depending on the 
applied power and flow rate. Furthermore, the arc can be operated in the transition 
regime, which is an evolving arc starting in the thermal regime going to the nonthermal 
regime. This transition regime makes the discharge energy efficient for gas treatment. 
An energy efficiency of 43% was reported by Nunnally et al. for the decomposition of 
CO2 in a reverse vortex flow gliding arc discharge, which is quite high compared to the 
efficiency obtained with DBDs (about 10%) [31]. The high level of efficiency can be 
attributed to non-equilibrium vibrational excitation of CO2 and a high-temperature 
gradient between the gliding arc and the surrounding gas that results in fast quenching.

Plasmas generated by the injection of microwave power, i.e. electromagnetic 
radiation in the frequency range of 100 MHz–10 GHz, are called MW plasmas [65]. 
MW discharges are commonly generated using frequencies of 2.45 and 0.915 GHz. 
They can be operated over a wide pressure range (from few mTorr to the atmo-
spheric pressure). The properties of the MW discharges operating at atmospheric 
pressure are close to those of thermal plasma. However, the MW discharges are far 
from thermodynamic equilibrium at low pressure. The performance of a microwave 
discharge in terms of efficiency of CO2 dissociation process depends heavily on 
the plasma parameters such as power and operating pressure. The highest energy 
efficiency (about 90%) for pure CO2 conversion was reported in a MW plasma oper-
ating with supersonic gas flows [22]. The ability to create a strong non-equilibrium 
environment in microwave discharges possesses highly vibrational states of CO2 
molecules, which are energy-efficient for CO2 decomposition [3]. In general, the high 
efficiency of microwave plasmas is attained due to the high absorption of the applied 
power by electrons as well as relatively high excitation of the CO2 asymmetric mode 
[24], which plays a key role for CO2 decomposition [22]. In the low-pressure case, the 
microwave plasmas are typically characterized by an electron temperature around 
1–2 eV and a gas temperature below 1500 K. Under these conditions, it has been 
estimated that about 95% of all the discharge energy is transferred from the plasma 
electrons to the CO2 molecules, mostly to their asymmetric vibrational mode [3, 24].

Bogaerts et al. has presented some insights into how the electron energy is 
transferred to different channels of excitation, ionization or dissociation of the 
CO2 molecules [1, 66]. Figure 4 illustrates the fractional energy transferred from 
electrons to different channels of excitation, ionization and dissociation of CO2, as 
a function of the reduced electric field (E/n) in a discharge. This plot is calculated 
based on the cross sections of the corresponding electron impact reactions [1, 37, 
66]. In microwave plasma, the reduced electric field is typically around 50 Td, 
which is most appropriate for the vibrational excitation of CO2. Fridman has shown 
that up to 97% of the total nonthermal discharge energy can be transferred from the 
plasma electrons to vibrational excitation of CO2 molecules at an electron tempera-
ture around 1–2 eV or a reduced electric field (E/n) of about 20–40 Td [3, 36]. This 
is indeed indicated by the calculated curve referred to as the ‘sum of all vibrations’ 
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shown in Figure 4. Moreover, the purple curve in Figure 4 has its particular impor-
tance as it represents the first vibrational level of the asymmetric vibrational mode 
of CO2, which represents the most important channel for the dissociation [66]. The 
energy efficiency for the dissociation of CO2 is quite limited in a DBD plasma [3, 
4, 11–13]. The electron temperature in a DBD is about 2–3 eV, which is somewhat 
high for efficient population of the CO2 vibrational levels. The reduced electric field 
values are being typically about 200 Td or even higher, indicated as ‘DBD region’ in 
the figure. As a result of previous studies on CO2 decomposition in plasma, it was 
concluded that higher pressures and lower values of reduced electric field make 
the vibrational excitation mechanism more favorable than the electronic excitation 
mechanism, explaining the higher energy efficiency of these types of discharges 
(e.g. MW, GAP) [1, 3, 22, 26, 28, 32, 33, 35, 37, 38].

3.1 MW region

In this chapter we have summarized the results from the recent publications 
on plasma set-ups with and without combining a catalyst for CO2 conversion 
in Table 2 and discussed the current research status on this topic. Porous Al2O3 
(α-Al2O3 and γ-Al2O3) has been investigated in a pulsed corona discharge reactor 
for CO2 conversion by Wen et al. [39]. γ-Al2O3 was found to enhance CO2 conver-
sion due to its high surface area and strong adsorption capability. Zhang et al. 
investigated CO2 decomposition to CO and O2 in a DBD reactor packed with a 
mixture of Ni/SiO2 catalyst and BaTiO3 spheres. In comparison to the reaction 
in the absence of a Ni/SiO2 catalyst, introducing a Ni/SiO2 catalyst to the plasma 
reactor packed with BaTiO3 spheres slightly increase the CO2 conversion from 
19 to 23.5% at low temperatures [17]. Van Laer demonstrated a packing of ZrO2 
beads in a DBD reactor. The best combination of conversion (37.8%) and energy 

Figure 4. 
The fraction of electron energy transferred to different channels of excitation as a function of the reduced 
electric field (E/n) (adapted from [1]).
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(6.4%) efficiency was reached at a flow rate of 20 mL min−1 and an input power 
of 60 W [16]. Their simulation results suggest that the increased CO2 conversion 
is caused by the presence of strong electric fields and thus high electron ener-
gies at the contact points, which thereby lowers the breakdown voltage. These 
findings suggest that the interactions between plasma and packing materials 
play an important role in the plasma conversion of CO2. Brock et al. studied the 
catalytic effect of metallic coating on the decomposition of CO2 in fan-type AC 
glow discharge plasma reactors, using a gas mixture of 2.5% CO2 in He [19]. They 
showed that an Rh-coated reactor has the highest activity for the CO2 decomposi-
tion compared to the reactors coated with Cu, Au, Pt and Pd and mixed rotor/
stator systems (Rh/Au and Au/Rh).

In relation to microwave plasmas, Chen et al. reported that placing a NiO/
TiO2 catalyst in the downstream of a low-pressure microwave plasma significantly 
increased the CO2 conversion efficiency and energy efficiency [25, 28]. They 
concluded that the oxygen vacancies provide the sites for adsorption of oxygen 
atoms from CO2. The energetic electrons supplied by the plasma enhance the 
dissociative electron attachment of CO2 at the surface. Recently, Ray et al. found 
that CO2 conversion was enhanced upon packing CeO2 into the discharge region 
of a DBD reactor. They also suggest this enhancement can be mainly attributed to 
the formation of oxygen vacancy defects on the surface of CeO2, to stabilize the 
produced atomic oxygen, thereby preventing the revise reaction [18]. Spencer 
et al. experimentally investigated the conversion of CO2 in an atmospheric pressure 
microwave plasma-catalytic system [21]. The results showed that Rh/TiO2 coating 
on a monolithic cordierite structure used as a catalyst actually caused a drop in 
conversion efficiency due to reverse reactions occurring on the surface. Mei et al. 
demonstrated that the combination of plasma with BaTiO3 and TiO2 catalysts has 
a synergistic effect, which significantly enhances the conversion of CO2 and the 
energy efficiency by a factor of 2.5 compared to the plasma reaction in the absence 
of a catalyst [7]. The overall synergistic effect resulting from the integration of 
DBD with catalysis for CO2 conversion can be attributed to the dominant catalytic 
surface reaction driven by energetic electrons from the CO2 discharge. Theoretical 
and experimental studies consistently showed that the CO2 adsorption, activation 
and dissociation processes were significantly enhanced by the presence of oxygen 
vacancies [7, 23, 28, 67, 68]. The mechanism of plasma-catalytic CO2 conversion can 
be described by Figure 5. The oxygen vacancies provide sites for the adsorption of 

Figure 5. 
Schematic mechanism of plasma-assisted catalytic process for CO2 conversion.
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oxygen atoms from CO2. The energetic electrons supplied by the plasma enhance 
the dissociative electron attachment of CO2 at the surface. Subsequently, CO 
desorbs or moves from the reactive site while the other O (bridging) atom ‘heals’ 
the oxygen vacancy. The oxygen vacancy can be regenerated via the recombination 

Plasma 

type

Comments Gas 

mixture

Catalyst χ 

(%)

η 

(%)

SEI

eV/

molecule

Ref.

DBD CO2 — 17 9 5.8 [4]

DBD CO2 — 30 1 87 [5]

DBD CO2 γ-Al2O3 20 4.9 12 [6]

DBD CO2 BaTiO3 38 17 6.5 [7]

DBD CO2 — 18 4 13 [8]

DBD Low flow rate CO2 — 14 8 5.2 [9]

DBD 10% CO2 in the 

gas mixture

CO2-

H2O-Ar

Ni/γ-Al2O3 36 23 4.5 [10]

DBD CO2 — 35 2 50.8 [11]

DBD CO2 — 28.2 11.1 7.4 [12]

DBD CO2-N2 — 4.5 4.5 2.9 [13]

DBD CO2 CaO 39.2 7.1 16 [14]

DBD CO2 — 20 10.4 5.6 [15]

DBD CO2 ZrO2 2.9 9.6 9.6 [16]

DBD CO2 Ni/

SiO2 + BaTiO3

23.5 2.31 29.5 [17]

DBD CO2 CeO2 (2 mm) 10.6 27.6 1.11 [18]

DBD CO2 TiO2 (3–4 mm) 8.2 15.54 1.53 [18]

Glow CO2-Ar Rh-coated 30 1.4 62 [19]

RF CO2 — 20 3 19 [20]

MW CO2-Ar — 10 20 1.4 [21]

MW Supersonic 

flow

CO2 — 10 90 0.3 [22]

MW CO2 NiO/TiO2 42 18 7.0 [23]

MW CO2-N2 — 80 6 39 [24]

MW CO2 — 20 20 2.9 [25]

MW CO2 — 12 45 0.8 [26]

MW CO2:H2O = 1:1 CO2-H2O — 12 8.7 4 [27]

MW CO2 NiO/TiO2 45 56 2.3 [28]

MW CO2 — [29]

Corona CO2 — 11 2 16 [30]

Gliding 

arc

CO2 — 4.6 43 0.3 [31]

Gliding 

arc

CO2 — 15 19 2.3 [32]

Gliding 

arc

CO2 — 10 34 0.85 [33]

Table 3. 
Summary of the plasma-assisted catalytic CO2 conversion for different discharge types.
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on the surface of a bridging oxygen atom with a gaseous oxygen atom. Such regen-
eration maintains the equilibrium of the active sites in the catalyst and controls the 
CO2 conversion [23]. If the catalyst is placed in the plasma zone (single stage), the 
electron–hole pairs can be created by highly energetic electrons from the discharge 
upon the surface of photocatalysts once plasma can generate electrons of very 
similar energy (3–4 eV) to the photons. In this case, oxygen vacancy can be regener-
ated by oxidizing the surface O2

− anions using holes, followed by releasing O2 [7]. 
Plasma-catalytic conversion of CO2 is a complex and challenging process involving 
a large number of physical and chemical reactions. The performance of the process 
is controlled by means of plasma parameters and the properties of the catalysts as 
well. This suggests that more systematic studies on both the plasma effects and the 
chemical effects of the catalyst are highly needed (Table 3).

4. Conclusions and perspectives

Plasma-assisted catalytic processes used for CO2 reduction are gaining increas-
ing interest worldwide. There is still a room, however, for further improvement of 
the CO2 conversion and energy efficiencies through the optimization of the plasma 
parameters (e.g. high pressure and high flow rate) as well as through modification 
of catalysts.

The plasma-catalytic activities can be controlled by numerous factors such as the 
nature of the catalyst support, active metal sites, surface area and the nanoparticle 
size. Let us note that the catalyst preparation (sometime called ‘activation’) plays a 
very important role in this regard. In addition to these factors and also due to their 
existence, the fine-tuning of a given catalyst is inevitable and crucial factor for 
enhancing plasma-catalytic process efficiency. Several methods, such as loading 
different metal nanoparticles, using different catalyst preparation schemes (sol gel, 
co-precipitation, deposition-precipitation or hydrothermal synthesis), using larger 
surface area of the support, etc., can be mentioned to realize the mentioned tuning.

An important factor which cannot be omitted here is that a chosen catalyst mate-
rial should have rather low costs to be potentially commercialized and implemented 
in the industrial scale. Moreover, as a result of recent development of the microwave 
discharges, namely, a possibility to place catalyst packing directly in the discharge 
zone can be a powerful way to take advantage of the stepwise vibrational excita-
tion on the catalyst surface. In addition, using plasma as a tool for the preparation 
(activation) of the catalyst surface may be another promising way. To improve its 
application, a better insight into the underlying mechanisms of the plasma catalysis 
is desirable. A greater understanding of the plasma chemistry, both by plasma 
modeling and by coupling with other techniques such as catalysis and membrane 
materials, will allow this field to expand. We expect that the results presented in 
this chapter will provide useful insights into the plasma-assisted CO2 conversion 
in the presence or the absence of catalysts, which may be used for greenhouse gas 
conversion in the industry.
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