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Abstract

Chitosan (CS) is a polymer obtained from chitin, being this, after the cellulose, 
the most abundant polysaccharide. The fact of (i) CS being obtained from renew-
able sources; (ii) CS to possess capability for doing interactions with different 
moieties being such capability dependent of pH; (iii) plenty of possibilities for 
chemical modification of CS; and (iv) tuning the final properties of CS deriva-
tives makes this polymer very interesting in academic and technological points of 
view. In this way, hydrogels based on CS and on CS derivatives have been widely 
used for biomedical applications. Other important technological applications can 
be also cited, such as adsorbent of metals and dyes in wastewater from industrial 
effluents. In pharmaceutical field, hydrogels based on CS are often used as drugs’ 
and proteins’ carrier formulations due to the inherent characteristics such as the 
biocompatibility, nontoxicity, hydrophilicity, etc. This chapter is an attempt for 
updating and joining the plenty of available information regarding the preparation, 
characterization, and biomedical application of hydrogels based on chitosan and 
chitosan derivatives. More than 260 references are provided, being the majority of 
them published in the last 10 years.

Keywords: hydrogels, chitosan, chitosan derivatives, biomedical application,  
protein and drug delivery

1. Introduction

Among the diverse types of polymeric materials, the biopolymers represent an 
important class. Extensive research has been conducted on biodegradable polymeric 
materials, mainly because they are, in a huge majority, from renewable sources. 
Some of them present wide availability in nature and can be obtained for a low 
price. Frequently, they exhibit characteristics such as controlled reactivity, low 
toxicity, biocompatibility, biodegradability, and filmogenic properties [1, 2]. These 
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materials have gained attention due to environmental issues such as the reuse of 
organic waste and/or its reduction, preservation of natural resources [3–5].

There are a number of diverse naturally occurring polymers, such as those 
belonging to the class of polyesters, those obtained from bacterial sources, polymers 
of animal origin, proteins, and polypeptides. They can be easily used to produce 
fibers or particles at micro- or nanoscale for diverse and interesting pharmaceutical 
applications [6, 7]. Polysaccharides, in general, have some abundance in nature and 
are also biodegradable and nontoxic [8], making them an active subject of study. 
Because it is a vast field, many other polymers can also be used, and the decision 
must be according to the sought-after application. Chitosan (CS) is one of most 
important examples.

Chitosan is obtained from chitin (CT) that is the most abundant polysaccharide 
after cellulose [8]. CT is a linear, natural, biodegradable, biocompatible, and non-
toxic polymer that is insoluble in most solvents [8, 9]. Chitosan is applied in several 
fields: agriculture, waste treatment, food, textile, and pharmaceutical industries, 
cosmetics development, and biomaterials such as gels, films, polymer membranes, 
and nanofibers [8, 9]. The vast and numerous applications are due to the chitosan’s 
interesting properties. In addition to those mentioned, healing, antimicrobial, anti-
fungal, and chelating properties may be also included [10, 11]. Besides, different 
methodologies and strategies for chitosan applications have been proposed in the 
literature. Development of hydrogels is one of such methodologies that have gained 
much attention. Hydrogels are three-dimensional structures formed by hydrophilic 
polymers that can absorb water or biological fluids [12]. The absorption capacity is 
due to the presence of cross-linking points, which can be chemical or physical, mak-
ing these structures insoluble, with the possibility of controlling the pore size in 
the hydrogels during the preparation method [13]. Because of these characteristics, 
they have been widely used in various fields of science, such as pharmacy, environ-
mental chemistry, and biomedicine [8, 14].

Hydrogels based on chitosan have attracted lot of attention since this biopolymer 
is degraded in humans by lysozyme [15], making it highly attractive for the fabrica-
tion of dressings. The chitosan dressings can, for example, aid in the absorption of 
wound secretions and control the hydration of the affected region. Furthermore, for 
another application in biomedicine, that is, skin regeneration, the polysaccharide chi-
tosan, in addition to exhibiting the aforementioned several characteristics of interest, 
reduces the healing time of lesions caused by compromises, stimulates cell prolifera-
tion, and confers excellent mechanical resistance on the biomaterials [16–18].

In this chapter, the focus was on hydrogels based on chitosan and its derivatives. 
The study sought to harness the properties of chitosan toward hydrogel applications 
and to investigate its extensive use in the field of biomedicine.

1.1 Basic concepts and useful properties of hydrogels

Hydrogels are defined as three-dimensional (3D) polymer networks formed by 
cross-linking hydrophilic homopolymers (or copolymers) that have the ability to 
absorb large amounts of water and/or biological fluids [19]. Plenty of materials, 
both natural and synthetic, or mixture of them, fit the definition of hydrogels.

The physical, chemical, and mechanical properties of hydrogels are dependent 
on intra- and intermolecular interactions among polymer groups or chain segments 
and solutes/solvents that may be present inside of 3D structure. The interest in 
this class of materials (hydrogels) has increased significantly in the academic and 
technological media due, mainly, to the inherent characteristics such as malleability, 
biocompatibility, nontoxicity, and swelling in the presence of water or biological 
fluids, without, however, dissolving [20]. The studies show that the most important 
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characteristic of hydrogels, the swelling, can be significantly altered through varia-
tion of external stimuli. Such change is accompanied by alteration in mechanical 
and morphological properties [21, 22].

Depending on the nature of the 3D network, hydrogels can be divided in two 
categories: (i) chemical hydrogels and (ii) physical hydrogels. The 3D matrix of 
chemical hydrogel has cross-links, which are formed by covalent bonds; in the other 
class, the 3D matrix is formed by physical interactions. Such physical interactions 
arise due to the presence of (i) groups with opposite electrical charges (electrostatic 
interactions, as in the case of polyelectrolyte complexes or PECs) and (ii) dipolar 
or hydrophobic groups (that works for physical hydrogel forming, as is the case 
of the hydrogels obtained by the process of freezing-thawing) [23, 24]. Thus, the 
use cross-linking agents is not needed for preparing physical hydrogels. Another 
characteristic that distinguishes physical hydrogels is the reversibility of cross-links, 
that is, the 3D matrix of a physical hydrogel can be destroyed by varying pH, tem-
perature, ionic strength, etc. A typical example of physical hydrogel is that obtained 
by cross-linking alginate through complexation of carboxylic groups (existing in 
alginate chains) with calcium ions [19, 25]. A very widespread model known as egg 
box is used to explain this type of gelation [26]. The alginate/Ca2+ matrix may be 
broken down under acidic conditions and/or by the addition of EDTA [27].

In the case of physical hydrogels, polymer-ion (for example, alginate/Ca2+ 
matrix) or polymer-polymer interactions (for example, complexation between 
anionic and cationic polymers) should prevail in relation to the polymer-solvent 
interactions. Without such prevalence, the gelation process would be prevented 
from occurring.

Several methods can be used for the production of chemical hydrogels. Those 
involve radiation polymerization by free radicals, for example, the polyacrylamide 
hydrogel made by acrylamide reaction (AAm) in the presence of methylenebi-
sacrylamide (MBAAm); hydrogels can also be made by polycondensation such 
as the cross-linking of polysaccharides by reaction with dialdehyde that is very 
frequent in literature. Other important example of hydrogel by polycondensa-
tion is the obtainment of chitosan hydrogel by reaction with glutaraldehyde. The 
disadvantage of such methods is the need for using initiators and/or catalysts. 
Such a disadvantage ceases to exist if the polymerization/cross-linking is induced 
by irradiation, for example, gamma radiation, which produces pure, sterile, and 
residue-free hydrogels and, beyond this, no catalysts or additives are required 
to initiate the reaction [28]. Because of this, obtaining hydrogels is a very useful 
method in the preparation of hydrogels for medical applications, where even a 
small contamination is undesirable [29, 30]. In this case, the disadvantage is the 
use of high-cost and rigidly controlled equipment that makes this process of little 
accessibility in many research groups.

The history of hydrogels began in the 1950s when Wichterle and Lim synthe-
sized hydrogels based on 2-hydroxyethyl methacrylate copolymer with ethylene 
dimethacrylate [31] and applied them as contact lenses. They were the first gelati-
nous contact lenses with proven biocompatibility. The great commercial success 
of gelatinous contact lenses stimulated enormous interest in this type of materi-
als. Subsequently, a wide range of studies enabled the development of hydrogels 
with different chemical structures, morphologies, and properties through several 
methodologies. The state of the art in the area of hydrogels is the synthesis of “intel-
ligent” or “smart” hydrogels that modifies their properties once exposed to change 
of external stimulus, such as pH, temperature, light, or electric field [32]. Hydrogels 
sensitive to pH and temperature have been played an important role in the control 
of the drug transport and the drug delivery systems, because temperature and pH 
are important environmental factors in biomedical systems [33–35].
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The use of natural polymers in the preparation of hydrogels has attracted the 
attention of many researchers both for their natural abundance and for their better 
biocompatibility when used as biomaterials, with chitosan being one of the most 
commonly used [36]. Hydrogels derived from natural sources are advantageous 
because of their inherent biological properties and are widely researched for tissue 
engineering applications. However, as with other naturally occurring materials, 
variation in batch composition represents an important disadvantage [37].

1.2 Techniques often used for hydrogel characterization

The analysis of morphology, molecular structure, mechanical properties, and 
sensitivity to pH and temperature can be done through a great number of qualita-
tive and quantitative techniques. The capability of absorbing liquids (swelling) is 
the main property of hydrogels, which depends on the hydrophilicity of the hydro-
gel matrix. From this characteristic, another important aspect arises: the liquid 
retention capacity of the hydrogel matrix. Changes associated to the swelling (or the 
shrinking), are controlled by various parameters such as temperature, pH, salinity, 
and ionic strength of the medium [38]. Superabsorbent hydrogels have the ability 
to absorb and retain large amount of liquid (S ≥ 100) [39]. They are prepared using 
highly hydrophilic moieties (polymers or monomers) and have important techno-
logical applications, for instance, in environment (as ion and/or dye absorbent) 
[40] and agriculture (as soil conditioner or nutrient carriers) [41].

The absorbability of the liquid or the swelling (S) capability of the hydrogels is 
generally calculated by the following equation [39].

  S =  ( W  s   –  W  d  )  /  W  d    (1)

where Ws is the weight of the swollen hydrogel and Wd is the weight of the dry 
hydrogel. Thus, this ratio relates the amount of the mass of liquid absorbed to the 
mass of dry hydrogel. The parameter S can be evaluated aiming to determine the 
maximum mass of fluid that a giving hydrogel is capable of absorbing (steady state) 
or can be evaluated at different time intervals to determine the kinetic swelling up 
to the equilibrium has been reached.

Evaluation of parameters related to swelling kinetics is important for hydrogel 
characterization during swelling. The swelling process is controlled by diffusion 
and/or relaxation. Different models for predicting the release behavior of hydrogel 
matrices dipped in pure solvent, solvent mixture, or solute-solvent solution have 
been developed. Brazel and Peppas [42, 43] developed a semiempirical equation 
that is widely used, even if it fits only for the initial 60% of the absorbed consumer 
liquid. In this way, other mathematical models have been proposed to fit the swell-
ing profile in the whole time scale [44].

Aspects such as the type of functional groups present at polymer chains, the 
network type, the cross-link density, etc., as well as the intermolecular interactions 
(e.g., H-bond, ionic interactions, etc.), define the physical and chemical properties 
of hydrogels. They have been thoroughly investigated by infrared (FTIR) tech-
niques [45, 46], X-ray photoelectron spectroscopy (XPS) [47], nuclear magnetic 
resonance (NMR), and Mossbauer spectroscopies [48]. Differential scanning 
calorimetry (DSC) and thermogravimetry (TGA) have been used for analysis of 
thermal behavior [49], while the crystallinity of the hydrogels have been evaluated 
mainly by small and wide X-ray diffraction measurements (SAXS and WAXS) 
[49–51]. Different methods have been effectively used for evaluating mechani-
cal properties of the hydrogels and hydrogel composites. For example, the elastic 
modulus (E) can be evaluated using data collected on a texturometer equipment 



5

Hydrogels Based on Chitosan and Chitosan Derivatives for Biomedical Applications
DOI: http://dx.doi.org/10.5772/intechopen.81811

that allows to correlate the necessary force (stress) to induce deformation of these 
soft materials during compressive tests (for example, strain-stress measurements of 
compression). In addition, rheological measurements should be cited here [52].

Very important parameters, such as the size of pore and the porous distribution 
of hydrogel and hydrogel composites, as well as the dispersion of the loads inside 
the matrix, can be obtained from the images obtained from sample under stress 
using microscopies techniques. Atomic force microscopy (AFM) in its different 
modalities is often used to evaluate the surface morphology and topography of 
hydrogel and hydrogel composites [53, 54]. Finally, scanning electron microscopy 
(SEM) and transmission electron microscopy (TEM) [54] are also very often 
techniques for analyzing the structure of hydrogels. In this way, lyophilization of 
swollen hydrogels and further fracture are important strategies for analysis of pore 
size and its distribution within the 3D matrix.

2. Chitosan obtainment through chitin deacetylation

Chitosan is a β-(1→4)-d-glucosamine copolymer obtained from chitin [55]. The 
main sources for chitin extraction and production are crustaceous shells, mollusks, 
insects, silkworm chrysalides, and microorganisms [56]. Chitin is commonly syn-
thesized in six steps: (i) pretreatment, (ii) demineralization, (iii) deproteinization, 
(iv) bleaching, (v) deodorizing, and (vi) drying [57]. In the pretreatment pro-
cesses, washes of the specific chitin source are carried with distilled water, aiming 
to remove vegetal compounds, organic tissues, contaminants, clays, and soil resi-
dues [58]. Demineralization process is carried out using diluted hydrochloric acid 
solutions under heating, aiming to decrease ash and mineral residues as calcium 
and magnesium. Other common reagents that may be used for the demineralization 
of chitin sources are nitric, sulfur, and acetic acids. The deproteinization process 
is performed using diluted sodium hydroxide solution for the removal of proteins. 
This process must be performed after the demineralization process. Reagents often 
employed in the deproteinization processes include sodium carbonate, potassium 
hydroxide, sodium phosphate, and calcium hydroxide [58]. Bleaching and deodor-
izing processes are responsible for removing color pigments and improving the 
taste of the prepared polysaccharide, respectively. Both processes can be performed 
by using diluted sodium hypochlorite solution [55]. Mixture containing sodium 
hypochlorite and hydrochloric acid needs sometimes to be used [55]. After each 
process, subsequent washes with distilled water must be performed, aiming to 
neutralize the final polysaccharide. Drying processes either by lyophilization under 
−60.0°C or in an oven at temperatures ranging from 60.0 to 80.0 ± 1.0°C are com-
monly performed [59].

Chitosan is widely prepared from the chitin deacetylation using concentrated 
sodium hydroxide solution containing sodium borohydride with the aim of avoid-
ing the polysaccharide degradation [60]. Many primary amino groups are removed 
from the chitosan molecule during hydrolyze reaction, resulting in polysaccharide 
chains with different sizes [61]. In this case, the molar mass distribution is influ-
enced for parameters such as extraction time, temperature, reagent concentration, 
and atmospheric conditions. So, chitosan molecules can have different molar 
masses as compared to parent chitin. Beyond this, deacetylation degrees and 
viscosities are influenced by deacetylation process that may significantly affect the 
performance of the final polysaccharide [62]. Some important parameters that are 
monitored during the obtainment of chitosan with high deacetylation degree are 
temperature [63], concentration of sodium hydroxide, and step numbers evolved 
on chitin modification reaction [64]. Enzymatic deacetylation of chitin for the 
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production of chitosan is an excellent alternative to offset some disadvantages of 
the chemical deacetylation process such as high energy consumption, generation 
of acid and alkaline residues, and environmental concerns [59]. Currently, 1 ton 
billion of chitin and chitosan are annually produced, around the world, by biologi-
cal processes. The chitin and chitosan production is industrially important, as these 
polysaccharides are not found in high amounts in the natural environment due to 
their high biodegradability. Hydrolytic enzymes such as lysozyme, chitinase, chitin 
deacetylase, and chitosanase are commonly present in body tissue of animals, 
plants, and soil, avoiding the bioaccumulation of chitin and chitosan in the natural 
environment. It is estimated that approximately 50,000 tons per year of chitin is 
worldly produced with 30,000 ton per year from crustaceous shells, excluding the 
Krill that has potential to produce 56,000 tons per year of chitin. Depending on the 
extraction method of chitin and production of chitosan, it is possible to recovery 
proteins, astaxanthin and carotenoid [65].

The main source of chitosan production is from chitin. For producing 1 kg of 
chitosan from shrimp shells with 70% deacetylation degree, 6.3 kg of hydrochloric 
acid, 1.8 kg of sodium hydroxide, and 1400 L of water are necessary. The yield 
for producing chitin from insects, shrimp shells, and silkworm chrysalides ranges 
from 1.4 to 2.0, 10 to 15, and 6 to 10%, respectively [55]. Commercial chitosan 
has deacetylation degree ranging from 70 to 95% and molar mass from 1.0 × 
104 to 1.0 × 106 g mol−1 [59]. The acetylation reaction can be used for obtaining 
chitosan with deacetylation degree around 50% and high solubility in water [66]. 
Chitin and chitosan are commercially produced in India, Japan, Poland, Norway, 
Australia, and China with costs that are dependent on the physical and chemical 
properties and desired application [55].

Chitin is extracted from different sources in α-chitin, β-chitin, or γ-chitin forms 
as indicated in Figure 1a–c. The α-chitin is the most abundant form of chitin that is 
commonly found in crab, shrimp, and lobster shells. It is rarely found in insects and 
fungi. β-Chitin is a rare form that can be also found in insects, chrysalides, crusta-
ceous, and fungi. However, β-chitin is commonly found in squids. Finally, γ-chitin 
is found in cocoons of insects [55]. The α-chitin, β-chitin, and γ-chitin are identified 
by the position of acetyl groups in the molecular structure. The α-chitin is formed 
by repeating polymer units containing acetyl groups in opposite sides, alternating 
their position to each monomer (Figure 1a). The β-chitin has acetyl groups alternat-
ing to each two monomers (Figure 1b), while the γ-chitin has two acetyl groups in 
the same side of two monomers, followed by one acetyl group of the opposite side in 
the third monomer (Figure 1c) [67].

2.1 Properties of chitosan

CS is a nontoxic (DL50 of 16 g kg−1, studies in vivo using rats), biodegradable, 
biocompatible, antiallergenic, anticoagulant, antifungal, and antimicrobial poly-
saccharide. These properties are important to apply CS as a biomaterial in medicine, 
pharmacy, and so forth [68]. Many biomaterials are developed by using CS as solid 
support due to its feasible biological properties. For instance, capsules of controlled 
drug release and adhesive films have been registered by the US Food and Drug 
Administration (FDA) for human applications. Moreover, CS-based biomateri-
als can be employed in controlled drug release systems, wound healing, filtration 
membranes, and so forth [66]. CS has been studied for the synthesis of medical 
biomaterial [69] due to its alkaline characteristic. As CS can be a zwitterionic 
polysaccharide that contains cationic/anionic groups in its molecular structure, 
it is efficient for the controlled drug release systems [69], water and wastewater 
treatment [70], and immobilization of enzymes [71]. The amino groups in the CS 
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molecules have pKa values of approximately 6.5, which are deprotonated in higher 
pHs. Thus, the charge density depends on the pH value and deacetylation degree 
[55]. CS/silver zeolite composite films can be used for producing burn dressings 
[72], CS-hydroxyapatite composites can be used for hard tissue regeneration [73], 
and composite of CS/montmorillonite can be used as matrix for prolonged delivery 
of some nitric oxide donor compounds [74]. The application of CS as support for 
the synthesis of composite biomaterials depends on its physiochemical proper-
ties such as deacetylation degree and molar mass [75]. Composite materials based 
on polysaccharides are generally formed by blending either inorganic or organic 
species to polymer molecules. These composites may be synthesized by electrospray 
[76], sol-gel process [77], thermomechanical process [78], solvothermal method 
[79], precipitation and coprecipitation methods [80], solvent casting and evapora-
tion process [81], simple mixing and heating method [75], biomimetic method 
[82], alternate soaking method [83], and so forth. Composite materials have 
physiochemical properties different from those ones of initially individual materi-
als and depend on the type of the formed product. For instance, CS-magnetite 
composite has biodegradability, biocompatibility, mechanical resistance, and 
magnetic sensibility [84], and the CS-hydroxyapatite composite is pH-sensitive 

Figure 1. 
(a–c) Molecular structures of α-chitin (a), β-chitin (b), and γ-chitin (c).
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[85]. CS-iron (III) chloride composite membrane has excellent permeability for 
different fluids [86]. CS-carbon nanotube composite is mechanically resistant [87]. 
Carboxymethylated-CS composite protected with ruthenium nanoparticles was 
synthesized with good thermal stability [88]. Graphene oxide-CS nanocomposite 
films are formed with excellent mechanical and thermal properties [89], and 
montmorillonite-CS nanocomposites are produced with excellent biocompatibility 
and antimicrobial properties [89]. Moreover, CS-based composites were synthe-
sized to be used as microcapsules in drug release systems [90], CS-porous-silica 
[91] and nanohydroxyapatite-CT derivative composites for bone regeneration [92], 
CS-zirconium composite as precursor of zirconium carbide [93], CS-barium sulfate 
composite fibers for endovascular prosthesis, fibrous embolic agent, bone substitu-
tion, and X-ray marker [89], CS composite reinforced with carbon nanotubes for 
biomedicine [78], and CS-hydroxyapatite-glycopolymer/cloisite composite for 
biomedical applications [94].

2.2 Main chitosan derivatives of technological interest

Considering the vast number of functional groups available on the CS chains 
and the myriad of chemical compounds that can react with such groups, it is con-
sensual that a plenty of possibilities regarding the use of CS derivatives as precursor 
materials for the synthesis of hydrogels applicable in drug delivery. There are some 
methodologies that allow these modifications to occur in CS, such as carboxymeth-
ylation, acetylation, and alkylation [7]. In this way, CS derivatives may appear, 
which seek to improve some properties of this polymer. Among them, the improve-
ment in water solubility is often investigated [6, 95].

From the carboxymethylation reaction, a water-soluble CS derivative can be 
obtained over a wide pH range [95], and among those obtained so far, carboxy-
methyl CS stands out because it contains ether groups, and the -COOH and -NH2 
groups [95]. Similarly to CS, the carboxymethylated-CS, also stands out because 
it exhibits interesting characteristics, such as antifungal activity, low toxicity, and 
membrane properties, which allows its application for drug release [96].

Quaternized CS through successive methylation in -NH2 groups [97] has been 
proposed using different methodologies, methacrylated glycol CS [98] and sulfated 
CS [99].

The methylation in -NH2 groups is a very interesting strategy allowing the N 
atoms be permanently charged with positive charges as -N(CH3)3

+. Such increase in 
positive charges allows the material (N,N,N-trimethylchitosan, TMC) be soluble in 
water in the whole range of pH [100]. Beyond this, the positive charges help for the 
occurrence of interactions of TMC and the membrane of gram-negative bacteria. 
So, the TMC has pronounced antibacterial activity [101]. There are several method-
ologies for synthesis of TMC [101–103]. The following methodology is often used 
for quaternization of CS: the dispersion of CS in N-methylpyrrolidone containing 
sodium iodide/methyl iodide in the presence of sodium hydroxide. At final, the 
iodide counterions of the reaction product are exchanged with chloride for obtaining 
a more stable salt. Some reviews of CS chemistry are recently published [101–103].

2.3 Methodologies used for obtaining chitosan derivatives aiming at biomedical 
applications as hydrogels

A large variety of synthetic methods have been utilized for the fabrication 
of hydrogels based on CS and CS derivatives. The degree of acetylation and/or 
polymerization of CS-based materials have been widely considered as the criti-
cal parameters for controlling their outstanding properties [104–106]. These 
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structural changes, in principle, lead to completely new properties as well as a 
significant improvement in water solubility [6, 95]. From the carboxymethylation 
reaction, a water-soluble CS derivative can be obtained over a wide pH range 
[95], and among those obtained thus far, carboxymethyl CS stands out because it 
contains ether, -COOH, and -NH2 groups [95]. Similar to CS, the carboxymethyl 
CS derivative also stands out because it exhibits interesting characteristics such as 
antifungal activity, low toxicity, and membrane properties, which allow its appli-
cation in drug delivery systems [96]. In general, it is well known that a high degree 
of deacetylation and a narrow polymer molecular weight distribution are critical 
parameters for controlling the particle size distribution [107]. Evidently, the size of 
the particles has significant influence on the biomedical applicability of CS-based 
hydrogels [106, 108–111].

It is well known that the hydrogel matrix structure is generally created from 
the hydrophilic groups (or domains) present in a natural or synthetic polymeric 
network upon hydration in an entirely aqueous environment [112]. On the other 
hand, it is also well known that the various properties exhibited by hydrogels (such 
as self-healing, biodegradability, swelling degree, mechanical resistance, and so on) 
are intrinsically related to the physical or chemical cross-linking methods [113, 114].

Hence, the physical cross-linking of hydrogels leads to the formation of a non-
permanent network due to noncovalent interactions (e.g., hydrogen or electrostatic 
bonds and physical entanglements) [22, 115–117]. Consequently, physically cross-
linked hydrogels can be formed via ionic interactions of charges, that is, by utilizing 
the graft copolymers, crystallization, as well as the formation of different stereo-
complex forms [117, 118]. Notably, CS can be self-cross-linked when the initial 
polymer concentration is beyond the critical concentration (C*) for chain entangle-
ment. In this condition, a precise balance between the hydrophilic and hydrophobic 
interactions is reached [114]. These values may be achieved after decreasing the 
apparent charge density by solvent evaporation or changing the dielectric constant 
of the medium [119]. Phosphate-bearing molecules such as polyacrylic acid, sodium 
alginate, heparin, and polyglutamic acid are the common anions used for physically 
cross-linked CS [120]. Sarmento et al. have reported the preparation of alginate/CS 
nanoparticle hydrogels by ionotropic pregelation of an alginate core followed by CS 
polyelectrolyte complexation, for biomedical applications [121].

On the other hand, it is well known that chemical cross-linking methods, 
including free-radical polymerization, condensation reactions, and addition 
reactions, provide good mechanical strength while preserving the hydrogel prop-
erties [114, 122–125]. Particularly, chemically cross-linked hydrogels have more 
uniform properties as compared with those of physically cross-linked hydrogels. 
For biomedical applications, immense attention must be paid to the cleavage of 
the cross-linker (which can be done either by chemical or enzymatic methods) 
to avoid the release of toxic compounds [114]. However, the concentration of 
the cross-linking agent and the cross-linking reaction time are the main factors 
that could affect such an approach [126]. For example, the photopolymerization 
process is started by free radicals produced by radiation (e.g., UV, visible light 
irradiation, gamma irradiation, or electron beam) that, in turn, promote attacks 
on the double bonds of monomers and propagate the radical attack, creating 
a chemically cross-linked polymer network [114, 127–129]. Furthermore, the 
cross-linking reactions can occur more efficiently on the surface than in the 
polymer center, probably due to the steric effects [130]. However, the principal 
disadvantage of using CS-based hydrogels, mainly with regard to their biomedi-
cal applicability, is probably the poor reproducibility of the particles formed 
[106]. Hence, it is believed that a deeper understanding of these methods as well 
as the development of new strategies is fundamentally necessary and represents 
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a prerequisite to obtaining optimized CS-based hydrogels with entirely new 
functionality and properties for a broad variety of applications in emerging 
biomedical technologies.

3. Uses of hydrogels based on chitosan and chitosan derivatives

The well-known and attractive properties of CS rank this polysaccharide as a 
safe choice to engineer novel materials applicable as biomaterials. Proof of this 
is the great volume of studies and review papers published in the literature deal-
ing with this subject [131–133]. As noticed, various research groups are focused 
on the development of materials based on CS or CS derivatives, aiming their use 
in the most varied areas and subareas of pharmacy, medicine, and biochemistry 
[134–136]. In particular, hydrogels synthesized from CS or CS derivatives have 
been extensively utilized as delivery systems (for drugs, gene factors, and/or 
protein delivery), dressing devices, and scaffolds for cell/tissue culture [134–137]. 
Considering these applications, some notable finds and characteristics related to CS 
and CS-derivative-based hydrogels will be discussed below.

3.1 As carriers of drug

Drug delivery systems that make use of carriers based on CS are of particular 
interest because this polysaccharide exhibits three paramount features: a mucoad-
hesive nature, ability to transiently open epithelial tight junctions, and biodegrad-
ability [138]. The mucoadhesion ability can be assigned to different interactions 
(electrostatic attraction, hydrogen bonding, and hydrophobic effects) that take 
place between CS and mucosa [139]. Biodegradability property is attributed to CS 
because it is degraded by the two naturally produced enzymes: lysozyme (present in 
various mucosal surfaces) and chitinase (present in the intestinal flora) [117]. Due 
to this, CS-based carriers are able to deliver drugs across various well-organized 
epithelia (e.g., ocular, nasal, buccal, pulmonary, and intestinal) in a controlled 
manner [140].

In light of this, carrier systems based on CS have been formulated in differ-
ent forms (tablets, particles, films, membranes, gels, and so forth) using a vast 
number of protocols [141, 142]. CS hydrogels can be prepared via physical and/
or chemical cross-linking processes, and its functional groups allow grafting 
synthetic monomers on its backbone [143, 144]. Generally, the association of CS 
with other synthetic polymer or its grafting with vinylic monomers (acrylic acid, 
acrylamide, etc.) is architected in order to increase the liquid uptake capacity 
and to enhance the mechanical properties of the hydrogel [117, 145]. Of course, 
the cross-linking process has a direct relationship with the final properties of the 
hydrogel, which allows, for example, tailoring hydrogel properties according to 
the application. Furthermore, CS hydrogels usually show responsive properties, 
mainly pH-dependent properties [146]. In acidic condition, CS hydrogels show 
high liquid uptake capacity favoring the drug release by diffusional processes 
[147]. On the other hand, hydrogels synthesized from the polyelectrolyte com-
plexation of CS (polycationic) with polyanionic polymers (e.g., alginate, pectin, 
chondroitin sulfate, among others) or anionic salts (e.g., potassium tripolyphos-
phate) can be disrupted by changing the pH of the release medium [148–150]. In 
this case, the drug loaded into the hydrogel is released owing to erosion/disrup-
tion process. This pH-sensitive is useful to modulate the drug release profile, 
which prevents unwanted side effects such as burst or time lag release, and to 
promote targeted drug release.
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CS hydrogels also show versatility regarding the drug loading process because 
drugs can be encapsulated in situ during the hydrogel synthesis procedure (this 
increases the loading efficiency) or they can be loaded in the hydrogel by sorption 
processes. Generally, drugs adsorbed in the hydrogel are easily released due to the 
weak interaction forces between the drug and the hydrogel matrix [151]. More 
recently, the incorporation of filler materials (e.g., clays, metallic particles, gra-
phene, etc.) within the CS matrix has been investigated, aiming to increase the drug 
encapsulation efficiency (mainly for hydrophobic drugs) and a better control of the 
release profile [114, 152, 153]. Another strategy adopted by several researchers to 
enhance the encapsulation efficiency and to improve the release profile is the syn-
thesis of hydrogels using CS derivatives. In general lines, CS derivatives have been 
synthesized in order to solve some issues related to the use of raw CS in the design 
of delivery systems. For example, CS shows poor solubility under neutral condi-
tions, which limit its processability and reactivity in biological solutions (pH 7.4) 
[154]. Moreover, CS is insoluble in the most part of organic solvents hindering the 
loading and delivery of hydrophobic drugs from CS-based hydrogels [58].

Currently, various studies report the synthesis of hydrogels from water-soluble 
CS derivatives, such as carboxymethyl CS, quaternized CS, (such as TMC) zwitter-
ionic CS, oligomerized CS, and so on, and their use as drug delivery systems [155, 
156]. The chemical modification of the CS backbone without modification of its ini-
tial backbone (to preserve the original properties) is a reliable strategy to overcome 
the shortcomings related to the use of raw CS. For instance, owing to their proper-
ties, CS derivative hydrogels can offer prolongation of the contact time between 
the drug and the absorptive sites in the mucosa and slow and continuous drug 
release [157]. Furthermore, the grafting of specific chemical modifiers on CS makes 
possible new cross-linking routes (click reactions, self-assembling, etc.) allowing, 
for example, the synthesis of in situ hydrogels [158, 159]. The use of CS derivatives 
to synthesize hydrogels may impart new properties to this material (antioxidant 
or bactericidal properties, for instance), which enlarge the field of the potential 
applications of such materials, especially as carriers for drug delivery [160, 161].

3.2 As wound healing

Any internal or external stimulus that damages the anatomy of a tissue and 
compromises its function generates a wound [162]. In general, the healing process 
of a wound can be described in four phases named vascular response, inflammatory 
response, proliferation, and maturation [163]. Therefore, a proper wound dressing 
should present specific features to act in each abovementioned phase to promote 
a satisfactory healing process. Such features include blood clotting, inflammation 
fluids absorption, barrier against infection, protection against friction, support for 
cell attachment and growth, hydration, air permeability, and others [164].

CT, CS, and CS derivatives have been studied in several preparations for 
treatment of wounds and in tissue regeneration especially due to their biologi-
cal properties including hemostatic, antibacterial, antifungal, biocompatibility, 
biodegradability, lack of toxicity, adhesive, and more [165, 166], all those required 
by a proper dressing. Currently, distinct manufacturers make available wound 
dressings based on CT and its derivatives under many trade names (Syvek-Patch®, 
Beschitin®, Tegaderm®, Chitodine®, Trauma DEX®, and Talymed®, among several 
others) [164].

CT/CS-based wound dressings have been reported in a variety of forms, for 
example, membranes, sponges, scaffold, fibers, and so on. However, hydrogels are 
probably the most promising materials for wound dressing because of their similar-
ity and physical chemical properties to the extracellular matrix, which allows cell 
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diffusion and proliferation. Either chemically or physically, hydrogels can be readily 
prepared from CS, as extensively reported [167–169].

Zhang et al. demonstrated the wound dressing based on CS loaded with super-
oxide dismutase (SOD) enzyme could effectively improve the healing process in 
chronic wounds in rat models [170]. Hydrogels based on electrostatic interaction 
of the cationic CS and the anionic heparin and poly(γ-glutamic acid) were suc-
cessfully prepared and characterized. The best composition was loaded with SOD 
and applied to the wounds. The continuous release of SOD prevented cell oxidative 
damage due to excess of O2

− and improved the healing process.
Hydrogels based on CS and Ag nanoparticles were proved to be efficient restruc-

turation of epithelium and collagen deposition, effectively accelerating the wound 
healing [171]. CS hydrogel was prepared by the freeze-thawing process using the 
system LiOH:KOH:urea:H2O as solvent. In this case, the Ag nanoparticles worked 
as both fillers for improving the mechanical properties of the hydrogel and anti-
microbial agent. The mechanism of bactericidal activity was a combination of cell 
membrane disruption and DNA binding, preventing bacteria replication.

Other study reported hydrogels based on freeze-thawing of solution of CS with 
poly(vinyl alcohol) PVA, sodium alginate (SA) or Pluronic F68 [172]. The dressings 
based on CS and Pluronic were more effective in the healing probably due to its 
porous morphology and the level of moisture based on comparative histology of 
healing effects of hydrogels after 15 days of inflicted wounds. Chemically cross-
linked hydrogel based on glycol CS and glycidyl methacrylate was obtained via 
visible light radiation [173]. The endothelial and fibroblast growth factors-loaded 
hydrogel accelerated the wound healing in vivo models. In general lines, several 
reports have demonstrated the CS-based hydrogels either unloaded or loaded 
(bactericidal agents, growth factors, etc.) played an important role in the wound by 
direct acting in different phases of the healing process. The authors also refer to the 
following review papers focusing on CT/CS hydrogels as wound dressing for further 
reading [162, 174, 175].

3.3 As protein delivering

Mucoadhesive systems such as CS-based matrix are used in order to increase the 
protein residence time at the activity site [176]. However, CS can be dissolved in the 
stomach due its solubility at low pH condition (pKa 6.5) [177], causing release and 
denaturation of protein [178]. Therefore, the solubility of CS can be prevented by 
its association with anionic polymers including alginate [179], pectin [180], gelatin 
[181], and carrageenan [182] to create hydrogels as oral protein delivery carriers.

When proteins are physically incorporated in CS-based hydrogels, their release 
can occur by diffusion, erosion/degradation, swelling, or a combination of these 
mechanisms [183]. In order to slow down the degradation rate of hydrogels and 
prevent burst protein release, polycaprolactone can be incorporated in CS-based 
hydrogels. Shamloo et al. [181] developed poly(vinyl alcohol)/CS/gelatin hydrogel 
incorporating polycaprolactone microspheres for delivery of basic fibroblast growth 
factor (bFGF). Poly(vinyl alcohol) and gelatin were used to improve mechanical 
properties and increase cell adhesion, respectively. The bFGF release accelerated the 
wound healing process with polycaprolactone incorporation into hydrogel [181].

The control protein release can also be enhanced with use of mineralized inor-
ganic compounds combined with CS-based hydrogel network [184]. Salama et al. 
[184] reported the synthesis of CS-g-poly(3-sulfopropyl methacrylate) hydrogel 
mineralized with calcium phosphate for bovine serum albumin (BSA) release. The 
mineralization decreased the permeability of the loaded protein and controlled the 
release proteins [184].
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Hydrogels prepared from polysaccharides containing -COOH groups such as 
carboxymethyl CS may undergo shrinking in acidic condition (e.g., gastric juice) 
and swelled in neutral or alkaline environment (e.g., intestinal juice) due to electro-
static repulsion between the ionized acid groups present on polysaccharides chains 
[185]. Therefore, carboxymethyl CS-based pH-sensitive hydrogels can be used to 
direct protein release, including BSA and insulin (INS), into intestinal region [178]. 
Zhang et al. [185] synthesized carboxymethyl CS-g-polyacrylic acid for insulin 
delivery. The results showed that 16.3 and 93.2% of insulin was released at pH 1.2 
and 7.4, respectively [185].

Carboxymethyl CS can also be associated with xanthan to prepare hydrogel 
to fluorescein-isothiocyanate-labeled bovine serum albumin (FITC-BSA) release 
[186]. Huang et al. [186] developed aldehyde xanthan/carboxymethyl CS hydrogel 
to FITC-BSA release. Moreover, a signaling protein, endothelial growth factor 
(VEGF), was loaded to accelerate abdominal wall reconstruction. The BSA-FITC 
release was stable within 10 h. After VEGF incorporation, the abdominal wall 
reconstruction was accelerated [186].

Besides carboxymethyl CS, other CS derivatives such as quaternized CS [97], 
methacrylated glycol CS [98], and sulfated CS [99] have been used as oral protein 
delivery carriers. Quaternized CS has been used in hydrogel preparation for pro-
tein delivering due to its several properties such as absorption enhanced across 
intestinal epithelial for hydrophilic drug delivery [187], low toxicity [188], capac-
ity to open the junctions between epithelial cells, which allow greater transport 
of hydrophilic compounds [187], better mucoadhesive [189], and antibacterial 
activity [190] than CS. Wu et al. [97] developed hydrogel-based N-[(2-hydroxy-3-
trimethylammonium)propyl]chitosan chloride (HTCC) and poly(ethylene glycol) 
(PEG) for insulin release. Hydrogen bonds among amino groups present in insulin 
and hydroxyl groups present in PEG or HTCC allowed slowed drug release. The 
results showed that the hydrogel can be used as nasal delivery carrier for protein or 
peptide drugs [97].

The controlled protein release from heparin-based hydrogels has also been 
studied due to its strong binding capacity, which attenuates the burst protein release 
such as rhBMP2 [191]. Therefore, some CS derivatives have been used to mimic 
heparin to protein delivery, including sulfonated molecules incorporated into meth-
acrylated glycol CS hydrogels [98] and sulfated CS hydrogels [99]. Kim and Chung 
[98] developed methacrylated glycol CS (MeGC) hydrogel used to mimic heparin 
to stabilize bone morphogenetic protein-2 (BMP-2) and to enhance osteogenesis by 
the addition of poly-4-styrenesulfonic acid (PSS) or poly-vinylsulfonic acid (PVSA) 
into hydrogel. The addition of PSS or PVSA reduced the initial burst and increased 
the recombinant human BMP-2-induced osteogenesis differentiation, indicating 
efficient protein delivery [98].

However, sulfated CS, 2-N,6-O-sulfated CS, besides to mimic heparin, has 
been shown to enhance BMP-2 bioactivity than heparin [192]. In this context, Cao 
et al. developed rhBMP-2-loaded 2-N,6-O-sulfated CS nanoparticles and hydrogel 
photopolymerizable incorporating rhBMP-2-loaded 2-N,6-O-sulfated CS nanopar-
ticles. The composite gel system showed gradual and more release than nanoparticle 
system. The use of 2-N,6-O-sulfated CS enhanced the bioactivity of released 
rhBMP-2 [99].

The protein residence time at activity can also be improved by thiolation of CS 
due to the covalent bond formation between subdomains with high cysteine content 
in the mucus glycoproteins and thiol groups [193]. Liu et al. [194] developed thio-
lated CS-TBA/hydroxyapatite(HA)/beta-glycerophosphate (β-GP) hydrogel. The 
BSA protein residence time at activity using such hydrogel was higher than unmodi-
fied CS system CS/HA/β-GP [194].
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In order to increase protein half-life and to improve the biocompatibility of CS, 
polyethylene glycol (PEG) can be used to prepare chemically modified CS hydrogels 
[195, 196]. Farahani et al. [197] developed semi-interpenetrating polymer network 
CS-PEG-acrylamide hydrogels for closed-loop insulin delivery. Moreover, catalase 
and glucose oxidase were loaded into hydrogel to make an intelligent protein carrier. 
The increasing of PEG increased the swelling ratio, protein loading capacity, and 
entrapment efficiency. The increase in insulin release was observed with increase 
in the glucose level, indicating that the hydrogel has a good responsiveness to the 
glucose concentration [197].

3.4 As scaffolds for cell growth in tissue engineering

Scaffolds provide an intermediary template for neotissue/organ formation as 
well as temporary artificial extracellular matrices [198, 199]. Scaffolds-based extra-
cellular matrices are characterized by pore volume fraction of typically 0.90–0.95 
or higher and pore diameter in the range of 5–500 μm [199]. Generally, the use of 
scaffolds in tissue engineering should have several properties, such as biocompat-
ibility, cell proliferation, controlled swelling, antimicrobial, biomineralization, 
biodegradability, stability, porosity, adhesion, and protein absorption [200–202].

3.4.1 Chitosan hydrogels in bone tissue engineering

CS has been widely used for bone tissue engineering due to its capacity in 
providing growth and deposition of matrix with high mineral content by osteoblast 
cell culture [203]. As already mentioned in this chapter, CS can be associated with 
anionic polymers, such as pectin to create physical hydrogels [204]. Moreover, 
metallic nanoparticles (NPs) coupled to hydrogels can be used to induce cell growth 
[205, 206]. Tentor et al. related scaffolds-based CS/pectin/gold nanoparticles for 
bone tissue engineering [204]. The hydrogels were cytocompatible with several cell 
types, such as normal kidney epithelial cell, HPV-16-positive human cervical tumor 
cells, epithelial colorectal adenocarcinoma cells, and murine macrophage cells. 
Regarding the cell viability assay, such hydrogels possess potential for applications 
in the bone tissue engineering to promote proliferation and growth of bone cells 
(e.g., MC3T3-E1).

Hydroxyapatite (HA) is the major inorganic component of bone [207]. So, 
nanohydroxyapatite (n-HA) has been used in bone tissue engineering due to its 
osteoconductivity and bioactivity [208]. However, n-HA has poor shape ability 
[208]. Mechanical property of HA can be improved by its association with hyal-
uronic acid [209] and glycol CS [210], for fabricating scaffold hydrogels to apply in 
bone tissue engineering. Huang et al. [210] developed n-HA/glycol CS/hyaluronic 
acid hydrogel composite as scaffold for bone tissue engineering. The porosity of 
hydrogel increased with increase in the HA concentration. In vitro cytocompat-
ibility tests were carried out using MC-3T3-E1 cells. After 7 days co-incubation, 
cells were attached, and spreading on scaffolds and increasing in cell aggregation 
were observed. The scaffolds were cytocompatible and nontoxic, so these results are 
suitable for bone tissue engineering application [210].

3.4.2 Cardiac and nerve tissue engineering

CS and CS associated with biopolymers [211], including gelatin [212], collagen 
[213], and alginate [214], have been used in developing hydrogel scaffolds for 
cardiac tissue engineering applications [215]. Gelatin scaffolds are susceptible to 
fast degradation, while gelatin/CS composite scaffolds are structurally stable in cell 
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culture media [212]. However, these polymers may be associated with polycapro-
lactone (PCL), to provide sufficient tensile strength to work in the ventricular wall 
[216]. Pok et al. [216] developed 3D scaffolds composed of self-assembled PCL 
sandwiched in a gelatin-CS hydrogel for reconstruction of congenital heart defects. 
The compressive modulus of the hydrogel was similar to native tissue, and migra-
tion of neonatal rat ventricular myocytes (NRVMs) was observed [216].

Quaternized CS can also be used in tissue engineering due to its enhanced 
antibacterial activity and more solubility than CS [217]. Similar to CS, quater-
nized CS possesses properties of biocompatibility, low toxicity, biocompatibility, 
and biodegradability [188]. Zhao et al. [218] developed antibacterial conductive 
hydrogel scaffolds using quaternized CS-grafted polyaniline with oxidized dextran 
as cross-linker. The use of polyaniline into quaternized CS copolymer decreased 
the cytotoxicity, enhanced the antibacterial activity, and stimulated proliferation 
of C2C12 myoblast cells, by a synergistic effect, as compared with quaternized CS 
hydrogel. These scaffold showed great potential as scaffold for muscle, nerve, and 
cardiovascular repair [218].

3.4.3 Cartilage and skin tissue engineering

The cartilage tissue engineering can involve the seeding chondrogenic cells in 
scaffolds for cartilage repair [136]. Glycosaminoglycans and type II collagen are 
components commonly found in the cartilage-specific extracellular matrix, which 
may stimulate the chondrogenesis [219, 220]. CS has structural characteristics simi-
lar to glycosaminoglycans and can mimic their functional behavior [221]. Several 
polymers, such as alginate [222], glycosaminoglycans [223], collagen [224], and 
carrageenan [225], have been associated with CS for cartilage engineering tissue 
applications. Hong et al. [224] developed an injectable composite scaffold obtained 
from collagen-coated polylactide microcarriers/CS hydrogel. Collagen-coated 
polylactide microcarriers enhanced the mechanical properties of the scaffold. The 
cell metabolic activity increased rapidly before 9 days of in vitro chondrocytes 
growth within the scaffold. After 9–12 days, confluent cell layers were formed. The 
composite scaffolds showed great potential for tissue engineering applications, 
particularly in orthopedics [224]. Liang et al. [225] developed rubbery CS/car-
rageenan hydrogels prepared by electroneutrality system as cartilage scaffold. The 
results showed pH- and salt-responsiveness, hierarchically porous architecture, and 
great mechanical properties. The hydrogels enhanced the viability and the adhesion 
of TDC5 cells [225].

Mechanical properties and biological activities may be altered by chemical 
modification of CS. N-succinyl CS possess biocompatibility and long-term reten-
tion in vivo [226]. Kamoun [227] developed N-succinyl CS-dialdehyde starch hydro-
gels for cartilage repair. The hydrogel was relatively stable, and the hydrolysis rate 
was limited with a high N-succinyl hydrogel composition without any by-products 
in physiological conditions. The adhered human gingival fibroblast cell number on 
hydrogel surface was improved by N-succinyl CS content in hybrid hydrogels. This 
hydrogel showed great potential to be used as injectable scaffold for cartilage repair 
[227]. N-succinyl CS can also be associated with other polysaccharides such as 
hyaluronic acid to prepare hydrogels, as an injectable scaffold, to improve biocom-
patibility and biodegradation [228].

Regarding skin tissue engineering, CS has been used in the preparation of scaf-
fold hydrogel due to its biocompatibility [229], biodegradability [230], antibacterial 
properties [231], and hemostatic activity [232], stimulating fibroblast growth and 
accelerating tissue regeneration [233]. Franco et al. [234] developed CS/gelatin 
hydrogel scaffolds for skin engineering. The hydrogel showed a high porosity and 



Hydrogels - Smart Materials for Biomedical Applications

16

supported fibroblast cell proliferation. Notably, the scaffold with lowest cross-
linker content swelled more than 600% of its dry weight [234].

Carboxymethyl CS can also be used in skin tissue engineering. This polysac-
charide is biodegradable, biocompatible, and more bioactive than the raw CS [235]. 
Jaikumar et al. [236] developed alginate/O-carboxymethyl CS composite hydrogel 
scaffolds for adipose tissue regeneration with incorporation of fibrin nanoparticles. 
The use of fibrin nanoparticles promoted adhesion and proliferation on hydrogel. 
Human adipose-derived stem cells cultured on this hydrogel scaffold supported cell 
growth [236].

3.5 Other technological applications

The main reasons to propose different applications of hydrogels is attributed 
to their considerable volume change capacity in response to little surrounding 
alterations, such as electric and magnetic fields, solvent, pH, ionic strength, and 
temperature. Specifically, in biomedical application, it is desirable that the hydrogels 
may mimic the performance of human organs in response to some alterations in the 
environmental conditions such as pH, temperature, enzymes, and electric field [237].

Beyond technological applications mentioned in this session, hydrogel and nano-
composites based on CS and their derivatives have been studied for other several 
applications, such as contact lenses [238, 239], enzyme and cell separations and 
immobilizations [71, 240–243], DNA delivering [244], cartilage and skin regenera-
tions [245–249], biosensors [250–252], submucosal fluid or injections [253–257], 
tissue engineering [258–263], postoperative adhesion prevention [264–266], cancer 
treatment [267–270], orthopedic applications [271, 272], artificial muscles [273], and 
others. Important characteristics of some cited applications are discussed as follows.

Among the different areas that the hydrogels would be used, the chemotherapy 
treatment is one of the most important due to great side effects that chemo-
therapy treatment provokes for patients, such as highly toxic, poor specific drugs, 
insufficient availability of drugs to the tumor, and others. In this way, the usual 
chemotherapy treatments have been changed to controlled/localized drug release 
technology using polysaccharide hydrogel as carrier vehicles [274]. In that work, the 
authors concluded that the CS/polyvinyl alcohol hydrogels have great potential to 
be used for the treatment of cancer because these 3D matrices had an antiprolifera-
tive effect and great capacity of the inhibit angiogenesis. In the work described by 
Pattavarakorn et al. [273], the authors found that the electroactive performance of 
the polythiophene/CS/carboxymethyl CS (PTh/CS/CMCS) as conductive hydrogel 
is dependent of the hydrogel composition, and the hydrogel prepared with 3:2 
CS:CMCS ratio exhibited highest electric field response sensitivity. According to 
Tan et al. [275], CS and its derivatives are one of the most appropriate materials for 
enzyme immobilization because of a high specific surface area (high enzyme load-
ing), nontoxicity, and biocompatibility, improving their stability and reusability.

Ulutürk and Alemdar [252] reported that the electroconductive hydrogel has 
great applicability as biosensor because this material can overcome some disad-
vantages of the inherently electroconductive polymers like toxicity and can also 
contribute to decreasing the release of the conductive polymer to the body. As 
mentioned before, hydrogels have been used in the biomedical area such as contact 
lens due to the possibility of increase up to 50% of drug bioavailability, which 
contributes to minimizing the collateral effect that this drug would provoke in the 
patient. However, the main disadvantage is that these carrier vehicles presented 
burst release in the first or couple of hours after application. In this way, Åhlén et al. 
[238] observed that contact lenses based on CS-poly(acrylic acid) nanoparticles 
and poly(vinyl alcohol) (PVA) hydrogels had greater potential for extended release 
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during 28 h. Postoperative peritoneal adhesion is one of the serious damages after 
surgeries, reaching until 67–93% after general surgical abdominal procedures, 
and as consequence, the patient may have various complications like chronic pain, 
female infertility, bowel obstruction, and others. In vivo studies realized by Song 
et al. [276] showed that the injectable N,O-carboxymethyl CS-aldehyde hyaluronic 
acid hydrogel had significant antiadhesion efficacy in a rat repeated-injury model. 
They observed that after 14 days, the peritoneum is completely recovered without 
adhesion aspect.

4. Future trends and perspectives

CT, CS, and CS derivatives have been used for wide technological applications, 
from metallic ions and dye absorbents in environmental to drug carriers in biomedical 
field. Another important application of CS derivative, for example, the trimethyled 
CS, is due to its antibacterial properties [277] and, at same time, no toxicity for human 
and animals. Most of the derivatives are soluble in the whole range of pH, for instance, 
the trimethyled CS, CS sulfate, and others. So, the drawback related to solubility of 
chitosan that is limited to acidic conditions (due to the pKa ca. 6.5) is overcome.

The use of CS and its derivatives as hydrogels is one very important issue. The 
fact of CS being easily cross-linked or doing complexes, forming chemical or physi-
cal 3D matrixes, induced plenty of researchers to target themself for producing new 
materials through different methodologies/strategies/formulations, aiming to inten-
sify some desired properties improving new applications. This is also due mainly 
to the relatively low cost, abundance, renewability, and biodegradability, among 
other advantages for using CS and its derivatives. In the last two decades, important 
technologies have been developed mostly for chemically modifying CS enabling 
to the preparation of hydrogels with a wide range of desired properties. A lot of 
examples were given in this review, but a very large window in this issue remains 
opened [278]. Some highlights, among others, can be given as trends in this field:

• Studies show that functional properties of CS and its derivatives clearly 
depend on their molecular weight. So, many studies need to be performed 
to investigate this aspect, because the molecular weight of chitosan depends 
strongly on the methodology used for CS obtainment from CT or the one used 
for preparing the CS derivatives.

• Besides the chitosan and its derivatives are not toxic to human or animals, cur-
rent matter of discussion is whether these biopolymers may have the potential 
to influence physiological functions or metabolism in the microorganisms 
[277]. So, huge enforces need to be done in this issue because the molecular 
weight of CS is dependent on the methodology used for CS obtainment from 
CT or for CS derivative preparation from raw CS.

• Another important issue is to evaluate if the mixture of chitosan and chito-
san derivatives with other polymer (synthetic or natural) affects their low 
toxicities.

• The future of materials based on CS and CS derivatives is still more promising 
due to the lack of petroleum. In this way, eco-friendly extraction methods need 
to be developed. It was mentioned in this review that 1400 L of water is used 
for extracting and purifying 1 kg of chitosan. So, in the future, water will also 
suffer eminent lack.
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Of course, the understanding of structure-properties-applications relation-
ship in application of CS and CS derivatives as hydrogels will be expanded with 
more comprehensive studies. Certainly, this will increase the significance of these 
important soft materials, considering their application.

5. Conclusions

The objective of this review is to update and discuss important aspects related to 
chitin extraction from different sources and methods for obtaining and purifying 
chitosan (CS) and for chemically modifying chitosan to obtain CS derivatives with 
adequate properties. The particular position of the CS and its derivatives is due to 
the possibility of oil-based products replacement. Several chemical modification 
methods for CS have also been described in this review as well as for the prepara-
tion of hydrogels based on CS or CS derivatives are widely used in the last decades 
because of the multiple properties allowing many applications. The state of the 
art is the use of CS and its derivatives combined (or not) with synthetic or natural 
(sometimes nanostructured) moieties. Although patents and papers mentioning 
new structures and properties in materials derived from CS and CS derivatives 
appear in the literature almost every day, this review demonstrates that the window 
of opportunities in research and development is still opened. The influence of 
the molecular weight of the CS and CS derivative hydrogels mainly on biological 
properties can be pointed out as one of the future trends in this field. In addition, 
environmentally correct methods for extracting CS should be developed taking 
into account the fact that the water, extensively used in CS extraction/purification, 
will run out quickly. More comprehensive and in-depth studies will expand the 
understanding of the structure-properties-applications relationship of CS and CS 
derivative hydrogels, which will certainly further enhance the importance of this 
soft material class.
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