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Abstract

This chapter focuses on the biology of red blood cell extracellular vesicles 
(RBCEVs) in normal and diseased conditions, and the potential application of 
RBCEVs in treatment. Extracellular vesicles (EVs) refer to membranous vesicles 
secreted by cells into the extracellular environment. EV biology belongs to a rapidly 
developing field in biomedical sciences. EVs represent a natural mode of cell-to-cell 
communication, which makes them suitable for delivery of therapeutic agents, 
such as nucleic acids and proteins, in the body. In particular, RBCEVs feature a wide 
range of benefits in drug delivery as compared to extracellular vesicles derived 
from other cell types. In comparison to other delivery systems currently available, 
RBCEVs are nontoxic, low immunogenic, conveniently obtainable, and easy to 
use and store. Therefore, RBCEVs boast promising and exceptional advantages in 
overcoming various limitations of conventional therapeutics.
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1. Introduction

In the last decade, we observed a massive upsurge of studies in the field of 
extracellular vesicles (EVs) [1]. As it is known now, EVs can be loaded with different 
therapeutic molecules and transport them to recipient cells with little interrogation 
by the immune system. This property of EVs prompts new possibilities for treat-
ment in various clinical settings [2–4]. In this chapter, we review the biology of 
EVs as a universal cellular component from a broader perspective, and afterward 
provide an updated view on red blood cell extracellular vesicles (RBCEVs), their 
merits and potential applications in therapeutics [5].

2. Overview of extracellular vesicles

2.1 History of extracellular vesicles

Wolf was the first to discover small procoagulant structures derived from acti-
vated platelets in human blood and named them “platelet dust” in 1967. He separated 
the small structures by ultracentrifugation and further characterized them using an 
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electron microscopy [6]. In 1987, Johnstone further studied the formation of such 
vesicles in the duration of sheep reticulocytes maturation in vitro. He was able to 
identify more activities and characteristics of the vesicles. However, he did not name 
the small vesicles or discover how they were generated in detail [7]. Both of these 
findings were important milestones in the field, which allowed for further studies on 
the function of these small vesicles. Today, we call these small vesicles as EVs. Valadi 
and colleagues were the first who discovered the natural delivery of microRNAs 
and mRNAs in EVs in mast cells. Later on, nucleic acid transport via EVs was also 
observed in many other cell types as an essential manner of intercellular communi-
cation [8–10]. We now have a much more profound understanding in the field of EVs 
due to the continuous efforts of various scientists throughout many decades.

2.2 Biogenesis and compositions of extracellular vesicles

EVs are a heterogeneous class of cell-derived structures with a lipid bilayer 
membrane, which comprise exosomes, microvesicles, and apoptotic bodies. They 
are either of the endosomal origins or are shed from the plasma membrane under 
physiological and pathological conditions. Additionally, they are present in almost 
all biological fluids, such as blood, urine, breast milk, cerebrospinal fluid, saliva, 
semen, etc. [11–17]. Further characterizations are based on the different sizes and 
biogenesis of EVs. Exosomes generally range from 50 to 150 nm in diameter and are 
secreted from endosomal multivesicular bodies, whereas microvesicles are larger 
vesicles ranging from 100 to 500 nm in diameter and are formed through a budding 
or exocytosis process of the plasma membrane [11, 18–23]. Apoptotic bodies are 
much larger, ranging from 800 to 5000 nm in diameter, and are generated by bleb-
bing of plasma membrane from cells undergoing apoptosis. Hence, apoptotic bodies 
represent the fragments of dying cells and differ from exosomes and microvesicles 
in property (Figure 1) [17–22]. In this chapter, we will collectively term both 
exosomes and microvesicles as EVs with apoptotic bodies excluded.

The components of EVs are mainly proteins, lipids, and nucleic acids. 
However, due to different biogenesis mechanisms, the compositions of exosomes 
and microvesicles do vary slightly [11, 24–26]. Proteins that are associated with 
endocytic pathways can be usually found in EVs, such as flotillin and annexin. 
Some of the biogenesis-associated proteins, such as Tsg101 and Alix, and common 
tetraspanins, such as CD9 and CD81, are commonly used as EVs markers with 
CD63 which is mostly regarded as a marker of exosomes. However, currently, there 
lack well-defined protein markers to distinguish exosomes and microvesicles [11, 
24–26]. Lipid components of EVs include phosphatidylcholine, phosphatidylserine, 
phosphatidylethanolamine, sphingomyelin, cholesterol, and so on, which can be 
found in plasma membrane as well. As microvesicles are formed by budding from 
plasma membrame, the lipid composition of microvesicles resembles that of plasma 
membrane of the cells more while exosomes are of higher levels in sphingomyelin, 
cholesterol, and phosphatidylserine [27–29]. It is noteworthy that many nucleic acid 
species are highly enriched in EVs. The lipid bilayer structure of EVs acts as a natural 
shelter against degrading nucleases in the extracellular environment and protects 
the nucleic acid cargo under adverse conditions such as long-term storage and 
multiple freeze-thaw cycles. In the recent decade, reports have it that many mRNAs, 
microRNAs, and other non-coding RNAs are discovered in EVs (Figure 1) [30–32].

2.3 Intercellular communication mediated by extracellular vesicles

As EVs are abundant and widely distributed in biological fluids and carry bioac-
tive cargo, they influence various biological processes of the donor and recipient 
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cells [33]. The intercellular communication can occur between cells by transferring 
EVs that act as an exchange mediator of proteins, lipids, and RNAs. Thus, EVs have 
a fundamental role to play in important biological processes such as the exchange of 
surface membrane and horizontal RNA transport between neighboring and remote 
cells [18]. This aspect is being extensively investigated in cancers [34], neurode-
generative diseases [35], autoimmune disorders [36], aging [37], and so on. The 
bioactive cargo encapsulated by EVs contain valuable information from the source 

Figure 1. 
Biogenesis and composition of extracellular vesicles. Extracellular vesicles (EVs) are composed of exosomes, 
microvesicles, and apoptotic bodies. Exosomes are typically of endosomal origins and are the smallest among 
them with 50 to 150 nm in diameter. Microvesicles are larger in size from 100 to 500 nm in diameter and are 
generated through an outward budding or exocytosis of the plasma membrane. Apoptotic bodies are usually the 
largest ranging from 800 to 5,000 nm in diameter and are generated by blebbing of plasma membrane from 
cells undergoing apoptosis. Major components of EVs are lipids, proteins, and nucleic acids. Due to different 
biogenesis mechanisms, the compositions of exosomes and microvesicles do vary.
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of diseases, which can serve as robust biomarkers in diagnostics and status snap-
shots in treatment monitoring [38, 39]. The endogenous property of transporting 
molecules by EVs inspires researchers to utilize them as a superb delivery platform 
of therapeutic agents as well [40].

3. Concentrations on red blood cell extracellular vesicles

3.1  Red blood cell extracellular vesicles under physiological  
and pathological conditions

Similar to EVs released from other cells, EVs in the circulation carry biomark-
ers originated from the donor cells [41]. Usually EVs contain various markers 
which indicate their origins, e.g., CD235a (also called GPA) for RBCs, CD41 for 
platelets, and CD11c for dendritic cells [42–44]. RBCs express classes of CD59 and 
DAF, known as complement inhibitors, and signaling of CD47 and SHPS-1 mol-
ecules on the cell surface to protect themselves against endogenous elimination 
[45, 46]. For instance, the RBCs membrane protein CD47 inhibits RBCs phago-
cytosis via macrophages by binding to the inhibitory receptor signal regulatory 
protein alpha (SIRPα). The presence of such proteins on the surfaces of RBCEVs 
may help RBCEVs to escape from the clearance by macrophages if they carry CD47 
on their surfaces [47–49]. Mature RBCs lack nuclei and most of the intracellular 
membrane structures; hence, EVs released from mature RBCs are microvesicles 
derived from the plasma membrane (Figure 2). Even with the same cell origins, 
the protein or lipid compositions of EVs may differ on account of the lateral cell 
membrane variation. Further proteomic assays have illustrated that to some 
extent, the proteomic spectrum difference of EVs and the releasing cells can be 
attributed to the stimulating conditions during EVs biogenesis [50]. Microvesicles 
derived from RBCs are reported to be different in protein contents when produced 
naturally in vivo, ex vivo released during cold storage of RBCs, or in vitro by 
treatment with EVs’ release-inducing chemicals such as calcium ionophore, even 
though they seem homogeneous merely based on their size and/or surface mark-
ers. The most distinctively different proteins are stomatin and flotillin-2 [51].

There are many studies of RBCEVs under diseased conditions with malaria being 
frequently reported. Mantel and colleagues illustrated that EVs from human RBCs 
infected with Plasmodium falciparum parasites contain microRNAs that are able to 
moderate target genes in recipient cells [52]. The infected RBC-derived EVs in malaria 
were internalized by endothelial cells and the EVs-encapsulated miRNA-Argonaute 2 
complexes repressed miRNA target genes and changed endothelial barrier properties. 
Furthermore, multiple miRNA species in such EVs were identified [52]. Ankarklev and 
colleagues reviewed the role of RBCEVs in malaria and found that the development of 
EVs by Plasmodium sp. is associated with clinical outcomes [53]. Studies have pointed 
out that elevated EVs levels were detected in patients with severe malaria cases, and 
increased EV excretion to the endothelium has been linked to infected RBCs [53].

3.2 Red blood cell extracellular vesicles for therapeutic purposes

Chang and colleagues demonstrated the ability of RBCEVs to efficiently deliver 
ultra-small superparamagnetic iron oxide particles into human bone marrow 
mesenchymal stem cells for cellular magnetic resonance imaging in vitro and in vivo 
in order to develop successful stem cell therapies [54]. The novel method overcomes 
the difficulty of relatively low intracellular labeling efficiency and addresses bio-
safety issues associated in comparison with traditional approaches. RBCEVs were 
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shown to be ultra biosafe and can be used as potential delivery vehicles for clinical 
applications due to their autologous property to human bone marrow mesenchymal 
stem cells [54]. Usman and colleagues developed a robust delivery system for RNA-
based therapeutics using RBCEVs [55]. Using the novel RBCEVs delivery platform, 
both small RNA, e.g., antisense oligonucleotides (ASOs), and large RNA, such as 
Cas9 mRNA, can be electroporated into RBCEVs and transported to target cells in 
both solid and liquid tumors. In the study, microRNA-125b-ASO-loaded RBCEVs 
significantly dampened breast tumor growth by intratumoral injection and sup-
pressed acute myeloid leukemia (AML) progression by systemic administration. 
Genome editing effects were also observed when RBCEVs were loaded with Cas9 
mRNA with guide RNAs. The delivery efficiency was higher and far less cytotoxic-
ity was observed as compared to other commercial transfection reagents [55].

3.3  Isolation and loading of red blood cell extracellular vesicles  
for therapeutic purposes

Up to now, standardized protocols for EVs isolation for either scientific 
research or clinical application are lacking [56]. One of the commonly used 

Figure 2. 
Using red blood cell extracellular vesicles (RBCEVs) for therapeutic delivery. Calcium ionophore is added 
to RBCs which simulates the release of microvesicles, the only type of RBCEVs. Naturally, RBCEVs contain 
hemoglobin, Alix, TSG101, and some microRNAs in their lumen. They also display stomatin (STOM) and 
glycophorin A (GPA) on their membrane. RBCEVs can be loaded with therapeutic molecules including RNAs, 
proteins, and chemical drugs for delivery of these molecules to other cell types.
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methods to obtain EVs is ultrafiltration with subsequent differential ultracentrifu-
gation. Ultrafiltration followed by liquid size exclusion chromatography suits the 
large-scale demand of isolating EV for therapeutics as the method results in, on 
the one hand, a significantly higher EV yield and, on the other hand, the well-
preserved biophysical properties of the purified EVs [57]. Usman and colleagues 
provided a lab-based approach to purify RBCEVs using ultracentrifugation with 
sucrose cushion. To begin with, RBCs in whole blood were separated from white 
blood cells and plasma by low centrifugation and using leukodepletion filters. 
Then, the isolated RBCs were diluted in PBS and treated with 10 mM calcium 
ionophore overnight which can stimulate the release of RBCEVs and significantly 
increase the yield. In order to purify RBCEVs, RBCs and cell debris were removed 
by several rounds of low-speed centrifugation. Later, the resulting supernatants 
were passed through 0.45 μm syringe filters. Afterward, the RBCEVs were concen-
trated using ultracentrifugation at 100,000 × g for 70 min. Subsequently, RBCEVs 
were resuspended in cold PBS and layered above frozen 60% sucrose cushion and 
centrifuged at 100,000 × g for 16 h. The red layer of RBCEVs above the sucrose 
was collected and washed again with cold PBS by ultracentrifugation [55]. The 
approach is cost-effective, features high RBCEVs yield, and can be adopted in 
most laboratory settings. The use of sucrose cushion is also a highlight as it helps 
remove the protein contaminants outside RBCEVs, which might trigger unneces-
sary immune response and protects the integrity and biophysical properties of 
RBCEVs.

For therapeutic agents to be loaded into EVs, two major strategies currently 
have been applied. The first option is to load the therapeutic molecules, such as 
RNAs, into the EVs after EVs isolation, while the second one is conducted during EV 
biogenesis. These methods are also known as post-loading and pre-loading, respec-
tively. The pre-loading encapsulation approach is also referred to as the endogenous 
method as it uses the cellular machinery in order to load small RNA into EVs. The 
pre-loading approach has been shown to work for the packaging of both siRNA and 
miRNA into EVs. The post-loading method artificially introduces RNAs into EVs, 
whereas pre-loading is performed in the EVs biogenesis. Post-loading can be subdi-
vided into passive loading, such as by physical incubation, and active loading with 
instances of electroporation or sonication. Furthermore, the functional small RNAs 
delivery using electroporated EVs has been shown to be a success in several reports 
but it depends on the small RNA species [58–62]. Usman and colleagues used the 
electroporation method for post-loading of RNAs into RBCEVs [55]. Ideally, various 
therapeutic molecules including ASOs, siRNAs, gRNAs, mRNAs, plasmid DNA, 
proteins, peptides, and chemical drug compounds can be loaded into RBCEVs using 
electroporation (Figure 2). Other post-loading methods such as mild sonication 
and physical incubation may be applicable to RBCEVs as tested for other types of 
EVs. Labeling of EVs is then required to examine the efficiency of delivery to target 
cells. Various methods and techniques have been applied to label EVs, with most 
common methods being incubation with biotinylated radioisotope, substrate of 
luciferase, fluorescence lipophilic dye, streptavidin-conjugated fluorescence dyes, 
or the use of other modified proteins [55, 64–66].

3.4 Advantages of red blood cell extracellular vesicles in therapeutics

Due to their innate function on cell-cell communication, EVs can be used 
effectively for drug delivery [12, 67–69]. The biggest advantage of EVs drug deliv-
ery is probably that EVs can be taken from an organism and returned to the same 
organism in vivo after being loaded with therapeutic agents, which are thought to be 
nonimmunogenic. Another advantage to deliver nucleic acids with the help of EVs is 
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that EVs can carry molecules through physiological barriers, such as the blood-brain 
barrier, which are hard to cross using conventional delivery methods. Normally, 
when exogenous RNAs are introduced into the body directly, they will be cleared 
before reaching the target tissues or cells of interest through degradation by nucle-
ases, or they will be filtered in the kidneys. Both coding and noncoding RNAs were 
shown to be transferred by EVs intercellular crosstalks. Additionally, it has been 
shown that microRNAs can be transported in EVs to various cell types. Thus, EVs 
can be used as a promising vehicle for delivery of RNA-based drugs. Potential fields 
for therapeutic use include gene therapy, targeted therapy, vaccination, improve-
ment of pregnancy outcome, newborn medicine, kidney disease, and treatment of 
autoimmune disease [12, 67–69].

It has been reported that diversified types of cells, including RBCs, endothelial 
cells, monocytes, granulocytes, and platelets, release EVs. Additionally, EVs can be 
isolated by various methods from cell culture media, plasma, and other biofluids 
[23, 41, 70, 71]. Although several research groups have demonstrated the advan-
tages of using EVs for RNA delivery, there are still issues with EVs generated from 
fibroblasts and dendritic cells being not permanently available from all subjects 
[69, 72]. RBCs are readily obtainable from any human subject and easy to store, and 
blood transfusion has been a relatively safe, well-established, and routine medical 
procedure for decades which makes RBCEVs easy to obtain and safe to use. Thus, 
EVs from whole plasma are easily accessible and substantially present, but these EVs 
are derived from various cell types, e.g., nucleated cells which represent a risk for 
horizontal gene transfer [63]. Therefore, obtaining ultrapure RBCEVs solely derived 
from RBCs is highly preferred as RBCs lack both nuclear and mitochondrial DNA, 
which means that RBCEVs for pharmaceutical purpose avoid the risk of horizontal 
gene transfer. RBCEVs formation has been extensively investigated and described 
in the recent years. Therefore, with such knowledge, RBCEVs are safer and less 
complicated to use [73–76].

Consequently, RBCEVs possess several features which make them better 
suitable for clinical applications than EVs from other cell types. First of all, blood 
units are easily accessible from existing blood banks. A large scale of RBCEVs 
can be produced at low cost as RBCs are the most abundant cell type in the body 
(84% of all cells) and, during their 120-day lifespan, RBCs continue to release 
RBCEVs, leading to an approximate 20% loss in RBCs volume and an increase of 
around 14% in hemoglobin concentration [23, 77–79]. Additionally, RBCEVs are 
obtainable for allogeneic and autologous transfusion from the patients’ own blood. 
A large number of RBCs (~1012 cells/L) are obtainable from each blood unit. 
Thus, there exists no need to expand cells in culture and no risk of the emergence 
of mutations in vitro. In addition, no cGMP-qualified media or supplements are 
required, which are financially desirable. Large-scale amounts (1013–1014) of 
RBCEVs can be isolated from RBCs (per unit) when treated with calcium iono-
phore, which is a scalable strategy to obtain EVs. Secondly, RBCEVs are safer com-
pared to EVs from other cell types, because the enucleated RBCs contain no DNA, 
unlike EVs from nucleated cell types which represent a potential risk for horizontal 
gene transfer. As plasma EVs are heterogeneous with unpredictable contents, 
RBCEVs are safer than plasma EVs for allogeneic treatments of cancer because 
cancer cells and immune cells are known to release large amounts of cancer-pro-
moting EVs into their environment [80, 81]. Thirdly, RBCEVs are nontoxic; hence, 
they are safer as compared to the toxic synthetic transfection reagents which are 
typically used. As mentioned before, RNAs in RBCEVs are stable and completely 
functional in vitro and in vivo for both liquid and solid cancers. Fourthly, RBCEVs 
are presumably nonimmunogenic via blood type matching, unlike adenoviruses, 
adeno-associated viruses, lentiviruses, nanoparticles, and various synthetic 
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transfection reagents. Last but not least, RBCEVs can be frozen and thawed many 
cycles without affecting their integrity or efficacy. This fact suggests that RBCEVS 
can be developed into stable pharmaceutical products in the future, but further 
research needs to be done. Compared to most other current methods for program-
mable RNA drug therapies, which are unsuitable for the clinical use because of 
the low uptake efficiency and high cytotoxicity, RBCEVs show promising future 
prospects [55].

4. Conclusion

EVs are shed from the plasma membrane or released by endosomal pathways 
under both physiological and diseased conditions. Intercellular communication 
is one of the best known functions of EVs by far, which provides the possibility 
to utilize the EVs natural vehicle property of transporting nucleic acids, proteins, 
and lipids for drug delivery. Recent studies demonstrate that human RBCEVs can 
be developed as robust delivery platform for multiple therapeutic RNAs in cancer 
treatment. RBCEVs feature multiple benefits as compared to EVs from other cell 
types. They are easily obtainable in large amounts, can be frozen and thawed 
multiple times without significant compromise, are nontoxic and nonimmuno-
genic, can reach remote tissues in the body with minimal hindrance by physiological 
barriers, and do not contain DNA or other unpredictable contents which could 
result in horizontal gene transfer. By obtaining RBCEVs directly from the patient, 
they are safe to use allogeneic treatments and possess no risk of emerging mutations 
during expansion by cell culture. Thus, RBCEVs show promising advantages in 
overcoming various limitations of cell-based therapeutics. All in all, RBCEVs need 
further research in order to establish them as a new source and promising approach 
for practical therapeutics in clinical use.
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