
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter

CNN Approaches for Time Series
Classification
Lamyaa Sadouk

Abstract

Time series classification is an important field in time series data-mining which
have covered broad applications so far. Although it has attracted great interests
during last decades, it remains a challenging task and falls short of efficiency due to
the nature of its data: high dimensionality, large in data size and updating continu-
ously. With the advent of deep learning, new methods have been developed, espe-
cially Convolutional Neural Network (CNN) models. In this paper, we present a
review of our time series CNN approaches including: (i) a data-level approach based
on encoding time series into frequency-domain signals via the Stockwell transform,
(ii) an algorithm-level approach based on an adaptive convolutional layer filter that
suits the time series in hand, and (iii) another algorithm-level approach adapted to
time series classification tasks with limited annotated data, which is a global, fast
and light-weight framework based on a transfer learning technique with a source
learning task similar or different but related to the target learning task. These
approaches are implemented on identifying human activities including normal
movements of typical subjects and disorder-related movements such as stereotypi-
cal motor movements of autistic subjects. Experimental results show that our
approaches improve performance of time series classification.

Keywords: time series, classification, convolutional neural networks, transfer
learning

1. Introduction

Time series is a series of data points which are collected by recordinga set of
observations chronologically. Examples of time series include speech, human activ-
ities, electrocardiogram (ECG), etc. Recently, time series classification has attracted
great interests and initiated various researches. However, the nature of time series
data, including the large size of data, the high dimensionality and the continuously
updating scheme of time series, makes time series classification a more challenging
task.

Time series classification is widely applied in different fields such as in astron-
omy [1] to classify the brightness of a target star, in medical science to diagnose
cardiac disorders [2] or to recognize human activities [3, 4], and in computer
science for speech recognition [5, 6]. To handle time series classification, several
techniques were proposed, which can be aggregated into three categories: model
based, distance based and feature based.

1

The first category of time series classification approaches consists of building a
model for each class by fitting its parameters to that class. Examples of such
approaches are the autoregressive (AR) model [7] and the hidden Markov model
(HMM) [8] which are limited to stationary and symbolic non-stationary time series
respectively.

The second category relies on developing distance functions to measure the
similarity (or dissimilarity) between two time series and on selecting a good classi-
fier, such as dynamic time warping (DTW) distance [9, 10]. But these approaches
are computationally expensive.

The third category consists of extracting meaningful features from the time
series. Examples of such approaches include the discrete Fourier transform (DFT)
[11], the Short-time Fourier transform (STFT) [12], the discrete wavelet transform
(DWT), principal component analysis (PCA), singular value decomposition (SVD),
sparse coding [13], and shapelets [14].

Meanwhile, automatic feature-based approaches using deep learning models
rely have been successfully applied to time series classification, classification prob-
lems, especially convolutional neural networks (CNNs) which are regarded as the
most successful and commonly used deep learning model. In [5, 6], authors address
the problematic of speech recognition whereby speech signals have similar patterns
within different frequency band locations which convey a different meaning. A
solution to this problem is to employ a limited weight sharing CNN [6] where
weight sharing is limited only to local filters which are close to each other and which
are pooled together in the subsampling layer. Another approach based on tiled CNN
architecture with a pre-training stage (an unsupervised learning algorithm named
topographic ICA) was proposed by [15], which showed its superiority over tradi-
tional CNN on small time series datasets. A tiled CNN [16] is a CNN which unties
weights locally and uses a regular “tiled” pattern of tied weights that requires only
that hidden units k steps away from each other to have tied weights. Another
relevant CNN architecture for time series classification named multi-scale
convolutional neural network (MCNN) [17] was introduced where each of the three
transformed versions of the input (which will be discussed in Section 3.1) is fed into
a branch i.e., a set of consecutive convolutional and pooling layers, resulting in
three outputs which are concatenated and further fed into more convolutional and
pooling layers, fully connected layers and a softmax layer to generate the final
output. Training all parameters is done jointly using back-propagation. Another
attempt to enhance time series classification was proposed in [18], which employs
the same idea of multiple branches within the CNN architecture, except that the
input is not a different transformed version of the time series signal fed into each
branch, but rather a duplicate of the same time series signal fed into all the branches
(three branches). However, different convolutional filter sizes are applied per
branch in order to capture the multi-scale characteristics of the time series. Two
other CNN proposals to time series classification were suggested in [19], namely
fully convolutional networks (FCN) without subsampling layers, and residual net-
works (ResNet). FCNs [20] are defined as networks which have convolutional
layers only and no fully-connected layers, whereas ResNet [21] is a type of special-
ized neural network that solves the “vanishing gradient” problem when having
many layers within the network, by using residual blocks which take advantage of
residual mapping to preserve inputs. By adding batch normalization layers into FCN
and ResNet, and by replacing the fully connected layers with a global pooling layer
in the FCN, these two deep learning models seem to yield comparable or better
results than MCNN [17]. An ensemble method of deep learning networks named
LSTM-FCN is proposed in [22] is proposed and consists of feeding the same time

2

Time Series Analysis - Data, Methods, and Applications

series input into two branches: an FCN and Long Short Term Recurrent Neural
Network (LSTM) block [23], producing two outputs which are concatenated and
then passed onto a softmax classification layer. Another attempt to helps the CNN
converge faster and better to the minima was made by Guennec et al. [24] who
propose to perform data-augmentation techniques (further described in Section
3.1) and pre-train each layer in an unsupervised manner (using an auto-encoder)
using unlabeled training time series from different datasets. For multivariate time
series, only few research papers based on CNNs were published (such as [3, 4,
25, 26]). Zheng et al. [25] proposed a multi-channels deep convolution neural
network (MC-DCNN), each branch of which takes a single dimension of the multi-
variate time series as input and learns features individually. Then the MC-DCNN
model combines the learnt features of each branch and feeds them into a fully
connected layer to perform classification. And, to further improve the performance,
authors also suggested to pre-train the MC-DCNN first by applying an
unsupervised initialization via the convolutional auto-encoder method. Meanwhile,
a different CNN architecture for multivariate time series classification was intro-
duced in [3, 4, 26], which treats the 3-, 12-, and 9-variate time series inputs (in
[3, 4, 26] respectively) as a 3-, 12-, and 9-channel inputs and convolves them as a
whole instead of convolving each channel of the input separately as performed in
[25]. Authors of this architecture argue that, by separating multivariate time series
into univariate ones just as in [25], the interrelationship between different univari-
ate time series may be lost and thus will not be mined/extracted.

In this paper, we aim at presenting a review on our CNN approaches for time
series classification. Our review discusses our CNN contributions at the data-level
and at the algorithm-level. Our paper is organized as follows. In Section 2, some
preliminaries about time series are introduced. In Section 3 reviews existent data-
level techniques are presented, our data-level technique is reviewed, and experi-
ments as well as results of our technique are laid out. Section 4 describes our
algorithm-level approaches for time series classification, with experiments
conducted and results analyzed. Section 4.3.3 concludes our paper with future
perspectives.

2. Preliminaries/nature of time series data

Univariate and multivariate time series data. Time series inputs can be categorized
into: (i) Univariate Time series which have only a single variable observed at each
time and thus resulting in one channel per time series input, and (ii) Multivariate
Time series which have two or more variables observed at each time, ending up
with multiple channels per time series input. Most time series analysis methods
focus on univariate data as it is the simplest to work with. Multivariate time series
analysis considers simultaneously multiple time series, which, in general is much
more complicated than univariate time series analysis as it is harder to model and
often many of the classical methods do not perform well.

Raw data or extracted signals. A raw time series is a series of data points indexed
in time order i.e., a sequence of discrete-time data taken at successive equally
spaced points in time. In time series classification tasks, some authors choose to
evaluate the performance of their approaches using raw time series data taken from
a specific field/domain while some others prefer to use public datasets in which the
raw time series is already segmented and converted into a set of fixed-length
signals. Indeed, several research papers using CNNs [17–19, 22, 24, 26, 27] build
their experimental studies on the UCR time series classification archive [28] which

3

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

consists of extracted short signals. Nonetheless, this benchmark is composed
of relatively small datasets (with a small number of instances), which makes the
CNN less efficient knowing that CNNs require large training sets for training.
Furthermore, in most of the cases, fixed-length signals cannot be further encoded
into new representations (which are discussed in Section 3.1), as opposed to raw
time series. These issues have led authors of [3–6, 15, 25, 29, 30] to use raw time series
data instead.

3. Data-level approach

Throughout this section, we show several approaches used in the literature to
pre-process time series by re-framing them into new representations for a further
CNN implementation. Indeed, a raw time series needs to be converted into a set of
fixed-length vector or matrix inputs before being fed into the CNN. Then, we
discuss our data-level approach (of previous works [3, 4]) based on the Stockwell
transform method.

3.1 Background on pre-processing methods for CNN

3.1.1 Basic pre-processing method: the sliding window

Given a sequence of values for a time series dataset, values at multiple time steps
can be grouped to form an input vector while the output corresponds to a specific
label given to this vector (generally provided by an expert). The use of time steps to
predict the label (e.g., the class) is called the Sliding Window method and is
explained in the algorithm below. The width of the sliding window L can be varied
to include more or less previous time steps depending on the specificity of the
dataset and the user preference.

Algorithm 1. Sliding window’s algorithm

1. procedure SlidingWindow(T, L, s)

2. i ¼ 0; n ¼ 0; // n is the number of frames/windows.

3. F ¼ ½�; // F is the set of extracted frames/windows.

4. while iþ L≤length Tð Þ do // L is the length of sliding window

5. F n½ � ¼ T i:: iþ L� 1ð Þ½ �; // T is the original time series data/sequence.

6. i ¼ iþ s; n ¼ nþ 1; // s is the step.

7. end while

8. return F;

9. end procedure

4

Time Series Analysis - Data, Methods, and Applications

3.1.2 Other pre-processing methods

Several research papers have focused mainly on applying some pre-processing to
raw time series before being fed into the CNN. In this subsection, we present some
important contributions which demonstrated that applying changes to the signals
can further improve the CNN performance.

Several attempts have been made in order to encode raw time series as a matrix
representation (e.g., 2D images) such as the Gramian Angular Field (GAF) [15], the
Markov Transition Field (MTF) [15], Recurrence Plots (RP) [27], and stacked time
series signals [29, 31], multivariate time series are treated as a 2D time-space input
signals with one dimension denoting discrete time flows and the other
corresponding to different channels of the multivariate time series.

Another type of data pre-processing based on applying transformation to data is
performed in order to augment the data, thereby ensuring a better CNN training
and thus a higher performance. For instance, the window slicing method [24] trains
the CNN using slices of the time series input, then at test time classifies each slice of
the test time series using CNN, and performs majority voting to output the
predicted label. The window warping method [24] consists of warping a randomly
selected slice of a time series by speeding it up or down, producing a transformed
raw time series. Then, this latter is further converted into fixed-length input sig-
nals/instances via window slicing. Another attempt of augmenting time series is
suggested in [3] where either small noise or smoothing is applied to the raw time
series. Other transformations were also considered in [17] such as down-sampling
to generate versions of a time series at different time scales, and spectral trans-
formations in the frequency domain by adopting low frequency to remove noise
from time series inputs.

Knowing that random noise and high-frequency perturbations present in the
time series data can interfere tremendously with the learning process and that it is
hard to capture useful features with the presence of noise in raw time series data,
some works [5, 30] proposed to apply the Fast Fourier transform (FFT) and
convert the raw time series into a set of frequency domain signals which serve as
inputs for the CNN training process.

3.2 Stockwell transform

Instead of employing the FFT which is restricted to a predefined fixed window
length, we choose to adopt the Stockwell transform (ST) as our preprocessing
method for CNN training [3, 4]. In this section, the ST method is defined, its
implementation on real world applications is detailed, and its experimental results
are analyzed.

3.2.1 Methodology

The advantage of the ST over the FFT is its ability to adaptively capture spectral
changes over time without windowing of data, resulting in a better time-frequency
resolution for non-stationary signals [32]. To illustrate the ST method, let
h l½ � ¼ h l∙Tð Þ, l ¼ 0, 1,…, N � 1, be the samples of the continuous signal h tð Þ, where
T is the sampling interval (i.e., the sampling interval of our sensor or measuring
device). The discrete Fourier transform (DFT) can be written as,

H m½ � ¼ ∑
N�1

l¼0

h l½ �e
�i2πml

N (1)

5

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

where m is the discrete frequency index m ¼ 0, 1,…, N � 1:
The discrete Stockwell transform (DST) is given by,

S k; n½ � ¼ ∑
N�1

m¼0
W m½ �H mþ n½ �e

i2πmk
N (2)

where k is the index for time translation and n is the index for frequency shift.

The function W m½ � ¼ e
�2π2m2

n2 is the Gaussian window in the frequency domain.
Given a N-length signal, the DST coefficients are computed using the following

steps:

1. Apply an N-point DFT to calculate the Fourier spectrum of the signal H m½ �;

2.Multiply H mþ n½ � with the Gaussian window function W m½ � ¼ e
�2π2m2

n2

3. For each fixed frequency shift n ¼ 0, 1,⋯, τ � 1 (where τ is the number of
frequency steps desired), apply an N-point inverse DFT to W[m]H[m + n] in
order to calculate the DST coefficients S k; n½ �, where k ¼ 0, 1,…, N � 1;

Note that there is a DST coefficient calculated for every pair of k; nih in the time-
frequency domain. Therefore, the result of the DST is a complex matrix of size
τ �N where the rows represent the frequencies for every frequency shift index n
and the columns are the time values of every time translation index k i.e., each
column is the “local spectrum” for that point in time. This results in N instances,
each instance being represented as a τ � 1� 1 matrix. If the time series is multivar-
iate with D channels, D DST matrices will be generated, and each instance is
represented as a τ � 1�D matrix.

3.2.2 Experiments

3.2.2.1 Stereotypical motor movement (SMM) recognition task [4]

A SMM is defined as a repetitive movement which is regarded as one of the most
apparent and relevant atypical behaviors present within children on the Autism
Spectrum. Thus, detecting SMM behaviors can play a major role in the screening and
therapy of ASD, thus potentially improving the lives of children in the spectrum.

Dataset. The SMM dataset used for training the CNN is derived from [33] and
consists of raw time series of acceleration signals collected by three-axis wireless
accelerometers (located at the torso, left wrist and right wrist) from six atypical
(e.g., autistic) subjects in a longitudinal study. Activities including SMMs (body
rocking, hand flapping, or simultaneous body rocking and hand flapping) and non-
SMMs were engaged by subjects and were labeled (annotated) by an expert as SMM
or non-SMM. Two to three sessions (9 to 39-min long) were recorded per partici-
pant, except subject 6 who was observed only once in Study 2.

Pre-processing. The data collection called “Study1” and “Study2” were recorded at a
sampling frequency of 60 and 90 Hz respectively. So, to equalize the data, the 60 Hz
signals are resampled and interpolated to 90 Hz. Next, data of both sensors go through
a high pass filter with a cut-off frequency of 0.1 Hz in order to get rid of noise.

Afterwards, data is turned into fixed-length vector samples either in time-
domain (using the sliding window) or in frequency-domain (using ST). Time-
domain samples are obtained by segmenting raw data using a one second window
(e.g., L ¼ 90, see algorithm1) and 88.9% overlap between consecutive data seg-
ments (e.g. s ¼ 10, see algorithm1), resulting in 90 time-point samples. And,

6

Time Series Analysis - Data, Methods, and Applications

knowing that three 3-axis acceleration signals are measured per accelerometer, an
input sample will be a 90� 1� 9 matrix with 9 denoting the number of channels
(9 ¼ 3accelerometers� 3coordinates).

On the other hand, frequency-domain samples are obtained by deriving ST for
every other 10th sample, and by selecting the proper best frequency range. Consid-
ering that 98% of the FFT amplitude of human activity frequencies is contained
below 10 Hz, the ST frequencies are first chosen to be between 0 and 10 Hz, which
yields bad CNN classification performance. And, after considering Goodwin’s
observation that almost all SMMs are contained within a frequency range of 1–3 Hz,
we chose a new frequency range of 0–3 Hz which produced higher CNN classifica-
tion performance. So, computing the ST generates multiple input samples (vectors
of length 50), each containing the power of 50 frequencies (τ ¼ 50) in the range of
0–3 Hz. Thus, each extracted frequency-domain sample is a 50� 1� 9 matrix.

CNN training. The purpose is to analyze intersession variability of different
SMMs by training one CNN per domain (time or frequency domain) per subject per
study. In other words, feature learning that is performed is specific to one domain
(time and frequency), one subject i and one study j. The goal of this experiment is to
build deep networks that are capable of recognizing SMMs across multiple sessions
within the same atypical subject i. Training is conducted using k-fold cross-validation
of an atypical subject i for a study j such that k is the number of sessions for which a
participant was observed within each study, and every fold consists of data from a
specific session. Time and frequency domain CNN architectures are composed of
three and two sets of convolution, ReLU and pooling layers respectively with the
number of filters set to {96, 192, 300} and {96,192} respectively, followed by a fully
connected layer with 500 neurons. Training is performed for 10 to 40 epochs with the
following hyper-parameters: a dropout of 0.5, a momentum of 0.9, a learning rate of
0.01, a weight decay of 0.0005, and a mini-batch size of 150.

3.2.2.2 Human activity recognition (HAR) task [3]

Dataset. The dataset used for HAR is the PUC dataset [34] which consists of
8 hours of human activities collected at a sampling frequency of 8 Hz by 4 tri-axial
ADXL335 accelerometers located at the waist, left thigh, right ankle, and right arm.
The activities are: sitting, standing, sitting down, standing up, and walking.

Pre-processing. The PUC data is further converted into time and frequency
domain signals. In time-domain, a 1 s time window (e.g., L ¼ 8) with 125 ms
overlapping (e.g., s ¼ 1) is employed to generate 8� 1 time-domain samples. How-
ever, knowing that an 8� 1 input matrix is not a vector long enough for training a
CNN, signals are resampled from 8 to 50 using an antialiasing FIR low-pass filter
and compensating for the delay introduced by the filter. The resultant time-domain
input samples are 50� 1� 12 matrix where 12 stands for the number of channels
(14accelerometers� 3coordinates). In frequency-domain, raw signals are resampled
from 8 to 16 Hz; then, the ST is computed to obtain, for each input sample, the
power of 50 frequencies in the range of 0–8 Hz, resulting in frequency-domain
input samples of size 50� 1� 12.

CNN training. In this experiment, one CNN is trained for each domain (time and
frequency domain), with a 10-fold cross-validation. CNN architecture and param-
eters are set the same as in the SMM recognition task.

3.2.3 Results

Table 1 summarizes accuracy and F1-score results of CNN (in both time and
frequency domains) for both the SMM recognition and HAR tasks. For SMM

7

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

F1-scores SMM recognition Accuracies HAR

Study 1 Study 2

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 Mean

Time-domain CNN 91.23 76.76 84.95 93.38 86.41 95.11 95.97 75.67 60.17 91.68 82.55 84.90 99.90

Frequency-domain CNN 96.54 78.41 93.62 96.46 95.74 98.58 96.07 95.27 85.03 98.03 93.88 93.42 95.98

Table 1.
Performance rates of time-, and frequency-domain CNNs for the SMM recognition (in terms of F1-score) and Human Activity Recognition referred to as HAR (in terms of accuracy). Highest rates
are in bold.

8 T
im

e
Series

A
n
a
lysis

-
D
a
ta
,
M
eth

od
s,
a
n
d
A
p
p
lica

tion
s

recognition, as opposed to other subjects, Subject 6 within Study 2 had only one
session recorded; thus, no CNN was trained for this subject. We observe that all
frequency-domain CNNs (of all subjects in all studies) perform better than time-
domain CNNs by 8.52% (in terms of the mean F1-score). This suggests that ST
eliminates all noisy information and thus helps the CNN capture meaningful features.

However, as opposed to these results, comparing results of time and frequency
domain CNNs on the Human Activity Recognition (HAR) task demonstrates the
efficiency of time over frequency by 3.92% in terms of accuracy (as shown in
Table 1). These contradictory results can be explained by the difference in the
chosen ST frequency range for SMM recognition and that of HAR. Indeed, in SMM
recognition, the frequency range of the ST was carefully chosen to cover almost all
SMMs (0–3 Hz), resulting in optimal frequency-domain samples (containing full
and noise-free information) which produced better CNN parameters. Meanwhile,
the ST frequency range for HAR (0–8 Hz) may be a short/small range which
generated frequency-domain samples that may have lost relevant information.
Indeed human activity frequencies fall between 0 and 20 Hz (with 98% of the FFT
amplitude contained below 10 Hz). Thus, in order to train CNNs with frequency-
domain signals, it is necessary to analyze raw time series to come up with the proper
ST frequency range which covers all valuable information needed for the recogni-
tion task.

4. Algorithm-level approach

4.1 Background on convolutional neural networks

4.1.1 Definition

CNNs were developed with the idea of local connectivity. Each node is
connected only to a local region in the input. The local connectivity is achieved by
replacing the weighted sums from the neural network with convolutions. In each
layer of the CNN, the input is convolved with the weight matrix (e.g., the filter) to
create a feature map. As opposed to regular neural networks, all the values in the
output feature map share the same weights so that all nodes in the output detect
exactly the same pattern. The local connectivity and shared weights aspect of CNNs
reduce the total number of learnable parameters, resulting in more efficient training
and learning in each layer a weight matrix which is capable of capturing the neces-
sary, translation-invariant features from the input.

4.1.2 CNN structure

The input to a convolutional layer is usually taken to be three-dimensional: the
height, weight and number of channels. In the first layer this input is convolved
with a set of M1 three-dimensional filters applied over all the input channels. In our

case, we consider a one-dimensional time series x ¼ xtð ÞN�1
t¼0 . Given a classification

task and a model with parameter values w, the task for a classifier is to output the
predicted class ŷ based on the input time series, x 0ð Þ,…, x tð Þ.

The output feature map from the first convolutional layer is then given by
convolving each filter w1

h for h ¼ 1,…,M1 with the input:

a1 i; hð Þ ¼ w1
h ∗ x

� �

ið Þ ¼ ∑
∞

j¼�∞
w1

h jð Þx i� jð Þ (3)

9

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

where w1
h ∈R1�k�1 and a1 ∈R1�N�kþ1�M1 , i is the index of the feature map at the

second dimension (i ¼ 1,…, N � kþ 1) and h is the index of the feature map at the
third dimension (h ¼ 1,…,M1). Note that since the number of input channels in this
case is one, the weight matrix also has only one channel. Similar to the feedforward
neural network, this output is then passed through the non-linearity h �ð Þ to give

f 1 ¼ h a1ð Þ:

In each subsequent layer l ¼ 2,…, L, the input feature map f 1�1 ∈R1�Nl�1�Ml�1 ,
where 1�Nl�1 �Ml�1 is the size of the output filter map from the previous convo-

lution with Nl�1 ¼ Nl�2 � kþ 1, is convolved with a set of Ml filters w
l
h ∈R1�k�Ml�1 ,

h ¼ 1,…,Ml, to create a feature map al ∈R1�Nl�Ml ,

al i; hð Þ ¼ wl
h ∗ f

l�1
� �

ið Þ ¼ ∑
∞

j¼�∞
∑
Ml�1

m¼1
w1

h j;mð Þf l�1 i� j;mð Þ (4)

This output is then passed through the non-linearity to give f l ¼ h al
� �

. The filter
size parameter k thus controls the receptive field of each output node. Without zero
padding, in every layer the convolution output has width Nl ¼ Nl�1 � kþ 1 for
l ¼ 1, ::, L. Since all the elements in the feature map share the same weights this
allows for features to be detected in a time-invariant manner, while at the same
time it reduces the number of trainable parameters.

The output is then fed into a pooling layer (usually a max-pooling layer) which

acts as a subsampling layer. The output map pl hð Þ of a feature map h is achieved by
computing maximum values over nearby inputs of the feature map as follows:

pl i; hð Þ ¼ maxr∈R f l i� T þ r; hð Þ
� �

(5)

where R is the pooling size, T is the pooling stride, and i is the index of the
resultant feature map at the second dimension.

Multiple convolution, ReLU and pooling layers can be stacked on top of one
another to form a deep CNN architecture. Then, the output of these layers is fed
into a fully connected layer and an activation layer. The output of the network after

L layers will thus be the matrix f L. Depending on what we want our model to learn,
the weights in the model are trained to minimize the error between the output from

the network f L and the true output we are interested in, which is often denoted as
the objective function (loss function). For instance, a softmax layer can be applied
on top, followed by the entropy cost function which is an objective function com-
puted based on the true labels of training instances and probabilistic outputs of
softmax function.

4.2 CNN with the adaptive convolutional filter approach

In previous CNN works, several attempts have been made to extract the most
relevant/meaningful features using different CNN architectures. While works
[17, 24] transformed the time series signals (by applying down-sampling, slicing, or
warping) so as to help the convolutional filters (especially the 1st convolutional
layer filters) capture entire peaks (i.e., whole peaks) and fluctuations within the
signals, the work of [18] proposed to keep time series data unchanged and rather
feed them into three branches, each having a different 1st convolutional filter size,
in order to capture the whole fluctuations within signals. An alternative is to find an
adaptive 1st convolutional layer filter which has the most optimal size and is able to

10

Time Series Analysis - Data, Methods, and Applications

capture most of entire peaks present in the input signals. By obtaining the most
appropriate 1st convolutional layer filter, there will be no need to apply multiple
branches with different 1st convolutional layer filter sizes, and no need to apply
transformations such as down-sampling, slicing and warping, thus requiring less
computational resources. The question of how to compute this adaptive 1st
convolutional layer filter is addressed in [4]. In this section, we will discuss the
approach based on the adaptive 1st convolutional layer filter. Next, to prove the
efficiency of this/our approach, an application on SMM recognition is conducted
and results are analyzed.

4.2.1 Methodology

In CNNs, multiple hyper-parameters are to be chosen carefully in order to
retrieve the best classification rate, including model hyper-parameters which define
the CNN architecture, and optimization hyper-parameters such as the loss function,
learning rate, etc. Model Hyper-parameter values are generally chosen based on the
literature and on the trial-and-error process (through running experiments with
multiple values). A conventional approach is to start with a CNN architecture which
has already been adopted in a similar domain to ours, and then update hyper-
parameters by experimentation.

In our study, we focus on the convolutional layer filter (also known as “Recep-
tive field”). Conventionally, the 1st convolutional layer filter has one of the follow-
ing sizes: 3� 3, 5� 5, 7 � 7 and 10� 10, where small filter sizes capture very fine
details of the input while large ones leave out minute details in the input. After all,
the goal is to set the receptive field size such that the filters detect complete features
(e.g., entire variations) within an object (which could be edges, colors or textures
within an image, or peaks within a signal). Choosing a small 1st layer filter is good
for capturing a short variation (e.g., a signal peak) within a time series input signal,
but may capture only a slice of this variation by convolving only part of it, thus
failing to detect the whole fluctuation within the signal. Conversely, a relatively
large filter may convolve multiple signal peaks at once and therefore no fluctuation
is detected either. So, the choice of the proper 1st layer receptive field size is crucial
for find good CNN features and for maximizing recognition performance. In that
sense, we need 1st layer filter that suits the input signals and variations present
within them. In other words, we need to find the best filter size which convolves
most of the entire signal peak within the input signals. To this end, it is necessary to
find the optimal length of all signal peaks present within input signals. To do so, we
apply sampling, a statistical procedure that uses characteristics of the sample (i.e.,
sample peak lengths taken from randomly selected signals) to estimate the charac-
teristics of the population (i.e., the optimal peak length of all signals). The sample
statistic can be the mean, median or mode.

Given a population of signals with mean μ and n random values x (n being
sufficiently large: n≥30) sampled from the population with replacement, the mean
E xð Þ is a point estimate of μ and E xð Þ ¼ μ where E xð Þ ¼ 1

n∑
n
i¼1xi. However, using

the sample mean E xð Þ as the optimal length of peaks within time series signals (in
time- and frequency-domains) and as the size of the 1st convolutional layer filter
gives poor CNN performance since it is influenced by outliers or extremes values
(i.e., by signals peaks whose length are either too small and too big). In this case, we
use the sample median.

For the sample medianMe xð Þ to be a point estimate of the population medianMe

(with a small bias), the distribution of the sample values x should be normally
distributed. Nonetheless, the asymptotic distribution of the sample median in the

11

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

classical definition is well-known to be normal for absolutely continuous distribu-
tions only and not for discrete distributions (such as time series). A solution to this
problem is to employ the definition of the sample median based on mid-distribution
functions [35] which proves that the sample median has an asymptotically normal
distribution, meaning thatMe xð Þ≈Me. Then, computing the sample median of signal
peak lengths will give us the optimal size of the 1st convolutional layer filter.

4.2.2 Experiments

Experiments are conducted on the SMM Recognition task. The dataset and
experimental setup are the same as in Section 3.2.2. The inputs used are either time-
domains acceleration signals of size 90� 1� 9 for time-domain CNN training or
frequency-domain signals of size 50� 1� 9 for frequency-domain CNN training.
The goal is to find the optimal size of the 1st convolutional layer filter for both time-
domain and frequency-domain CNNs.

As explained in the methodology, the first step to determine the size of the 1st
convolutional layer filter is to collect 30 random signals (for each of the time and
frequency domain SMM signals) that contain at least one peak and to randomly pick
30 peaks from these signals. Histograms (a) and (b) of Figure 1 represent frequency
distributions of the 30 peak lengths for time and frequency domain signals respec-
tively. Afterwards, the computed time and frequency domain medians (9 and 10
respectively) are applied as the optimal size of the 1st convolutional layer filter for
the time and frequency domain CNNs respectively.

4.2.3 Results

In order to prove the efficiency of this adaptive 1st convolutional layer filter
approach, we run experiments on different time and frequency domain CNN
architectures by varying the size of the 1st convolutional layer filter between 7 and
11 across both architectures. Performance rates in terms of the F1-score metric are
displayed in Figure 2. In time-domain, an increase in the size of the 1st
convolutional layer filter from 7 (� a time span of 0.078 s) to 9 (� a time span of
0.1 s) results in an increase of 3.26%, while an increase of the filter size from 9 to 10
(� a time span of 0.11 s) and 11 (� a time span of 0.12 s) diminishes the perfor-
mance of the network. Therefore, the most optimal size of the 1st convolutional
filter is equal to the sample median of signal peak lengths, suggesting that 0.1 is the
best time span of the 1st convolutional layer to retrieve the whole acceleration peaks
and the best acceleration changes. Similarly, in frequency domain, the 1st
convolutional layer kernel yielding the highest F1-score is the one with size 10,
which is simply the sample median (Me xð Þ ¼ 10). Thus, these results confirm the

Figure 1.
(a) and (b) Histograms and box plots of the frequency distribution of 30 peak lengths present within 30
randomly selected time and frequency domain signals respectively.

12

Time Series Analysis - Data, Methods, and Applications

superiority of the adaptive 1st convolutional layer filter approach for both time and
frequency domain signals.

Furthermore, another way to show the efficiency of this adaptive 1st
convolutional layer filter approach is to compare the performance of our time-
domain CNNwith the CNN of Rad et al. [30] which was trained on the same dataset
as ours (in time-domain). Table 2 displays F1-score results of CNNs trained per
subject and per study using the optimal 1st convolutional layer filter size (denoted
as “Time-domain CNN”) and using the architecture of [30] (referred to as CNN-
Rad). These results suggest that our time-domain CNN performs 20.17% higher in
overall than the CNN of [30] and confirms the efficiency of the adaptive
convolutional layer.

4.3 CNN approach for tasks with limited annotated data

CNNs have so far yielded outstanding performance in several time series appli-
cations. However, this deep learning technique is a data driven approach i.e., a
supervised machine learning algorithm that requires excessive amount of labeled
(e.g., annotated) data for proper training and for a good convergence of parameters.
Although in recent years several labeled datasets have become available, some fields
such as medicine experience a lack of annotated data as manually annotating a large
set requires human expertise and is time consuming. For instance, labeling acceler-
ation signals of autistic children as SMMs or non-SMMs requires knowledge of a
specialist. The conventional approach to deal with this kind of problem is to per-
form data augmentation by applying transformations to the existing data, as shown
in Section 3.1.2. Data augmentation achieves slightly better time series classification
rates but still the CNN is prone to overfitting. In this section, we present another
solution to this problem, a “knowledge transfer” framework which is a global, fast
and light-weight framework that combines the transfer learning technique with an
SVM classifier. Afterwards, this technique is further implemented on another type
of SMM recognition task, which consists of recognizing SMMs across different
atypical subjects rather than recognizing SMMs across multiple sessions within one
subject (as performed in experiments of Sections 3.2.2 and 4.2.2).

Figure 2.
Effect of the size of 1st convolutional layer kernel on SMM recognition performance.

Study 1 Study 2 Mean

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5

CNN-Rad [30] 71 73 70 92 68 94 68 22 2 77 75 64.73

Time-domain

CNN

91.23 76.76 84.95 93.38 86.41 95.11 95.97 75.67 60.17 91.68 82.55 84.90

Table 2.
Comparative results (F1-scores) between the CNN using the adaptive 1st convolutional filter approach and the
CNN of Rad et al. [30].

13

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

4.3.1 Methodology

Transfer learning is a machine learning technique where a model trained on one
task (a source domain) is re-purposed on a second related task (a target domain).
Transfer learning is popular in deep learning, including Convolutional Neural Net-
works, given the enormous resources required to train deep learning models or the
large and challenging datasets on which deep learning models are trained. For a
CNN, given a source domain with a source learning task and a target domain with a
target learning task (task of interest), transfer learning aims to improve learning of
the target predictive function using the knowledge in the source domain which is
the pre-trained CNN model containing features (parameters or weights) learned
from the source domain task. This process works if these source domain features are
general, meaningful and suitable to the target task. The pre-trained model can then
be used as the starting point for a model on the target task. This may involve using
all or parts of the pre-trained CNN model, depending on the modeling technique
used. Accordingly, the questions that arise are: (i) which source learning task should
be used for pre-training the CNN model given a target learning task, and (ii) which
parts (e.g., learned features) of this model are common between the source and
target learning tasks.

An answer to the first question is to propose two source learning tasks. One source
learning task is chosen to be very close and similar to the target learning task. And, if
this source learning task lacks annotated data, then another source learning task is
introduced which is chosen to be different but related to the target learning task.

A solution to the second problematic is to assume that features shared across the
source and target tasks correspond to low- and mid-level information (e.g., fine
details or local patterns) contained within inputs of both tasks, whereas the
unshared features are the high-level information (e.g., global patterns) contained
within inputs. And, knowing that training a CNNs produces learned low-, mid- and
high-level features located at (contained within) the first, intermediate and last
hidden layers respectively, we therefore assume that the features shared between
the source and target tasks are contained within the first and intermediate CNN
layers while features distinguishing one task from the other are contained within
the last CNN layer. For instance, in image classification, as the CNN learns low-level
features (Gabor filters such as edges, corners) through the first hidden layers, mid-
level features (squares, circles, etc.) through intermediates hidden layers, and high-
level features (faces, text, etc.) through last hidden layers, scene recognition
(source learning task) and object recognition (target learning task) will have the
same first and intermediate layers’ weights but different last layer weights. In time
series, considering human activities where every activity is a combination of several
basic continuous movements, with basic continuous movements corresponding to
the smooth signals and the transitions or combinations among these movements
causing the significant/salient changes of signal values, the purpose of the CNN will
be to capture basic continuous movements through its low- and mid-level parame-
ters (first and intermediate hidden layers) and the salience of the combination of
basic movements through its high-level parameters (last hidden layers). Therefore,
as an example, the CNN trained on recognizing basic human activities such as
sitting, standing and walking (source learning task), and the one trained on recog-
nizing SMMs (target learning task) will both have the same first and intermediate
layer weights and different high layer weights. Another example is the CNN trained
on SMMs of an atypical subject (source task) and the one trained on SMMs of
another atypical subject (target task) which will have common first and intermedi-
ate hidden layers’ weights and different last hidden layer weights, due to the inter-
subject variability across atypical subjects.

14

Time Series Analysis - Data, Methods, and Applications

In that sense, we propose a “Transfer learning with SVM read-out” framework
which is composed of two parts: (i) the first part having first and intermediate
layers’ weights of a CNN already pre-trained on a source learning task, (the last
CNN layer being discarded), and (ii) the second part composed of a support vector
machine (SVM) classifier with RBF kernel which is connected to the end of the first
part. Then, we feed the entire training dataset of the target task into this framework
in order to train the SVM parameters. As opposed to training a CNN on the target
task which requires updating all hidden layers’ weights for several iterations using a
large training set for all these weights to converge, our framework computes
weights of the last layer(s) only, in one iteration only. Moreover the advantage of
using SVM as the classifier is that it is fast and generally performs well on small
training set since it only relies on the support vectors, which are the training
samples that lay exactly on the hyperplanes used to define the margin. In addition,
SVMs have the powerful RBF kernel, which allows to map the data to a very high
dimension space in which the data can be separable by a hyperplane, hence
guaranteeing convergence. Hence, our framework can be regarded as a global, fast
and light-weight technique for time series classification where the target task has
limited annotated/labeled data.

4.3.2 Experiments

We conduct this experiment again on the SMM recognition task. However, we will
perform SMM recognition across multiple atypical subjects as opposed to SMM recog-
nition within subjects which was developed in experiments of Sections 3.2. and 4.2.
Indeed, due to the inter-subject variability of SMMs, a CNN trained on movements of
an atypical subject i performs badly on detecting SMMs of another atypical subject and
therefore cannot be applied on SMMs other than subject i’s SMMs. Indeed, testing one
of the trained CNNs of experiment 4.2.2 (let us say the trained CNN of subject i study j)
on SMMs of a subject other than subject i produces a very low F1-score with less than
30%. This implies that CNN features learned from SMMs of one subject differ from the
ones learned from another subject and that they are not general enough to detect SMMs
of another subject. So, instead of training a CNN for each atypical subject individually
(Sections 3.2.2 and 4.2.2), we use the “transfer learning with SVM read-out” frame-
work for the detection of SMMs across subjects. Through this experiment, our goal is to
prove that this framework is a global, fast and light-weight technique for time series
classification tasks which experience a lack of labeled data.

The target learning task will be the recognition of SMMs of subject i, while the
source learning task will be either a task close to the target task such as the recog-
nition of SMMs of multiple subjects other than i, or a task different but related to
the target task such as the recognition of basic human activities. Running the “TL
SVM” framework with the former and the latter target tasks will be denoted as “TL
SVM similar domains” and “TL SVM across domains” respectively. Through this
experiment, we will also show that these chosen source learning tasks contribute in
generating CNN features that are general/global enough to recognize SMMs of any
new atypical subject.

Datasets. The dataset used for the target learning task is the same SMM dataset
used in Section 3.2.2. The dataset used for the source domain of the “TL SVM similar
domains” experiment is also the SMM dataset, whereas the one used for the source
domain of the “TL SVM across domains” experiment is the PUC dataset which is
described in Section 3.2.2.

When using the SMM dataset in the target and source learning tasks, we do not
take into consideration signals of all accelerometers/sensors (torso, right and left

15

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

wrist) but rather signals of the torso sensor, resulting in input samples with 3
channels instead of 9. So, with torso measurements only, the only stereotypical
movements that could be captured are the rock and flap-rock SMMs (and no flap
SMMs). Accordingly, only rock and flap-rock SMM instances will be used as inputs
in this experiment.

When using the PUC dataset for the source learning task, only the waist accel-
erometer (waist being next to torso) is taken into account since the other acceler-
ometers (located at the thigh, ankle and arm) will not be relevant to the SMM
recognition task during transfer learning. We consider the waist location to be
equivalent to the torso location so that the CNN pre-trained on the source learning
dataset can further be transferred to the target learning task (SMM recognition).
Accordingly, input instances will have 3 channels instead of 12.

Pre-processing. The pre-processing phase is the same as in Section 3.2.2.
Experimental setup. In experiments below, the architecture of the CNN model in

time domain and frequency domain as well as training parameters are similar to the
ones in Section 3.2.2. In addition, the target learning task consists of SMM recogni-
tion of a target subject i of study j where i∈ 1; 6½ � and j∈ 1; 2½ �. Accordingly, one
“transfer learning with SVM” framework will be run per domain (time or frequency
domain) per subject per study. The training and testing sets of subject i (study j) are
selected using the same k-fold cross-validation used in Section 3.2.2. However only
a subset of the training set (10,000–30,000 instances) is used, where 2000 SMM
instances are randomly selected from the overall training set for training.

In order to perform SMM recognition on a target subject using transfer knowl-
edge from SMMs of other subjects, the following steps are performed in time and
frequency domains for each study i within each study j:

• Step 1: we train a randomly initialized CNN in both time and frequency
domains, for 5–15 epochs, using: (i) SMM instances of all 6 atypical subjects
within study j except subject i for “TL SVM similar domains” framework, and
(ii) basic human activities’ instances for “TL SVM across domains” framework.
This process results in a pre-trained CNN model.

• Step 2: we reuse all layers of this CNN except the last layer (which is a fully
connected layer) which is removed and replaced by the SVM classifier. The
SVM of the transfer learning framework is trained using a small subset of
subject i’s training data (i.e., 2000 SMM samples), which results in learned
high-level features. Then, the remaining SMMs of subject i are implemented
for testing the framework. Knowing that the input consists of only a subset of
the original training dataset of subject i, we choose to run the SVM for 5 runs,
with 2000 randomly selected samples in each run. In such a way, by
aggregating F1-scores of the 5 runs, we provide more realistic results. This
procedure is applied on every domain (time and frequency) on every subject i
in every study j.

4.3.3 Results

“TL SVM similar domains”. As depicted in Table 3, this framework (combin-
ing part of the pre-trained CNN with an SVM) is able to identify SMMs at a mean
F1-score of 74.50 and 91.81% for time and frequency domains respectively. As
opposed to the technique of directly applying the pre-trained CNN for classification
which fails to recognize SMMs, “TL SVM similar domains” framework is able to
capture relevant features for the recognition of SMMs across subjects. Thus, we can

16

Time Series Analysis - Data, Methods, and Applications

infer that low and mid-level SMM features share the same information from one
subject to another and that “TL SVM similar domains” can be used as a global
framework to identify SMMs of any new atypical subject. Furthermore, low- and
mid-level features captured from a source learning task can be employed as low-
and mid-level features of a target learning task close to the source task.

“TL SVM across domains”. Training this framework produces satisfying results
with a mean score of 72.29 and 79.78% in time and frequency domains respectively
(Table 3). So, fixing low and mid-level features to features of basic movements and
adjusting only the high-level features by an SVM seems to give satisfying classifica-
tion results, which confirms that our framework has engaged feature detectors for
finding stereotypical movements in signals. These results, especially the frequency-
domains results, indicate that: (i) connecting low- and mid-level features of basic
movements to an SVM classifier then feeding in 2000 instances for training the
SVM generates a global framework which holds relevant and general representation
that adapts to SMMs of any new atypical subject i, and (ii) both human and
stereotypical movements may share low and mid-level features in common,
suggesting that low- and mid-level information learned from a source target task by
a CNN model can be directly applied as low- and mid-level features for a target
learning task different but related to the source learning task, especially when there
is a lack of labeled data within the target learning task.

Moreover, both our techniques are compared against the following methods:

i. The “CNNwith few data” technique which consists of training a CNN in time
and frequency domains with randomly initialized weights using the same
target training data as the ones of “TL SVM similar domains” framework (i.e.,
2000 SMM instances of the target subject i). The difference between this
CNN and the CNN of Section 3.2.2 is that less data is used for training (2000
versus 10,000–30,000 training instances), only torso sensor measurements
are applied in the former (compared to torso, right and left wrist sensor
measurements in the latter), and only rock and flap-rock SMM instances are
considered in the former (compared to rocking, flap-rock and flap SMM
instances in the latter). We refer to this technique as “CNN few data”.

ii. The “transfer learning with full fine-tuning” technique (referred to as “TL full
fine-tuning”) consists of identifying SMMs of subject i within study j by first
training a CNN in time and frequency domains for 5–15 epochs using SMM
instances of all 6 atypical subjects within study j except subject i (as in Step 1
of training “TL SVM similar domains” framework), then by fine-tuning (e.g.,
updating) weights of all CNN layers using same target training data.

iii. The “transfer learning with limited fine-tuning” technique (denoted as “TL
limited fine-tuning”) is the same as “transfer learning with full fine-tuning”
except that the fine-tuning process is effective only on weights of the last
CNN layer L while weights of other layers 1,…, L� 1 are unchanged.

Results and properties of the three techniques are depicted in Tables 3 and 4
respectively. From these results and properties, the following observations can be
made:

• “TL SVM similar domains” framework performs higher than the three
frameworks “CNN few data”, “TL full fine-tuning” and “TL limited fine-tuning”
in both time- and frequency-domain. This can be explained by the nature of
the training process of the three frameworks, which relies on updating

17

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

Approaches Study 1 Study 2 Mean

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5

Time domain

CNN few data 72.02 62.31 52.98 88.47 60.61 88.86 80.90 53.28 16.00 82.66 75.82 66.72

TL full fine-tuning 75.73 71.31 59.04 91.67 59.47 91.89 85.66 63.84 38.57 92.24 82.31 73.79

TL limited fine-tuning 75.44 56.50 50.86 91.74 63.86 93.11 85.88 62.62 27.14 93.63 81.16 71.09

TL SVM similar domains 75.37 76.44 56.53 91.74 63.37 92.76 84.86 62.97 41.60 93.32 80.55 74.50

TL SVM across domains 71.66 74.40 66.80 90.69 61.87 92.19 81.35 58.13 35.66 88.44 73.98 72.29

Frequency domain

CNN few data 76.64 96.55 63.44 93.13 82.58 94.61 84.94 76.42 29.51 93.66 83.41 79.54

TL full fine-tuning 88.51 97.22 88.15 97.53 91.29 98.26 92.17 88.19 52.17 96.59 91.98 89.28

TL limited fine-tuning 87.98 94.59 62.70 97.57 87.94 98.36 91.62 87.08 40.00 97.82 90.82 85.14

TL SVM similar domain 90.54 97.22 83.86 95.24 86.19 98.45 92.71 90.49 84.99 97.99 92.22 91.81

TL SVM across domains 74.50 91.56 43.77 93.11 76.03 94.2 85.16 74.67 66.98 93.66 83.99 79.78

Table 3.
Results of CNN approaches used in this experiment per domain (time or frequency) per subject, per study. Highest rates are in bold.

18 T
im

e
Series

A
n
a
lysis

-
D
a
ta
,
M
eth

od
s,
a
n
d
A
p
p
lica

tion
s

parameters using backpropagation. And, knowing that backpropagation
requires abundant data for proper training, a lack of training data (2000 SMM
instances) pushes the three frameworks to overfit and be less efficient.

• “TL SVM similar domains” and “TL SVM across domains” architectures perform
better than “CNN few data” by 7.78 and 5.57% respectively in time-domain and
by 12.27 and 0.24% respectively in frequency-domain. Therefore, both
architectures engage in capturing more general features than “CNN few data”.
In terms of resources, one advantage of the two architectures over “CNN few
data” is that the former converge much faster than the latter. Indeed, the
former require 5–15 epochs (in both time and frequency domains) for full
convergence while the latter needs 20–35 epochs and 55–85 epochs in time- and
frequency-domain respectively for full convergence, as shown in Table 4.
Another advantage resides in the number of parameters that have to be
learned, which is 500 for the former (in both time and frequency domains)
versus 1.2e + 06 and 7.1e + 05 for the latter in time and frequency domain
respectively (Table 4). Hence, as opposed to “TL full fine-tuning” and “TL
limited fine-tuning” frameworks, the “TL SVM” can be regarded as a global, fast
and light-weight framework for SMM recognition across subjects.

• “TL full fine-tuning” has a slightly higher performance than “TL limited fine-
tuning” by 2.71 and 4.14% in time- and frequency-domain respectively,
suggesting that fine-tuning weights of layers 1,…, L� 1 (where L is the number
of CNN layers) is unnecessary since it does not improve SMM recognition
significantly. This confirms the earliest assumption that atypical subjects have
similar low- and mid-level features but different high-level features.

• “TL SVM across domains” framework yields a lower performance than “TL
SVM similar domains” by 2.21% and 12.02% in time- and frequency-domain
respectively. This implies the superiority in the SMM recognition task of low
and mid-level features learned from SMMs over the ones learned from basic
human movements. However, the latter features are more global. In time-

Approaches # parameters

updated for one pass

(1 batch)

#

batches

per

iteration

iterations

(epochs)

Implementation on

Android device

CNN few data 1.2e + 06 (time-

domain) 7.1e + 05

(frequency-domain)

14

(2000/

150)

20–35 (time-

domain) 55–85

(frequency-

domain)

No (too much

memory

consumption)

TL full fine-tuning 1.2e + 06 (time-

domain) 7.1e + 05

(frequency-domain)

14

(2000/

150)

5–15 No (too much

memory

consumption)

TL limited fine-

tuning

1000 (500*2) 14

(2000/

150)

5–15 No (hard to run back-

propagation on

mobile devices)

TL SVM (similar

domains and across

domains)

500 1 1 Yes (easy to train

SVM on mobile

devices)

Table 4.
Properties and resources used for the different techniques implemented in the experiment.

19

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

domain, the small rate difference (2.21%) between “TL SVM across domains”
and “TL SVM similar domains” suggests that the low- and mid-level feature
space generated by human activities shares common details with the one
generated by movements of specific atypical subjects. This is not the case for
frequency-domain series, which can be explained by the difference in the
frequency range between human activities and SMMs. Indeed, the FFT
amplitude of human activities is contained below 10 Hz, pre-training the CNN
on human activity frequency-signals from 0 to 3 Hz and not from 0 to 10 Hz
results in imperfect human activity features which, combined with the SVM,
do not seem to yield good classification results on the recognition of SMMs. If
we were to have a new target learning task whose data signals are within the
same frequency range as data signals of the source learning task, then “TL SVM
across domains” would have achieved the same performance as “TL SVM
similar domains”.

• One advantage of “TL SVM similar domains” and “TL SVM across domains” is
that they can be implemented in Android portable devices, as shown in
Table 4. Indeed, an expert could receive continuous acceleration signals from
the torso accelerometer of a subject, and label them on the fly (as SMM/non-
SMM) as the subject performs his activities/movements. This results in
annotated time series which are then preprocessed and fed into either “TL
SVM similar domains” or “TL SVM across domains” for training. A one-minute
recording of these signals is sufficient to train one of the two frameworks.
Afterwards, this framework is ready to use for recognizing further SMMs on
that same subject.

5. Conclusion

Time series pose important challenges to existing approaches which perform
predictive modeling for classification tasks. In this paper we present a review on our
previous works. Our contributions are aggregated into two categories: data-level
and algorithm-level approaches. Our data-level approach consists of encoding time
series using STin order to produce noise-free input signals which offer a more
efficient CNN training. At the algorithm level, one approach is the adaptive
convolutional layer filter approach which consists of determining the size of the
filter based on an analysis of the input time series signals and fluctuations present
within them. Indeed, choosing the proper 1st layer filter generates features maps
which are more informative about the input signals and which capture the whole
peaks within input signals. Furthermore, “TL SVM similar domains” and “TL SVM
across domains” are algorithm-level approaches dealing with tasks with limited
annotated data, which are regarded as two global, fast and light-weight techniques
for these kinds of tasks. These two CNN approaches generate features general and
global enough to recognize time series of the target learning task, given time series
of a source learning task that is similar or different but related to the target learning
task. All these approaches were implemented on the recognition of human activi-
ties, including normal activities performed by typical subjects and disorder-based
activities performed by atypical subjects (such as SMMs of autistic subjects).
Experimental results have showed the superiority of our techniques and their ability
to extract relevant features from time series inputs. As a perspective, knowing that
time series datasets often contain outliers either due to noisy time series or
mislabeled time series (e.g. incorrect labels), we aim at studying a robust CNN that
is insensitive to outliers. As opposed to our data-level CNN technique (mentioned in

20

Time Series Analysis - Data, Methods, and Applications

this paper) whose goal is to eliminate noise from time series, this robust CNN is an
algorithm-level technique with acts at the level of loss functions by controlling high
error values caused by outliers.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author details

Lamyaa Sadouk
Faculty of Science and Technology, University Hassan 1st, Settat, Morocco

*Address all correspondence to: lamyaa.sadouk@gmail.com

©2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

21

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

References

[1] Kaya H, Gunduz-oguducu S. A
distance based time series classification
framework. Information Systems. 2015;
51(C):27-42

[2]Wang S, Liu P, She MFH, et al. Bag-
of-words representation for biomedical
time series classification. Biomedical
Signal Processing and Control. 2013;
8(6):634-644

[3] Sadouk L, Gadi T, Essoufi EH.
Convolutional neural networks for
human activity recognition in time and
frequency-domain. In: Proceedings of
ICRTS. 2017. pp. 485-496

[4] Sadouk L, Gadi T, Essoufi EH. A
novel deep learning approach for
recognizing stereotypical motor
movements within and across subjects
on the autism spectrum disorder.
Computational Intelligence and
Neuroscience. 2018:16. DOI: 10.1155/
2018/7186762. Article ID 7186762

[5] Abdel-Hamid O, Deng L, Yu D.
Exploring convolutional neural network
structures and optimization techniques
for speech recognition. Interspeech.
2013;2013:1173-1175

[6]Abdel-Hamid O, Mohamed AR, Jiang
H, Penn G. Applying convolutional
neural networks concepts to hybrid nn-
hmm model for speech recognition. In:
Proceedings of ICASSP IEEE. 2012.
pp. 4277-4280

[7] Kini BV, Sekhar CC. Large margin
mixture of AR models for time series
classification. Applied Soft Computing.
2013;13(1):361-371

[8] Antonucci A, De Rosa R, Giusti A,
et al. Robust classification of
multivariate time series by imprecise
hidden Markov models. International
Journal of Approximate Reasoning.
2015;56(B):249-263

[9] Rakthanmanon T, Campana B,
Mueen A, et al. Addressing big data time
series: Mining trillions of time series
subsequences under dynamic time
warping. ACM Transactions on
Knowledge Discovery from Data. 2013;
7(3):1-31

[10] Jeong Y, Jeong MK, Omitaomu OA.
Weighted dynamic time warping for
time series classification. Pattern
Recognition. 2011;44(9):2231-2240

[11] Schäfer P. TheBOSS is concernedwith
time series classification in the presence of
noise. DataMining and Knowledge
Discovery. 2014;29(6):1505-1530

[12] Bailly A et al. Dense bag-
of-temporal-SIFT-words for time series
classification. In: Lecture Notes in
Artificial Intelligence. 2016

[13]Chen Z, Zuo W, Hu Q, Lin L. Kernel
sparse representation for time series
classification. Information Sciences.
2015;292:15-26

[14]Hills J, Lines J, Baranauskas E, et al.
Classification of time series by shapelet
transformation. Data Mining and
Knowledge Discovery. 2014;28(4):
851-881

[15]Wang Z, Oates T. Encoding time
series as images for visual inspection
and classification using tiled
convolutional neural networks. In:
Workshops AAAI. 2015

[16]Ngiam J, Chen Z, Chia D, Koh PW,
Le QV, Ng AY. Tiled convolutional
neural networks. In: Advances in Neural
Information Processing Systems. 2010:
1279-1287

[17] Cui Z, Chen W, Chen Y. Multi-scale
convolutional neural networks for time
series classification. 2016. arXiv
preprint arXiv:1603.06995

22

Time Series Analysis - Data, Methods, and Applications

[18]Wenlin W et al. Earliness-aware
deep convolutional networks for early
time series classification. 2016. arXiv
preprint arXiv:1611.04578

[19]Wang Z, Yan W, Oates T. Time
series classification from scratch with
deep neural networks: A strong baseline.
In: Proceedings of the IEEE IJCNN.
2017. pp. 1578-1585

[20] Long J, Shelhamer E, Darrell T.
Fully convolutional networks for
semantic segmentation. In: Proceedings
of the IEEE Conference on CVPR; 2015

[21]He K, Zhang X, Ren S, Sun J. Deep
residual learning for image recognition.
In: Proceedings of the IEEE Conference
on CVPR. 2016. pp. 770-778

[22]KarimF et al. Lstm fully convolutional
networks for time series classification.
IEEE Access. 2018;6:1662-1669

[23]Hochreiter S, Schmidhuber J. Long
short-term memory. Neural
Computation. 1997;9:1735-1780

[24] Le Guennec A, Malinowski S,
Tavenard R. Data augmentation for time
series classification using convolutional
neural networks. In: In: ECML/PKDD
Workshop on AALTD. 2016

[25] Zheng Y, Liu Q, Chen E, et al. Time
series classification using multi-
channels deep convolutional neural
networks. In: Proceedings of the 15th
ICWAIM. 2014. pp. 298-310

[26] Zhao B et al. Convolutional neural
networks for time series classification.
Journal of Systems Engineering and
Electronics. 2017;28(1):162-169

[27]Hatami N, Gavet Y, Debayle J.
Classification of time series images
using deep convolutional neural
networks. In: Proceedings of ICMV
2017, vol. 10696; International Society
for Optics and Photonics. 2018

[28] Chen Y, Keogh E, Hu B, Begum N,
Bagnall A, Mueen A, et al. The UCR
Time Series Classification Archive.
Available from: www.cs.ucr.edu/�
eamonn/time_series_data/

[29] Yang J, Nguyen MN, San PP, Li X,
Krishnaswamy S. Deep convolutional
neural networks on multichannel time
series for human activity recognition. In:
IJCAI. Vol. 15. 2015. pp. 3995-4001

[30] Rad NM, Kia SM, Zarbo C, van
Laarhoven T, Jurman G, Venuti P, et al.
Deep learning for automatic
stereotypical motor movement
detection using wearable sensors in
autism spectrum disorders. Signal
Processing. 2018;144:180-191

[31]Groß W, Lange S, Bödecker J, Blum
M. Predicting time series with space-
time convolutional and recurrent neural
networks. In: Proceedings of the 25th
ESANN. 2017. pp. 71-76

[32] Stockwell RG, Mansinha L, Lowe
RP. Localization of the complex
spectrum: The S transform. IEEE
Transactions on Signal Processing. 1996;
44(4):998-1001

[33]Goodwin MS, Haghighi M, Tang Q,
Akcakaya M, Erdogmus D, Intille S.
Moving towards a real-time system for
automatically recognizing stereotypical
motor movements in individuals on the
autism spectrum using wireless
accelerometry. UBICOMP. 2014;14

[34]Ugulino W, Cardador D, Vega K,
Velloso E, Milidiú R, Fuks H. Wearable
computing: Accelerometers’ data
classification of body postures and
movements. In: Advances in Artificial
Intelligence-SBIA. 2012, 2012. pp. 52-61

[35]Ma Y, Genton MG, Parzen E.
Asymptotic properties of sample
quantiles of discrete distributions.
Annals of the Institute of Statistical
Mathematics. 2011;63:227-243

23

CNN Approaches for Time Series Classification
DOI: http://dx.doi.org/10.5772/intechopen.81170

