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Chapter

Application of Visible to  
Near-Infrared Spectroscopy for 
Non-Destructive Assessment of 
Quality Parameters of Fruit
Khayelihle Ncama, Lembe S. Magwaza, Asanda Mditshwa 

and Samson Z. Tesfay

Abstract

The accuracy and robustness of prediction models are very important to 
the  successful commercial application of visible to near-infrared spectroscopy (Vis-
NIRS) on fruit. The difference in physiological characteristics of fruit is very wide, 
which necessitates variance in the type of spectrometers applied to collect spectral 
data, pre-processing of the collected data and chemometric techniques used to 
develop robust models. Relevant practices of data collection, processing and the 
development of models are a challenge because of the required knowledge of fruit 
physiology in addition to the Vis-NIRS expertise of a researcher. This chapter deals 
with the application of Vis-NIRS on fruit by discussing commonly used spectrom-
eters, data chemometric treatment and common models developed for assessing 
quality of specific types of fruit. The chapter intends to create an overview of 
commonly used techniques for guiding general users of these techniques. Current 
status, gaps and future perspectives of the application of Vis-NIRS on fruit are also 
discussed for challenging researchers who are experts in this research field.

Keywords: near-infrared spectroscopy (NIRS), chemometrics, multivariate data, 
fruit quality

1. Introduction

The quality of fruits is produced in the orchard or garden and only maintained 
during postharvest storage [1]. This necessitates accurate determination of the opti-
mal harvest time and a deeper understanding of physiological changes occurring 
in fresh fruit during storage. The main goal of postharvest management is to delay 
senescence by reducing the ripening processes and other physiological processes 
such as respiration [2]. The quality of fruit at commercial consignments is com-
monly assessed using techniques such as reflectometer-based determination of total 
soluble solutes (TSS), fruit mass or firmness tests [3]. The fruits selected as samples 
for assessment of parameters such as juice TSS are wasted because after they are 
destructed they cannot be returned to the batch. Therefore, the quantity sent by a 
farmer does not reach the destined market in its original quantity. Moreover, the 
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fruits taken as samples may not properly represent the actual status of the batch. 
The challenge of sample size is significant in huge farms that require a large number 
of representative samples. It is also known that fruits from the same batch, same 
tree and the same branch of a tree are likely to differ in quantities of their quality 
parameters. It is therefore necessary to find non-destructive alternative techniques 
that can be used to analyse the entire batch without losing any samples.

Techniques such as mass and firmness determinations do not destruct sample 
fruit. However, most fruits are very perishable and develop bruises if they experi-
ence successive external impact [4, 5]. Moreover, the physical parameters such as 
mass and firmness cannot be associated to organoleptic qualities with accuracy. A 
big fruit does not warrant a better taste than a small fruit. Therefore, the elevated 
purchase price of big fruit based on mass is not a justified technique for customers. 
The firmness tests can be used to determine the level of ripeness and associated 
with the edibility of climacteric fruit such as avocado and mango. However, the 
firmness cannot be directly associated to flavour because flavour is determined 
by the levels of certain biochemical compounds that should be analysed from the 
consumed fruit part. It is for these reasons that application of spectrometers is 
necessary since they can analyse quantities of biochemical compounds without 
excessive contact with a fruit. Spectrometers can be a very useful tool for growers 
who want to non-destructively determine fruit parameters that are used to track 
optimal time of harvesting. Application of hand-held spectrometers on hanging 
fruit can eliminate the estimation of harvest time using few samples that sometimes 
do not fully represent the entire orchard [6, 7]. Moreover, they preserve the sample 
fruit that would be wasted if destructive methods were used. In postharvest storage, 
visible and near-infrared spectroscopy (Vis-NIRS) can be applied in various forms 
where fruit would be passed under a radiation chamber and be analysed for physi-
cal, chemical and organoleptic properties whilst rolling on sorting belts [8]. The 
Vis-NIRS holds many advantages over destructive or contact techniques. Analyses 
of every fruit in a batch, mechanised precision that lasts longer than human effort 
and reduction of fruit waste as a result of specified management are among major 
benefits that can be obtained from Vis-NIRS applications.

2. Spectrometers commonly applied in acquisition of spectra from fruit

The trade names may differ from one supplier to the other. However, the type of 
spectrometers commonly used can be properly categorised based on their operation 
mode. Vis-NIRS operates in three common modes: the reflectance, transmittance 
and interactance (diffuse reflectance) modes [9]. Reflectance is the most common 
mode of acquiring spectra from fresh fruit. Although it can be associated with the 
type of spectrometers commonly available, it is also a less restricted mode compared 
to others. Other modes such as transmittance would require that the radiation passes 
through the sample fruit which is sometimes inefficient because radiation may not 
reach the other side of a fruit due to disturbances such as a stone, seeds or hollow 
spaces inside the fruit. Hereon, the common spectrometers applied on specific fruit 
types will be reviewed and associated with the botanic characteristics of the fruit.

2.1 Stone (drupe) fruits

Stone fruit, also called drupe fruit, is an indehiscent fruit characterised by a thin 
sheet as exocarp, fleshy mesocarps and a hard endocarp. The hard endocarp usually 
contains a single seed and is referred to as a stone because of its high firmness [10]. 
Examples of drupe fruit are peaches, nectarines, plums, lychees, mangoes, avocados 
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and cherries. Application of Vis-NIRS on stone fruit for assessing organoleptic 
parameters requires awareness about the stone that can interfere with radiation. As 
a result, most researchers would avoid using spectrometers that use transmittance 
mode as most radiation is likely to be deflected or absorbed by the stone inside the 
fruit. Spectrometers working on reflectance and interactance modes are the most 
relevant methods if the analysis is not associated with a stone [11]. The choice of a 
spectrometer can depend on the assessed fruit quality. Transmittance mode would 
be appropriate if the objective is to analyse the size or hardness of the stone.

The appropriateness of reflectance mode is achieved when the spectra are 
collected for assessing parameters in the mesocarp. Assuming that the number of 
streams illuminated by the spectrometer (n) is 4, Figure 1 illustrates the assump-
tion of radiation paths the radiation can pass through if the hypothetical radiation 
is applied in three different modes. One, three or one of the four arrays reaches the 
sensor if a transmittance, reflectance or interactance mode is used, respectively.

2.2 Berry or aggregate fruits

Botanically, a berry or aggregate fruit is made up of more than one seed contain-
ing fruitlets produced from a single ovary [12]. Common examples include citrus, 
banana, pineapples, cucumber, tomatoes and grapes. The term berry fruit is com-
monly used to refer to small pulpy fruit with thin coat-like exocarp tissues covering 
the fleshy edible mesocarp. Examples of fleshy berries are strawberries, raspberries, 
mulberries, blackberries, blueberries, redcurrants and blackcurrants. The main 
factor of consideration in application of Vis-NIRS on aggregate fruit is that the 
fruit is formed as a combination of smaller fruit which can vary in biochemical 
composition [13]. The uneven ripeness of berry fruit is significant on vine fruit such 
as grapes, which may necessitate the use of spectrometers that consider each fruit 
in the bunch as a single fruit. Any mode of spectrometer can be used on aggregate 
fruit. This is due to their fleshy internal structure and few or tiny seeds interfering 
with the radiation passing through the fruit. However, the important consideration 
is that the size of the radiation source is fully covered and the fruit size can enable 
passage of radiation from the source to the detector if the transmittance mode is 
used. Lammertyn et al. [14] investigated the distance that a light beam can penetrate 
into the fruit. The authors found that there was a wavelength-dependent effect that 
showed that the regions in 700–900 and 900–1900 nm reach around 4 and 2–3 mm, 

Figure 1. 
The assumption of possible radiation pathways inside a stone fruit. (a) Is the transmittance mode, 
(b) is the illustration of reflectance mode and (c) is the interactance mode and their ability to obtain the 
required information from only the mesocarp of the fruit.
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respectively, which showed that a more intensified illumination was required to 
obtain a penetration of greater depth if the transmittance spectrum was required.

2.3 Pome fruit

Pome fruit are characterised by a thin exocarp, edible mesocarp and a soft 
endocarp. Their seeds are in the part called an endocarp or a pit which is relatively 
harder than the edible mesocarp but softer than the endocarp of stone fruit [15, 16]. 
Common examples of pome fruit are apples, pears, cotoneaster, crataegus (haw-
thorn and mayhaw), loquat, medlar, pyracantha, toyon, quince, rowan and white-
beam fruit. Application of Vis-NIRS on pome fruit can be in any form depending 
on the objective of the assessment. The hardness of endocarp can be used as a 
measure of maturity of pome fruit [17, 18]. If maturity is assessed, the endocarp is 
not considered as interference in the transmittance mode which requires radiation 
to pass through the fruit. However, the endocarp is likely to differ from one fruit to 
another irrespective of common characteristics such as maturity stage or size. Two 
fruits of the same maturity stage and the same size may have a different number 
of seeds. Using transmittance mode can reduce the assessment accuracy when the 
quality parameters of interest are in the mesocarp.

3. Chemometric treatment of spectral data obtained from fruit

Most spectrometers acquire a full visible to near infrared radiation spectra rang-
ing from 450 to 2500 nm. However, theory suggests that organic components with 
concentrations higher than 0.1% in fruit have their particular range on the visible 
or near-infrared wavelengths that result to their best reflection [9]. As such, most 
researchers always select specific ranges where the analysed compound is likely to 
respond. However, some fruit quality parameters may be best reflected by the entire 
spectra [19]. The use of the full spectral range is somehow superior to using specific 
ranges since it provides a wide source of reference points along the spectrum. The 
general steps of chemometric analysis applied to spectral data collected from fruit 
are (i) selecting the wavelength range, (ii) pre-processing raw data to derivatives, 
(iii) calibrating prediction models and (iv) validating the performance of the devel-
oped models on independent external test set. Based on the objective of the study, a 
researcher can either develop quantitative or qualitative models.

The necessary results that authors show are after validation. The most important 
model parameters of reference are correlation coefficient (R2) and the root mean 
squared error of prediction (RMSEP). A good model is selected based on high 
R2 value and low RMSEP value which are the main parameters of consideration, 
although there are other parameters such as the ratio of performance deviation (RPD) 
and bias. RPD is widely used as a reference parameter of the performance of predic-
tion models. However, there is lack of information on how was the system developed, 
and the relationship between the R2 values and RPD values is in exponential form, 
whilst it should be linear if both values can be used as references to judge models’ 
accuracy [20]. Therefore, the most necessary parameter is the R2 value because of its 
simplicity and a traceable statistical development of its relevance. The R2 values range 
from 0 (poor model) to 1 (best model), and anything in between can be related to its 
proximity to the mentioned extremes. The RPD values cannot be simplified to that 
level of stating the maximum and minimum values. Several authors refer to Chang 
et al. [21] who invented the three quality categories of model reliability: excellent 
models (RPD > 2), fair models (1.4 < RPD < 2) and non-reliable models (RPD < 1.4). 
However, those authors did not give any statistical basis of the mentioned thresholds.
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3.1 Quantitative models

Quantitative Vis-NIRS models are those that estimate the exact quantity of a 
physical or biochemical compound. They hold a higher advantage in the assessment 
of quality parameters that cannot be categorised into distinct groups but character-
ised by a continuous range. Partial least square (PLS) regression (PLSR) is arguably 
the most used quantitative model by researchers. In PLS models, an orthogonal 
basis of latent variables is constructed one by one in such a way that they are ori-
ented along directions of maximal covariance between the spectral matrix and the 
response value [22]. The technique was introduced by Herman Wold in 1975 as an 
improved modification to overcome collinearity of multiple linear regressions [23]. 
A unique feature of basic PLS regression is its simplicity. The basic PLS method con-
sists of a series of simple least square optimisation called nonlinear iterative partial 
least squares NIPALS; [24]. The PLS technique also accounts for noisy and redundant 
spectral variables and can analyse more than one chemical variables at once.

The majority of recent research reports are based on its different manipulations. 
As a result, models such as interval partial least squares (iPLS), interval successive 
projection algorithm (iSPA-PLS), moving window partial least squares (MWPLS) 
and other PLS modifications were introduced or reinvented in the last decade 
[25–27]. The PLS modelling was developed by Wold in 1981 [28], and majority of 
researchers have referred to it as a pivot point of regression models. The follow-
ing section looks at the common quantitative models for specific types of fruit. 
Hereon, examples of studies that developed quantitative models for stone fruit and 
nuts (Table 1), berries and aggregate fruit (Table 2) and pome fruit (Table 3) are 
reviewed.

Fruit Assessed quality 

parameter(s)

NIR mode used Spectral 

range

Vis-NIRS 

models 

developed

Reference

Almond Amygdalin 

content

Diffuse 

reflectance mode

888–

1795 nm

PLS [29]

Date TSS, moisture 

content and colour

Reflectance 285–

1200 nm

PCR [30]

Jaboticaba Total anthocyanin 

content

Reflectance 714–

2500 nm

iSPA-PLS, 

PLS and 

GA-PLS

[25]

Mango TSS, firmness, TA 

and rind pitting 

index

Reflectance 700–

1100 nm

PLS [31]

Olives Fat content, 

moisture and free 

acidity

Reflectance 380–

1690 nm

PLS and 

LS-SVM

[32]

Peach Days before decay Reflectance 900–

2500 nm

PLS, LS-SVM 

and MFRG

[33]

Plums SSC, TA, juice 

pH, TSS/TA and 

firmness

Interactance 500–

1010 nm

PLS [34]

LS-SVM, least squares support vector machine; MFRG, multiple fitting regression based on Gaussian fitting function; 
PLS, partial least squares regression; PCA-LDA, principal component analysis-linear discriminant analysis; SPA-
LDA, successive projection algorithm-linear discriminant analysis; GA-LDA, genetic algorithm-linear discriminant 
analysis; PCR, principal component regression.

Table 1. 
Application of Vis-NIRS for assessing quality parameters of stone fruits or nuts.
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Fruit Assessed 

quality 

parameters

NIR mode 

used

Spectral 

range

Vis-NIRS 

models 

developed

Reference

Blackberries, 

wild 

blueberries, 

raspberries, 

redcurrants and 

strawberries

Total phenolic 

compounds 

and antioxidant 

activity

Reflectance 904–1699 nm PLS [35]

Citrullus 

colocynthis

Total 

polyphenol 

content

Absorbance 700–2500 nm PLS [36]

Mandarins and 

oranges

Mass, colour, 

fruit diameter, 

firmness, 

pericarp 

thickness and 

juice mass

Reflectance 1600–

2400 nm

MWPLS [26]

Mulberry SSC Reflectance 400–2500 nm PLS [19]

Pineapple Nitrate level Interactance 600–1200 nm PLS [37]

Strawberry TSS and pH Reflectance 10,494–

3673 cm−1

SIMPLS [38]

Strawberry TSS Interactance 4000–

10,000 cm−1

iPLS and 

MWPLS

[27]

Tomato Firmness Reflectance 500–1700 nm PLS [34]

Watermelon Lycopene, 

β-carotene and 

TSS

Reflectance 900–1700 nm PLS [8]

PLS, partial least squares regression; SIMPLS, soft independent modelling partial least squares regression; iPLS, 
interval partial least squares; MWPLS, moving window partial least squares.

Table 2. 
Application of Vis-NIRS for assessing quality of berry or aggregate fruit.

Fruit Assessed 

quality 

parameters

NIR mode used Spectral range Vis-NIRS 

models 

developed

Reference

Apple SSC Interactance 500–1100 nm PLS [39]

Loquat Moisture 

content

Reflectance 750–2500 nm PLS [40]

Pears TSS Reflectance 710–930 nm PLS [41]

Pears SSC Reflectance 930–2548 nm PLS [42]

Pears SSC and 

firmness

Absorbance 500–1010 nm PLS and 

MLR

[43]

Persimmon Astringency and 

tannin contents

Interactance and 

transmittance

600–1100 nm PLS [44]

Wax jambu Total phenolic 

compound 

content

Interactance 1000–2400 nm PLS [45]

PLS, partial least square regression; MLR, multiple linear regression.

Table 3. 
Application of Vis-NIRS for assessing quality of pome fruit.
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Fruit Classification 

parameter

NIR mode 

used

Spectral 

range

Vis-NIRS 

models 

developed

Reference

Almond Amygdalin 

content

Interactance 888–1795 nm LDA, QDA 

and PLS-DA

[28]

Hazelnuts Regions and 

cultivars

Transmittance 650–

4000 cm−1

PCA, LDA 

and PLS-DA

[47]

Almond nuts Concealed 

damage

Reflectance 1125–2153 nm PLS-DA [48]

Jaboticaba Cultivars Reflectance 1000–

2500 nm

PCA-LDA, 

SPA-LDA and 

GA-LDA

[49]

Macadamia 

nuts

Variety Reflectance 11,544–

3952 cm−1

PCA-LDA and 

GA-LDA

[50]

Peach Cultivars Reflectance 800–2600 nm PCA, UVE-

PLS and SPA

[39]

Pine nuts Geographic 

origin

Reflectance 400–2500 nm PLS-DA [51]

LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; PCA, principal component analysis; 
PLS-DA, partial least squares regression discriminant analysis; UVE-PLS, uninformative variable elimination 
based on partial least squares; PCA, principal component analysis; SPA, successive projection algorithm; PCA-
LDA, principal component analysis-linear discriminant analysis; GA-LDA, genetic algorithm-linear discriminant 
analysis.

Table 4. 
Application of Vis-NIRS for classification of stone fruit and nuts.

Fruit Classification 

parameter

NIR mode 

used

Spectral 

range

Vis-NIRS 

models 

developed

Reference

Blackberries, 

wild 

blueberries, 

raspberries, 

redcurrants 

and 

strawberries

Total phenolic 

compounds and 

antioxidant activity

Reflectance 904–1699 nm PCA [35]

Citrus Firmness Reflectance 400–

1750 cm−1

Raman 

signal

[52]

Mulberry leaf Pesticide residue Reflectance 390–1050 nm PLS-DA [53]

Nectarine Variety Reflectance 360–1795 nm LDA and 

PLS-DA

[28]

Strawberry Organic and 

conventionally 

grown fruit

Reflectance 12,500–

3600 cm−1

PLS-DA [38]

Tomato fruit Ripeness Interactance 400–

1000 nm

PLS-DA [54]

Tomato fruit Lycopene content Reflectance 275–1150 nm PLS-DA [55]

LDA, linear discriminant analysis; PCA, principal component analysis; PLS-DA, partial least squares regression 
discriminant analysis.

Table 5. 
Applications of Vis-NIRS for classification of berry or aggregate fruit.
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3.2 Classification models

Most fruit growers classify their crop into different quality classes in order 
to state their selling price and target different markets. Fruit destined for a local 
market may not be at the same level of quality as fruit destined for exports to 
international markets. Fruit can be sorted based on their maturity level, colour, 
origin, size and other characteristics of interest to consumers. This necessitates 
an effective way of classifying many fruits at short period of time. The Vis-NIRS 
technique has been shown to have an ability to assess a minimum of three fruits 
per second [46], which is way faster than the potential of a human panel normally 
used on commercial scales. The following tables exemplify the studies that demon-
strated the ability of Vis-NIRS to classify stone fruit and nuts (Table 4), berry and 
aggregate fruit (Table 5) and pome fruit (Table 6). Notably, researchers have an 
extended freedom of choice in selecting classification models compared with quan-
tification models. However, partial least square discriminant analysis (PLS-DA) 
and linear discriminant analysis (LDA) are the commonly used models for fruit. 
Discriminant analyses use a principal component analysis (PCA) for extracting, 
compressing and screening multivariate data such as spectra. The PCA technique 
employs a mathematical procedure that transforms a set of response variables into 
a set of non-correlated variables called principal components. PCA produces linear 
combinations of variables that are useful descriptors or even predictors of some 
particular structure in the data matrix [64]. Although typically used for spectral 
data, different classification models can also be used for mapping data matrix of 
any type.

Fruit Classification 

parameter

NIR mode 

used

Spectral range Vis-NIRS models 

developed

Reference

Apples Cultivars Reflectance 4000–

10,000 cm−1

Fuzzy linear 

discriminant 

analysis and 

fuzzy c-means 

clustering

[56]

Apples Bitter pit Reflectance 971.2–

1142.8 nm

QDA and SVM [57]

Apples Bitter pit Reflectance 935–2500 nm Spectral pattern 

recognition

[58]

Apples Cultivars Reflectance 1000–2500 nm PCA [59]

Apples Separating 

organic and 

inorganic fruit

Reflectance 900–1700 nm Spectral pattern 

recognition and 

PLS-DA

[60]

Apples Internal 

browning

Reflectance 740–1040 nm Spectral pattern 

recognition

[61]

Chinese 

quince fruit

Varieties Reflectance 1000–2500 nm LDA, QDA and 

SVM

[62]

Persimmon 

fruit

Fruit origin Reflectance 740–2700 nm PCA and LS-SVM [63]

LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; PCA, principal component analysis; 
PLS-DA, partial least squares regression discriminant analysis; SVM, support vector machine; PCA, principal 
component analysis.

Table 6. 
Application of Vis-NIRS for classification of pome fruit.
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4. Current status of spectroscopy application on fruits

4.1 Vis-NIRS application on fresh fruit

There are a great number of studies demonstrating the capability of Vis-NIRS 
to accurately assess biochemical and physical quality parameters of fruit. The 
commonly assessed compounds of fresh fruit include sugar contents, acidity, 
juice pH, pectin, firmness, etc. because of their direct link with being referred to 
as sorting categories [9]. Secondary factors of quality such as bruising, scars and 
other disorders are not commonly assessed. However, some studies have assessed 
factors indirectly associated with fruit quality such as postharvest disorders. 
The ability of Vis-NIRS to assess invisible internal disorders such as brown heart 
disorder of pears has been demonstrated [65]. Magwaza et al. [66] demonstrated 
the ability of Vis-NIRS to detect rind breakdown disorder of mandarins. The 
detection of presymptomatic attributes leading to disorders has also been dem-
onstrated successfully on fresh fruit. Ncama et al. [67] demonstrated the ability 
of Vis-NIRS to detect susceptibility of fresh grapefruit to rind pitting disorder 
occurring in postharvest storage. The extent of Vis-NIRS application has been 
reported from the stable laboratory-based instruments, portal instruments and 
in sorting lines. The most fascinating studies were those that demonstrated 
the ability of Vis-NIRS to assess the quality of fruit in motion on sorting lines. 
Salguero-Chaparro and Peña-Rodríguez [32] successfully quantified the contents 
of fats, free acidity and moisture of intact olives using a system mounted on the 
conveyer belt. Such studies were a clear demonstration of the period at which 
commercial fruit growers should adopt the Vis-NIRS technique for sorting 
their fruit.

4.2 The application of Vis-NIRS on secondary products from fruits

Studies demonstrating the ability of Vis-NIRS on assessing quality of slices of 
fresh fruit are common. The importance of monitoring their quality can be associ-
ated to their altered respiration rate which may result to degradation of their quality 
at an elevated rate. Fruits have hard sheet-like peels that regulate their respiration 
and protect the flesh from carbon dioxide that leads to development of the brown-
ing pigments. It is for this reason that careful quality management is crucial after 
removing the exocarp of fruit.

Dried fruits have little biological activities occurring during their storage. As 
such, they have extended life span compared to fresh fruit. Their low biological 
activities only necessitate the determination of parameters associated to edibility 
such as taste and flavour only once immediately after the drying process. When 
fruits are dried, their taste parameters are nearly fixed. After the drying stage, 
the necessary factors to analyse are the protective substances such as biochemical 
compounds related with antifungal or antibacterial activities if their quality is 
also threatened by infections. On the other hand, juices and wines are judged by 
holding true to the manufacturer’s flavour. This therefore calls for each and every 
bottle to hold similar characteristics to keep a trusting trade with customers. It is 
not the flavour-related parameters that require rapid assessment using Vis-NIRS but 
secondary metabolites associated to flavour such as phenolic compounds, vitamins, 
chloride, sulphate and mineral contents [68, 69]. The maturity stage (alcohol 
strength) of wines during fermentation can increase the accuracy of management. 
Rapid determination of titratable acidity of apple wine using Vis-NIRS during the 
fermentation process was demonstrated by Peng et al. [70].
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Wine ageing in wooden barrels is aligned with improved final sensory pro-
file and, therefore, price of purchase. It is for this reason that the process used 
during wine ageing needs to be traceable for insurance of trustworthy trading 
standards. Basalekou et al. [71] demonstrated the ability of Vis-NIRS to discrimi-
nate different wines based on variety, type of barrel and ageing time. Magdas 
et al. [72] demonstrated rapid discrimination of wines based on variety, vintage 
and geographic origin. The shelf life of wines and juices may also be predicted 
inversely by determination of fermentation and adulteration compounds. The 
common spectra acquisition mode used on liquid fruit product is the transmit-
tance mode. This is due to the uniformity of the liquid texture which does not 
deflect radiation throughout the sample. The light that is not absorbed by the 
liquid is then reported to a spectrometer as an absorbance spectrum. Fourier 
transform Raman spectroscopy method is the common type of spectra collected 
[73, 74]. However, Teixeira dos Santos et al. [69] revealed a better suitability of 
mid-infrared spectroscopy (87.7% of correct predictions) over near-infrared 
(60.4%) and Raman spectroscopy (60.8%) on classifying wines based on geo-
graphic origin.

5. Future perspectives

There are a lot of studies that demonstrated the ability of assessing quality of 
fruit by application of Vis-NIRS. The application of Vis-NIRS has been tested and 
approved on many varieties of fruit from different geographic conditions. Different 
data collection, pre-processing and chemometric analysis methods and different 
kinds of prediction models have been developed and demonstrated to accurately 
assess fruit quality. The next research step in this field is very hard to point out. 
Arguably, it is the right time to consider Vis-NIRS as an ordinary method of assess-
ing quality parameters of fruit. Studies with an objective of demonstrating the 
application of Vis-NIRS with different modes, on different fruit or fruit cultivars, or 
using different chemometric methods and selecting the best method are no longer 
contributing any novelty of interest in research. Such experiments are most relevant 
to technicians who want to calibrate spectrometers for use in commercial lines but 
not as research investigations.

Significant recent research reports on demonstrating new application methods 
and new chemometric techniques or developing new types of models. To our 
knowledge, no report has defied the accuracy of PLS models. The reports then 
become unnecessary from the application point of view. As long as the ordinary 
PLS model or its modified forms are able to obtain 97% prediction accuracy on 
analysing TSS [75, 76], they are better than using the destructive reflectometer 
technique. As long as PLS models can obtain 90% accuracy on analysing total 
phenolic compounds [77, 78], they are better than the use of procedures based on 
protocols involving the use of chemicals and sophisticated laboratory equipment. 
Illustrating ways of increasing the accuracy of PLS models is of course impor-
tant, but it does not contribute any novelty in the research. Vis-NIRS has been 
demonstrated in online systems [32], which should have been a signal that it is no 
longer new and can be a commonly used technique. The only novelty of intrigue 
to technicians would be developing models that hold 100% accuracy, which is also 
not astonishing because Vis-NIRS models are assessed based on predicting refer-
ence values of a parameter that is assessed by destructive techniques. Destructive 
techniques may have had errors and inaccuracies that arose from a non-calibrated 
human potency. Vis-NIRS can accurately predict incorrect reference data and cre-
ate a precise model with incorrect calibration.
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6. Conclusion

The research world has greatly demonstrated the potential of Vis-NIRS applica-
tion for assessing quality of fruit. But the technique is still not common on com-
mercial lines. The Vis-NIRS scarcity on commercial lines could be associated to 
the expensive prices of the spectrometers compared to weighing scales. As such, 
most supermarkets may choose to use the mass of fruit to determine the purchase 
price although not accurate since a big fruit does not give a warrant of a satisfying 
flavour. The fresh horticultural produce industry is one of the few food industries 
that do not indicate the nutritional characteristics of their product. Most processed 
food stuff has a table of contents of carbohydrates, fats, vitamins, etc. indicated on 
their containers. Customers nowadays are willing to pay extra prices for high nutri-
tious fruit [9]. The nutritional information of fruit could be easily indicated if the 
Vis-NIRS technique is adapted in the market. Therefore, trustworthy trade relation-
ship could be easily achieved since the biochemical components of fruit could be 
associated with the purchasing price. Buying the instrument is a once-off expense 
that will improve the industry for as long as there is no other superior technol-
ogy invented. The next step in research should focus on gathering information or 
reasons that result to distributors and end market sellers not willing to adapt using 
Vis-NIRS. Teaching the public about Vis-NIRS is necessary because most people 
are not scientists and may not understand the safety of applying radiation on their 
food. It should be remembered that some people believe that biotechnology used to 
produce genetically modified organisms is a source of toxic food escalating diseases 
such as cancer [79].
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