
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 6

Interactions of Candida albicans Cells with Aerobic and
Anaerobic Bacteria during Formation of Mixed Biofilms
in the Oral Cavity

Maria Rapala-Kozik, Marcin Zawrotniak,
Mariusz Gogol, Dominika Bartnicka, Dorota Satala,
Magdalena Smolarz, Justyna Karkowska-Kuleta and
Andrzej Kozik

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.81537

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Biofilms in the Oral Cavity

Maria Rapala-Kozik, Marcin Zawrotniak, 
Mariusz Gogol, Dominika Bartnicka, Dorota Satala, 
Magdalena Smolarz, Justyna Karkowska-Kuleta 
and Andrzej Kozik

Additional information is available at the end of the chapter

Abstract

Biofilm is a compact coating formed on various artificial and physiologic surfaces by a 
population of microorganisms which in this habitat establish a close cooperation, exploit-
ing both the physical interactions that stabilize the community and chemical coopera-
tion, engaging numerous agents to modify the environment, i.e., to influence the acidity, 
nutrient acquisition, or oxygen availability. Microorganisms can also communicate using 
quorum-sensing molecules carrying specific messages. Some microbes temporarily 
dominate, while others are constantly replaced by different community members. But 
these co-operations or competitions have a deep sense—they serve to protect the whole 
community against the defense system of the host to assure survival. The oral cavity is 
inhabited by diverse microorganisms, including bacteria, but also yeast-like fungi from 
the genus Candida that stay under a tight control of the host as long as its immune system 
is not weakened; then these relatively mild commensals convert to dangerous pathogens 
that start the invasion often in collaboration with other microbes. Elongated hyphal forms 
of fungal cells favor the biofilm type of growth and communication with other microbes 
supporting immune resistance of the biofilm. In this chapter, we discuss the mechanisms 
of interactions between bacteria and C. albicans in the oral cavity, their communication, 
host responses, and possible strategies of anti-biofilm treatment.

Keywords: Candida albicans, biofilm, aerobic and anaerobic bacteria, quorum-sensing, 
host responses, anti-biofilm therapies
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1. The oral cavity: a common place for polymicrobial biofilm 
formation

The oral cavity comprises the most complex niches of the human body colonized by a wide 
variety of bacteria and fungi species. These commensal or often opportunistic and pathogenic 
colonizers tend to form biofilms—structured microbial communities, attached to natural or 
artificial surfaces, which are directly attributable to the virulence of these microorganisms and 
their ability to cause infections [1].

The variety of microbial species inhabiting the oral cavity results from the presence of two 
different functional surfaces, the mucosal surface and the teeth, representing various condi-
tions in terms of nutrient and oxygen availability [2]. The microorganisms that early colonize 
the salivary pellicle on the tooth surface are streptococci such as the oral commensal—Strep-

tococcus gordonii. Further biofilm formation involves some bridging microorganisms such as 
Fusobacterium nucleatum [3]. As the biofilm extends below the gum line and becomes subgin-
gival plaque, more pathogenic, Gram-negative anaerobes such as Porphyromonas gingivalis or 
Tannerella forsythia are embedded [4].

For polymicrobial growth and survival in the human oral cavity, establishing a well-func-
tioning community, i.e., biofilm, is essential. The formation of biofilm increases a resistance to 
antimicrobial agents and nutritional changes. However, the transition from planktonic type of 
growth to biofilm community requires many transcriptional and proteomic changes. Most of 
them concern co-aggregation/-adhesion processes, sensing diffusible signals, and metabolic 
interactions. Such a developed biofilm is still exposed to changes of nutrition and oxygen 
availability, pH fluctuation, antimicrobial properties of saliva, and is also modified by the 
contact with host tissues [5].

The latest studies of oral microbiome pointed at an opportunistic inhabitant of oral mucosa—
the Candida albicans yeast-like fungus—as an important biofilm player among microbiota that 
contacts with mucosal tissues of the host. Under colonization or infection conditions, C. albi-

cans adheres to tissues, interacting with a variety of host extracellular matrix molecules that 
promote adhesion to the host surfaces [6]. The adherence is strictly dependent on C. albicans 
ability to switch morphology between yeast and hyphal forms [7, 8].

Numerous observations supported a hypothesis that fungi have a beneficial or favorable role 
in maintaining the healthy balance between microbes and the host. On the other hand, C. 

albicans well adapted to constantly changing demands in the human host environment [9] 
seems to be able to use the different colonizing strategy under situations that emerge in the 
pathological disparities.

Tracking the yeast oral infections showed that the same initiating and bridging microorgan-
isms composing biofilms were involved in the interaction with hyphal filaments of C. albicans, 
promoting co-colonization of these surfaces by yeast [10]. Moreover, the interactions between 
yeast and streptococci appear to be synergistic. In addition to providing adhesion sites, strep-
tococci excrete lactate that can act as a carbon source for yeast growth [11]. On the other hand, 
C. albicans may provide bacteria with growth stimulatory factors, resulting from the nutrition 
metabolism [12] and can reduce the oxygen pressure to the level, preferred by streptococci.
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C. albicans also co-aggregates with an obligatory anaerobe, F. nucleatum [13], or a facultative 
anaerobe—Actinomyces oris [14].

Current studies [15–17] report that C. albicans biofilms protect the obligatory anaerobes, like 
P. gingivalis and T. forsythia, under aerobic culture conditions. It is possible because oxygen 
depletion within the structured fungal biofilm or its fast consumption by fungal cells results 
in creation of anaerobic micro-niches that help strict anaerobic bacteria to survive and prolif-
erate. The observed depletion of oxygen could depend on the number of C. albicans cells or 
their respiratory rate.

2. Mechanisms and structures involved in formation of Candida 

albicans biofilms

The ability of C. albicans to form a biofilm is closely related to the virulence potential of patho-
genic form of C. albicans and is characterized by a high heterogeneity among different clinical 
isolates [18, 19]. This form of fungal community depends on the cell surrounding and pro-
ceeds via sequential steps. The process starts with the initial adhesion of single yeast-like cells 
to the artificial or mucosal surface (Figure 1) and formation of a basal yeast cells layer [20–22]. 
During this phase both the surface properties on which microorganism form aggregate, its 
structure, charge, hydrophobicity, or roughness, as well as the structure of molecules present 
at the surface of pathogen cells play important roles [23]. In the further cell proliferation step, 
the fungi develop the filamentous hyphal form of the cells accompanied by production of an 
extracellular polysaccharide matrix in mature biofilm, which protects them, and strengthens 
the biofilm structure [24]. These processes lead to a significant increase in the thickness of 
the biofilm, and its maturation is controlled by at least nine master transcription regulators 
(Ndt80, Bcr1, Efg1, Rfx2, Flo8, Rob1, Brg1, Gal4, and Tec1) that supervise the network of about 
1000 of targeted genes involved in biofilm formation [21, 25]. Then, the dispersion of biofilm-
associated yeast-like cells can occur with further fungal cell dissemination, often associated 
with invasive diseases [24, 26].

Numerous different mechanisms and molecules are involved in the overall complex process 
of C. albicans biofilm formation [27]. Initially, the general physicochemical properties of C. 

albicans cell surface and subsequent activity of cell wall adhesive proteins play extremely 
important roles, allowing the cells to adhere to the targeted substrates or materials [28]. This 
essential group of molecules responsible for in vitro and in vivo biofilm development includes 
several proteins covalently bound to the fungal cell wall and equipped with a signal peptide 
for classical secretion and glycosylphosphatidylinositol (GPI)-anchor site, i.e., hyphal cell wall 
protein Hwp1 [29], proteins from agglutinin-like sequence (Als) protein family, such as Als1 
and Als3 [28], and hyphally regulated cell wall protein Hyr1 [28]. Their transcription is regu-
lated by the transcription factor Bcr1 [30] and is primarily associated with the morphological 
transition from yeast cells to filamentous forms, thus implicating their association mainly 
with the cell wall of hyphae [31–33]. Additionally, other adhesins are required for C. albicans 
adhesion and proper biofilm formation, including Eap1 (enhanced adhesion to polystyrene 1)  
protein present at the cell surface of both yeast cells and hyphal forms [34, 35]. Adhesion-
related proteins are important not only for the binding of fungal cells to the receptors on host 
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tissues or to the artificial surfaces, but also for maintaining the cell-cell interactions within the 
biofilm that allow further stabilization of the structure and avoiding the removal of fungal 
cells by the action of host defense mechanisms such as the salivary flow. In the process of 
aggregation and intracellular interactions between fungal cells, fragments of adhesins that 
consist of amino acid sequences predicted to form amyloid-like β-aggregates and mediating 
amyloid formation may participate, as described for the protein Rbt1 (repressed by TUP1), a 
GPI-anchored cell wall protein with a similarity to Hwp1 [36, 37].

After the adhesion step, further proliferation of cells and production of filamentous forms 
lead to the enhanced development of biofilm [38], processes related not only to the change 
in the surface properties of fungal cells and the increase of their adhesiveness, but also to the 
production of further virulence factors and biofilm matrix components [24]. Among the large 
repertoire of extracellular hydrolytic enzymes produced by C. albicans that play a pivotal role 
during the invasion on host tissues during the infection and are involved in biofilm-related 
pathogenesis, representatives of families of lipases, phospholipases, and secreted aspartyl pro-
teinases (Saps) can be included [39]. The major biofilm-associated Saps are hypha-specific Sap5 

Figure 1. Polymicrobial biofilm: stages of development and host responses.
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and Sap6, responsible for the acquisition of nutrients, aggregation of fungal cells, intracellular 
communication, and production of extracellular matrix during biofilm development [40–42].

The highly complicated and heterogeneous extracellular biofilm matrix (ECM) is composed of 
numerous proteins (55%), carbohydrates (25%), mainly branched α-1,6-mannans, unbranched 
β-1,6-glucans, and β-1,3-glucans, as well as lipids (15%), including neutral glycerolipids, polar 
glycerolipids and sphingolipids, and nucleic acids (5%) [43]. The matrix that strengthens the 
biofilm significantly contributes to the development of biofilm resistance to adverse envi-
ronmental conditions and penetration of antifungal drugs [43–45]. Several matrix-associated 
proteins have been identified, both involved in the basic cellular metabolism, as well as the 
proteins responsible for the rearrangement of the matrix structure and maintenance of its 
functionality (glucan-modifying enzymes and protein mannosyltransferases, i.e., Xog1, Exg1, 
Bgl2, Pmt1, Pmt2, Pmt4, Pmt6) [46, 47]. Extracellular DNA (eDNA) detected in C.  albicans 
biofilm matrix is probably mainly responsible for the structural integrity [48].

In the process of biofilm dispersion, the molecular chaperone, heat shock protein 90 (Hsp90) 
is strongly involved [49], affecting the morphogenetic transition from yeast cells to hyphal 
forms and repressing Ras1/PKA (cAMP-dependent protein kinase) signaling cascade [50]. 
Furthermore, the conserved histone deacetylase complex, including Set3, Hos2, Snt1, and Sif2 
proteins also participates in the dispersal of biofilm, modulating the transcription kinetics of 
the genes that regulate biofilm maturation [51].

3. C. albicans interactions with bacteria during mutual biofilm 
formation

C. albicans colonizes the oral cavity, presenting the commensal or pathogenic properties that 
can be modified by direct or indirect interactions with different types of bacteria, depending 
on the localization of the microbial communities, such as the supragingival plaque, subgin-
gival plaque, and tongue coating. The metabolic activity of microorganisms that colonize the 
supragingival sites, i.e., nonmutans streptococci and Actinomyces enriches the environment 
in lactic acid, creating a temporarily acidic environment that favors the entrance of the more 
cariogenic microorganisms, mutans streptococci into the ecosystem. Conversely, at subgin-
gival sites, colonized by Fusobacteria and Prevotella, a neutral pH and anaerobic environment 
dominate and facilitate the establishment of a less acid-tolerant but periodontopathogenic 
bacterium, P. gingivalis [52].

The mitis group of streptococci (MGS), including Streptococcus mitis, Streptococcus oralis, 
Streptococcus gordonii, and Streptococcus sangunis [53, 54] belongs to the early colonizers of oral 
cavity and appears to interact synergistically with C. albicans hyphal filaments providing the 
physical and metabolic interactions by the exposition of specific adhesion sites and excreting 
lactate that serves as a carbon source for yeast growth [55]. On the other hand, C. albicans can 
provide bacteria with growth stimulatory factors, resulting from the fungal nutrition metabo-
lism [12] and reduces the oxygen pressure to the level, preferred by streptococci. Moreover, 
a mutual collaboration of C. albicans and S. oralis increases the inflammatory host responses 
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compared to monospecies infections [56, 57]. The consequence for the host is provided by 
the precise interactions between the cell surface proteins of S. oralis, S. mitis and S. gordonii, 
especially SspA and SspB [58, 59] and the candidal cell wall adhesins of agglutinin-like fam-

ily, mainly Als3, presented on the surface of fungal hyphae [60]. Some parts of these proteins 
seem to be particularly important for the interactions but a precise mechanism of the interac-
tion requires further research, especially to clarify a significance of cell wall mannosylation 
[57, 61] in this process.

Moreover, the polysaccharides of both types of interacting microorganisms that compose 
ECM not only protect the cells, but also create a new platform for mutual interactions between 
fungal glucans and mannans and bacterial glucosyltransferases within the ECM matrix struc-
ture [46, 62, 63].

The best example of microbial cooperation for increased pathogenic properties of mixed bio-
film is represented by the interactions of C. albicans with S. aureus, identified in oral cavity and 
being a source of systemic infection [64–67]. The bacteria prefer hyphal filaments of C. albicans 
[68, 69] for adhesion, but its localization within the biofilm seems to depend on the surface 
colonization sequence. When bacteria are the first colonizer, the development of fungal bio-
film is slower and bacteria cells are spread in whole three-dimensional biofilm structure [68]. 
On the other hand, a simultaneous contact of microorganisms with the surface favors the rapid 
formation of the mixed biofilm with S. aureus localization within upper layers of fungal biofilm 
and with involvement of multiple microbial proteins. However, the role of fungal adhesins 
from Als family in these interactions has been questioned [70]. The formed biofilm and its ECM 
with extracellular fungal DNA protect the bacteria against the antibiotic treatment [71–73].

C. albicans co-aggregates with an obligatory anaerobe F. nucleatum [13], with engagement of 
a mannan receptor on the C. albicans surface [74]. A facultative anaerobe—A. oris—makes its 
own carbohydrate-containing surface molecules available to the interaction with C. albicans 
[14]. Last studies have also shown that C. albicans is able to interact with keystone patho-
gen of subgingival plaque—P. gingivalis—the obligatory anaerobe. However, it is difficult 
to judge whether the pathogens apply a synergistic or concurrence style of interactions. It 
was demonstrated that P. gingivalis suppressed Candida biofilm formation by a reduction of 
fungal cell viability [75]. Recently, the gingipain activity has been suggested to be the main 
destructive force influencing fungal cells wall within the mixed bacterial-fungal biofilm 
(unpublished data). On the other hand, P. gingivalis was also shown to induce germ-tube 
formation by C. albicans cells, generating a more invasive phenotype of fungal cells [76]. But 
such an effect could also result from fungal protection toward contacting bacteria and their 
virulence potential (unpublished data). The mutual interactions are supported by the involve-
ment of adhesins, especially fungal Als3, Mp65 and surface-located enolase, aand a bacterial 
internalin, InlJ or gingipains ([77], unpublished data). The important role in the interaction 
between C. albicans and P. gingivalis has been also assigned to peptydylarginine transferase of 
P. gingivalis (PPAD), the enzyme capable of modifying Arg residues to citrullines. Its action 
can directly contribute to the change in the spatial structure of the molecule [78]. A bacterial 
mutant deprived of PPAD forms a reduced mixed biofilm compared to the wild-type strain. 
Potential molecules whose citrullination may affect the effectiveness of biofilm formation 
include arginine-specific cysteine proteinase (RgpA) and adhesive Mfa1 fimbrilin [17, 79].
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The interaction of both microbes seems to exert marked consequences to the host. However, 
it was presented that both microbes appear to have antagonistic effects on one another, as P. 

gingivalis inhibited the adhesion of C. albicans to buccal epithelial cells [80]. But the presence 
of C. albicans did not enhance adhesion of P. gingivalis to gingival epithelial cells or gingival 
fibroblasts. On the other hand, a pre-exposure of gingival epithelial cells and fibroblasts to C. 

albicans enhanced the cell invasion by P. gingivalis [81].

4. Host responses to the candidal biofilms

Clinical candidal oral biofilm inhabiting mucosal surfaces or artificial devices may trigger 
more or less similar host responses (Figure 1). Regardless of the biofilm origin, it remains 
under the influence of immune factors produced by contacting epithelial cells [82].

Dongari-Bagtzoglou et al. [83] analyzed the candidal biofilm in a murine model and found 
that this fungal cell community induced a hyperkeratotic response and epithelial cell desqua-
mation. Moreover, the matrix that surrounded the fungal biofilm was enriched in keratin and 
desquamated cells.

Also, in a rat model of chronic denture gingival dermatitis, the host proteins were prominent 
in the extracellular matrix, including amylase, hemoglobin, and antimicrobial peptides [84, 85].

The oral biofilm elicits responses of human immune cells (Figure 1). The neutrophil migra-
tion and their deeper localization within the biofilm were identified, but these defense cells 
were not effective in clearing these infections [82]. An analysis of neutrophil responses in the 
ex vivo models of their contact with C. albicans biofilm also showed a diminished activity of 
neutrophils against this structured fungal community, compared to the responses against the 
planktonic form of fungal cells [86].

Upon a contact with pathogens, neutrophils can activate many mechanisms of response to 
suppress the infection. These include degranulation, phagocytosis, and neutrophil extracellu-
lar traps (NETs) formation [87]. The latter process aims at entrapment of large objects such as 
fungal hyphae [88]. Nevertheless, a group of Johnson showed that neutrophils failed to release 
NETs in contact with fungal biofilm [89]. These results were described as an immunological 

silence, where host immune system ignored contacting biofilm because of its shielding by the 
matrix components [90]. The biofilm matrix prevents the exposition of so called pathogen-
associated molecular patterns (PAMPs) that can be recognized by highly specialized pattern 
recognition receptors (PRRs) of human immune cells [91, 92].

Another explanation proposed to interpret the evasion of host response by the biofilm was 
an immune deviation that could result from action of yet unidentified fungal compounds. They 
could act directly or indirectly by triggering host immunomodulatory factors that transform 
the immune response into ineffective form [93]. Such hypothesis was supported by the obser-
vation that C. albicans cell wall components were able to induce the expression of Il-10 influ-
encing Th2 response [94].

A further explanation of biofilm survival was represented by a model of immune resistance 
proposed in [95], where GPI-anchored cell wall protein Hyr1 could play an important role 
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[96]. Moreover, all of proposed mechanisms or their combinations could be involved in local 
paucity of PMN responses. Katragkou et al. [86, 97] and Xie et al. [98] documented that 
developed biofilm covered by ECM exposed fungal β-glucans that were involved in hindered 
neutrophil responses to cytokine priming of PMNs or fungal cell opsonization. Such an argu-
ment was also strengthened by the observation that pre-treatment of PMNs with interferon-γ 
or granulocyte colony-stimulating factor (G-CSF) did not significantly enhance their activity 
against opsonized or nonopsonized C. albicans biofilms. Moreover, neutrophils contacting the 
mature biofilm did not produce reactive oxygen species, necessary for triggering of phagocy-
tosis, or one of the pathways of NET production [99]. Nevertheless, the precise mechanism of 
this phenomenon remained to be clarified.

Similar, diminished responses were also observed for a contact of fungal biofilm with mono-
nuclear cells, compared to their co-culture with fungal planktonic form [100]. Although the 
migration of the mononuclear cells through biofilm was detected with their main compaction 
in the basal part of biofilm, their phagocytosis properties were suppressed, and the production 
of pro-inflammatory cytokines in response to biofilm decreased. Surprisingly, the mononuclear 
cells augmented biofilm proliferation, increasing the biofilm thickness over two-fold [97, 101].

Most of the presented observations were made concerning host response to contact with fungal 
biofilm, but the host immune system usually has to face an ongoing polymicrobial infection 
[102] about which the information are rather scarce [103]. An example of the cross-kingdom 
infection of the human host was represented by C. albicans biofilm contacting gingival anaero-
bic bacteria, P. gingivalis. In this case, an attenuation of the human macrophage responses was 
observed [17]. Moreover, some studies presented that the host responses can vary depending 
on the pathogen that contacts the fungal biofilm [104]. The pathogen interactions can be syner-
gistic as well as antagonistic. For example, in a rat model, the colonization of the airway by C. 

albicans impaired functions of alveolar macrophages and, in consequence, led to the reduced 
clearance of Pseudomonas aeruginosa [105]. On the other hand, Lopez-Medina et al. [106] showed 
in a mouse gut model that the co-infection of P. aeruginosa with Candida cells suppressed the 
expression of bacterial genes responsible for iron acquisition, and thus suppressed the infec-
tion. Nevertheless, our understanding of host responses to mixed biofilm formed between dif-
ferent type of pathogens remains still at its infancy and needs many further studies.

5. Quorum sensing within the mixed biofilm and its significance for 
the host

An important phenomenon occurring in the process of biofilm formation is also the transmis-
sion of signals between microbial cells located within the biofilm, thus stimulating them to 
further growth and dispersion of the cells or, in contrary, suppressing them. In addition, sig-
naling molecules can also affect microbial cells of other species that inhabit the same niche in 
the host organism, and thus promote synergistic or antagonistic interactions between differ-
ent pathogens which can result in clinical outcomes. This phenomenon of the communication 
between microorganisms through the secretion of low molecular weight compounds, referred 
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to as the quorum sensing (QS) [107], involves specific chemical compounds whose increasing 
concentration is a signal to change the expression of selected genes in the cells of the entire 
biofilm population [108].

C. albicans produces autoregulatory substances involved in quorum sensing (quorum-sensing 
molecules, QSMs) that affect important virulence traits, such as transformation of the mor-
phological forms [109]. One of them is farnesol—an alcohol from the terpene group, secreted 
by C. albicans in the later stages of biofilm formation, with a function of blocking the forma-
tion of filamentous forms of this yeast [110]. A function opposite to farnesol has a second 
fungal QS compound, tyrosol, which stimulates the phase of active growth of the C. albicans 
cell population and the formation of hyphae in the initial phases of biofilm formation, thus 
increasing the thickness of the biofilm [111–113].

When the concentration of farnesol is higher than that of tyrosol, the conversion of yeast form 
to hyphae is inhibited and a release of individual cells from the biofilm is stimulated. Such 
effect indicates possible interactions between these two QS systems in the process of biofilm 
building [112]. Additionally, C. albicans secretes two aromatic alcohols, phenylethyl alcohol 
and tryptophol, also identified as QSM [113].

The role of QSM seems to be particularly important in mixed biofilms, in which the coexis-
tence of fungi and bacteria is associated with their mutual communications. QSM secreted by 
the bacteria can exert both stimulatory and inhibitory effects on the cell morphology and bio-
film formation by C. albicans cells. It is likely that a combination of these contradictory signals 
orchestrates the balance between the cellular and filamentous form in biofilms, preventing the 
excessive growth of C. albicans within these communities [114].

One example of cross-species communication using QS signals are biofilms formed between 
C. albicans and Gram-negative bacteria P. aeruginosa. It has been shown that the presence of 
farnesol produced by C. albicans inhibits functioning of bacteria, and suppresses the produc-
tion of a bacterial quinolone signaling molecule—PQS, and the piocyjanin—an important 
bacterial virulence factor [115]. On the other hand, under formation of mixed biofilms, P. 

aeruginosa produces homoserine lactone that may fulfill a role similar to farnesol, reducing the 
production of fungal hyphae in vitro [116].

Another example is the biofilm with participation of S. mutans, in which the inhibition of 
biofilm formation was observed in response to a high concentration of farnesol (>100 μM), 
while a low level of farnesol (~25 μM) promoted bacterial growth [117–119].

In other studies, S. mutans could both, reduce the farnesol production by C. albicans [119] 
and inhibit the formation of filamentous form of C. albicans by the competence-peptide CSP, 
produced on the early stages of biofilm development [120, 121].

The same peptide produced by S. gordonii inhibited the formation of C. albicans biofilm, but 
not the hyphal growth [122]. In contrast, other bacterial QSM—the autoinducer-2 (AI-2), as 
well as H

2
O

2
 secreted by S. gordonii affected the morphogenesis and production of farnesol. 

The strains with the deletion of the LuxS quorum-sensing system responsible for AI-2 produc-
tion in S. gordonii presented a reduced ability to stimulate the growth of C. albicans hyphae 
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and thereby a general reduction of biofilm biomass. The identified responses correlated with 
an invasion into the host epithelial cells [10, 27].

An interesting interspecies communication is presented by the Gram-negative Aggregatibacter 

actinomycetemcomitans, acting in periodontal disease, which can inhibit the formation of C. 

albicans biofilm by producing AI-2. Although AI-2 has been described as QSM of different 
bacteria, other species give off other AI derivatives, so that the results obtained for different 
species do not have to be identical to one another. Interestingly, A. actinomycetemcomitans is 
one of the bacterium having a dual inhibitory system acting toward C. albicans biofilm. In 
addition to QSM, it also includes cytolethal distending toxin (CDT). One of the emerging 
hypotheses suggests that secreted QSM is a warning signal for C. albicans against a competitor 
that secretes the toxins [120, 123].

QSM also plays an important role in a communication between C. albicans and the Gram-
positive bacterium—S. aureus. Farnesol, secreted by C. albicans inhibits the formation of S. 

aureus biofilm and increases its susceptibility to antibiotics [124, 125]. There were also studies, 
indicating that S. aureus stimulated the growth of C. albicans biofilm possibly by QSM [69]. It 
was also proposed that in the presence of farnesol, S. aureus acquires a resistant phenotype that 
induces oxidative stress, resulting in the upregulation of bacterial drug efflux pumps [126].

QS production within the biofilm has also an impact on the efficiency and the functioning 
of host defense systems. The gingival epithelial cells presented an upregulation of the toll-
like receptor TLR2, and a decrease of the expression of TLR4 and TLR6 upon treatment with 
farnesol, suggesting the resulting activation of antifungal defense. Considering the role of 
epithelial cells in the secretion of pro-inflammatory cytokines, it was also shown that farnesol 
increased the secretion of IL-6 and IL-8. Moreover, farnesol modulated the secretion of anti-
microbial peptides by epithelial cells, including hBD1 and hBD2. C. albicans cells, via produc-
tion of farnesol, suppressed the epithelial secretion of hBD1, with a simultaneous increase 
in hBD2 secretion. Since both peptides have a high efficacy in C. albicans killing, the results 
suggest that farnesol may be a key factor in promoting host defense [127]. An additional 
function performed by farnesol includes its ability to activate neutrophils and monocytes and 
to reduce the phagocytic activity of mouse macrophages. Farnesol also impairs the differen-
tiation of monocytes into dendritic cells and decreases their ability to activate and expand T 
cells, which consequently reduce the induction of IL-12 [128].

In summary, mutual QS interactions between fungi and bacteria may play an important role 
as a virulence mechanism that mediates the communication between the host and the formed 
biofilm, and could inspire future applications in diagnostics and biofilm treatment.

6. Resistance of oral biofilm

The biofilm formed on mucosal or artificial surfaces in oral cavity is difficult to eliminate 
since the biofilm structure protects the pathogenic cells against antimicrobial drugs, espe-
cially against antifungal agents, and suppresses immune responses [129]. Moreover, coop-
erating invaders often present increasing virulence resulting from synergistic and complex 
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interactions between microorganisms [130]. It has been demonstrated that Staphylococcus 
adheres to yeast and hyphal forms, and this interaction benefits the growth and antibiotic 
resistance of S. epidermidis. In addition, the components of the biofilm extracellular matrix 
produced by the wild-type of S. epidermidis prevent the effective penetration of antimycotic 
molecules such as fluconazole into the biofilm and promote the spread of yeast infection [131].

The low susceptibility of biofilms to medical treatment is attributed to multifactorial events, 
represented by upregulation of efflux pumps, the presence of extracellular matrix and appear-
ance of recalcitrant persister cells [132].

The two classes of fungal efflux pumps (FEP: Cdr1, Cdr2, and Mdr1) are activated in plank-
tonic cells in contact with antifungal drugs but in biofilms FEP are upregulated probably in 
response to contact with other partners that compose the biofilm. Such an explanation was 
supported by an observation that FEP efficient function appeared shortly after the cell surface 
adhesion and remains upregulated during whole process of mixed biofilm formation [21].

Another contributor to mixed biofilm resistance is the extracellular matrix and its compo-
nents. This three-dimensional complex structure effectively inhibits antibiotic and antimy-
cotic diffusion [133]. Moreover, the biofilm-composing polysaccharides not only mask the 
biofilm against its recognition by the host receptors, but also can directly bind and inactivate 
the drugs, as it was presented in a case of antifungal-acting amphotericin B, sequestered by 
β-1,3-glucan, composing ECM [134].

Also, eDNA is an especially important biofilm component, whose viscosity and negative 
electric charge influences the structural integrity and stability of biofilms but also contrib-
utes to drug resistance via acting as drug chelator. eDNA also binds magnesium ions, whose 
decreased level serves as a signal, inducing PhoPQ and PmrAB systems, responsible for P. 

aeruginosa resistance to antimicrobial peptides and to aminoglycosides [135].

An important phenomenon that plays a key role in the development of drug resistance by 
oral microbiome is the horizontal gen transfer (HGT) [131]. The biofilm structure provides 
a suitable environment for gene exchange, because the microbial cells are in close proximity 
and the virulence genes are dynamically spread between different species of bacteria compos-
ing biofilm. The most popular mobile genetic element in oral microflora is the conjugative 
transposon Tn916, which contains genes encoding ribosomal protection proteins [131]. These 
proteins inhibit the action of tetracycline, the most popular antibiotic used in periodontal 
disease treatment, by preventing the binding of this antibiotic to the bacterial ribosome [136]. 
Another biofilm protective function is carried out by membrane vesicles (MVs), present in 
ECM [137], which protect bacteria against some antibiotics by the degradative properties of 
MV enzymes, such as β-lactamase [138].

The important factors that contribute to the biofilm resistance are the persister cells detected 
in bacterial and fungal biofilm [20, 139]. The persister cells are a minor subset of metaboli-
cally dormant cells presented within biofilms that possess extreme resistance to antimicrobial 
agents and are responsible for the severe chronic infectious disease. However, the mechanism 
of this resistance of persister cells remains to be discover; they could possibly be a good target 
for further antimicrobial therapies.
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7. The challenges for medical treatment of mixed oral biofilm

As no biofilm-specific drugs exist today, the treatment of infections caused by mixed spe-
cies community remains a major challenge for contemporary medical biotechnology and the 
developing of new effective strategies for biofilm eradication becomes critical.

One of the strategies for combating biofilms formed by bacteria and yeasts can be a degrada-
tion of ECM. It has been demonstrated that enzymatic degradation of some biofilm-forming 
components facilitates the penetration of antibiotic and antimycotic molecules and affects the 
biofilm structural integrity [140, 141]. For example, a study demonstrated that a combined use 
of deoxyribonuclease and amphotericin B reduced the survival of C. albicans cells.

An effective alternative to antibiotic therapy may be a treatment with anti-biofilm peptides. 
These compounds easily penetrate the structure of multispecies biofilm and inhibit the 
growth of Gram-positive and Gram-negative bacteria. An example of such an anti-biofilm 
compound is a short synthetic peptide 1018 (amino acid sequence: VRLIVAVRIWRR), which 
blocks a stress response through an activation of the stress-signaling nucleotide degradation 
[142]. Another example of an anti-biofilm compound is D-enantiomeric peptide DJK-5 that 
has a similar mechanism of action to peptide 1018 [143]. The main advantage of the DJK-5 is 
its resistance to proteases produced by the host and bacteria. Moreover, DJK-5 possesses a 
higher biological activity than peptide 1018 and kills most of the oral biofilm-forming bacteria 
in a few minutes. It has been demonstrated that the use of anti-biofilm peptides in combina-
tion with conventional antibiotics both increases the effectiveness of treatment and reduces 
the required concentration of antibiotics [144].

Several natural products have been also proposed for fungal biofilm treatment. An example 
of plant metabolites with antifungal activity are terpenoids, such as xanthorrhizol extracted 
from Curcuma xanthorrhiza [145]. It has been demonstrated that this compound effectively 
inhibits the development of mature biofilms formed by various Candida species. Moreover, in 
contrast to commonly used antifungal drugs, xanthorrhizol is nontoxic to human cells even 
at very high concentrations.

Also, chemical signal molecules involved in quorum sensing possess a potential for the ther-
apy of oral infections disease. There are two main mechanisms of action of the known QS 
inhibitors [146]. Some of these cause an enzymatic degradation of signaling molecules. The 
enzymes—AHL-lactonases and AHL-acylase can be classified to this group. Other inhibitors 
such as furanones that are produced by red marine algae are structural analogs that prevent 
bacterial biofilm development via binding to LuxR [147]. In the case of oral C. albicans infec-
tions, the use of farnesol has been proposed [148]. In vivo studies have shown that the addition 
of farnesol suppresses the hyphal growth on the mouse tongue at the first step of biofilm for-
mation, and as a result prevents the invasion of mucosal membrane by the yeast and bacteria.

An interesting proposal for the treatment of mixed biofilm can be the photodynamic antimi-
crobial chemotherapy (PACT) that applies the nontoxic dye (photosensitizer) activated by vis-
ible light [149]. Singlet oxygen, which is effectively produced during this process, effectively 
kills pathogen cells. This novel method has been successfully used against C. albicans biofilm 
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and can be a promising antimicrobial therapy that has many advantages such as the high 
target specificity. What is more, the development of resistance to PACT is unlikely because 
microorganisms have no resistance mechanism against singlet oxygen [150].

A better understanding of the molecular mechanisms underlying the formation and mainte-
nance of the mixed species biofilm is crucial for the development of their effective treatments 
in the future.
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