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Chapter

Oriental Theileriosis
Jerald Yam, Daniel R. Bogema and Cheryl Jenkins

Abstract

Theileria orientalis, the causative agent of oriental theileriosis, is an apicomplexan 
haemoparasite and is one of several tick-borne Theileria spp. infecting cattle. Unlike 
the highly pathogenic transforming Theileria species (T. annulata and T. parva) which 
induce uncontrolled lymphocytic proliferation, T. orientalis is a non-transforming 
strain exerting its major pathogenic effects via erythrocyte destruction. Clinical 
symptoms associated with oriental theileriosis are largely consequences of the under-
lying anaemia. Because of its non-transforming nature, T. orientalis was previously 
considered a benign parasite, however, in the recent years, clinical outbreaks of T. 
orientalis have been increasingly observed throughout Asia and Australasia. Recent 
rapid spread of clinical theileriosis has been linked to a pathogenic genotype of the 
parasite, genotype Ikeda (Type 2). The geographic distribution of clinical outbreaks 
correlates to the range of the major vector tick, Haemaphysalis longicornis, although 
other vectors and modes of transmission are possible. This review includes discussion 
of T. orientalis epidemiology, transmission, pathogenesis, treatment and control and 
provides an update on the taxonomy of this organism which is still under debate.

Keywords: Theileria orientalis, cattle, taxonomy, epidemiology, transmission, control

1. Introduction

T. orientalis has been reported to cause mortality in up to 5% of infected cattle. 
Clinical outbreaks commonly occur when naïve cattle are introduced into endemic 
herds, when animals undergo stress through transportation or are immunosup-
pressed. Pregnant heifers and calves are particularly susceptible to infection, with 
late term abortions also commonly reported. The parasite is globally spread but 
countries impacted by clinical theileriosis include Australia, New Zealand, Japan, 
Korea, China and Vietnam [1–3]. Oriental theileriosis represents a major economic 
burden to cattle production. In Australia in 2010 the economic impact of the para-
site was estimated at $20 million AUD per annum. However, the costs associated 
with disease are likely to have increased substantially since that time with the sub-
sequent spread of bovine theileriosis into new areas of the country. In New Zealand, 
although the total economic impact has not been well established, clinical outbreaks 
were estimated to cost up to $NZ 1 million on a single large dairy farm [4]. Recently, 
clinical outbreaks of theileriosis were documented for the first time in dairy cattle 
undergoing transport stress during importation to Vietnam from Australia [3], 
highlighting the potential importance of this disease in the live cattle trade. In 
countries like Japan and China where multiple tick species have been identified as 
potential disease vectors, economic impacts have been significant [5, 6].

The lack of preventive measures or suitable vaccines complicates the manage-
ment of T. orientalis. Currently, there are limited therapeutic options available for 
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treatment of oriental theileriosis and no vaccines available for this disease globally. 
Vaccine and/or therapeutic development has been identified as a research prior-
ity for bovine theileriosis; however as in malaria studies, an understanding of the 
taxonomy and genetic variability within parasite populations is essential to ensure 
vaccine and therapeutic efficacy.

2. Taxonomy of T. orientalis

2.1 Taxonomic history of T. orientalis

Historically, the taxonomy of T. orientalis (formerly referred to as the Theileria 
orientalis/sergenti/buffeli group) has been a subject of some confusion, due to 
similarity in strain morphology, variability of host animals and transmission vec-
tors, occurrence of mixed infections, parasite genetic diversity and the difficulty in 
extracting pure isolates for studies, especially in benign infections where parasitae-
mia is low [7]. Originally, these parasites were classified based on geographic origin 
[8, 9]. Further attempts to classify this group of parasites led to suggestions that the 
group should be classified into one species [1, 8–11]. More recently, variations in the 
major piroplasm surface protein (MPSP) gene have been used to classify members 
of the T. orientalis group, separating it into 11 genotypes [1].

Members of the Theileria orientalis group were first identified in Australian 
cattle in 1910 and the organism classified as T. mutans [12] due to the morphological 
similarity to the previously described African species [13]. Some years later, Wenyon 
[14] made the first description of a similar blood parasite from sheep and named 
it Babesia sergenti. The morphological drawings of B. sergenti [9] corresponded to 
Theileria spp. morphology and it was later found that the parasite he described was 
indeed a theilerial parasite of sheep [15, 16]. However, in the intervening years, 
a new parasite of cattle in Eastern Siberia was described and T. sergenti [17]. The 
sheep parasite thus has precedence with respect to the name T. sergenti, rendering 
this name invalid for the cattle parasite; nonetheless the name T. sergenti had been 
used widely for this organism in the literature. Following the initial description of 
“T. sergenti” in Siberian cattle, a similar cattle haemoparasite was found in the same 
area and the authors named it T. orientalis [18].

Serological and morphological studies [19] later revealed that the T. mutans 
isolate identified in Australia [12] was the same species as “T. sergenti” [17] and not 
the African T. mutans described by [8]. Authors [15] suggested that the Australian 
isolate was either T. orientalis [18] or T. buffeli [20]. Serological and morphological 
studies conducted on Theileria stocks from Australia, Britain, Iran, Japan, USA 
and a higher pathogenicity stock from Korea concluded that the nomenclature 
of Australian Theileria should be T. orientalis [8]. But, a few authors still propose 
that the name T. buffeli should be designated due to the transmission of parasite 
from buffalo to cattle and the fact that isolates characterised at that point of time 
were all infective for buffalo [11, 21, 22]. Studies in Japan suggested T. orientalis 
and T. buffeli to be separated from T. sergenti and be classified as a different group 
due the serological and transmissibility differences [9, 23, 24]. Regardless of these 
findings, it was concluded that designation of the name T. sergenti should not be 
used for any blood parasite of ruminants with the exception of sheep [15, 16, 22].

2.2 Taxonomic classification using molecular techniques

As serological and morphological techniques were not suitably discrimina-
tory for distinguishing isolates from the Theileria orientalis/sergenti/buffeli group, 
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molecular techniques became more prevalent. The use of the MPSP and 18S rRNA 
genes further clarified the relationships within this taxonomic group. Early PCR 
analysis of the MPSP gene revealed four major genotypes, Ikeda, Chitose and 
Buffeli and Thai type [25, 26]. The Buffeli genotype type was also separated into 
sub-genotypes B1 and B2 due to variability observed between these isolates [25]. 
Genotyping of the V4 variable region with the 18S rRNA gene which was previ-
ously shown to enable classification of Theileria spp. [27] revealed seven genotypes 
(Genotypes A to G) [28]. Subsequent examinations of Theileria orientalis/sergenti/
buffeli group taxonomy utilised MPSP sequences due to greater observed sequence 
variation, producing stronger branch support in phylogenetic analyses [29, 30]. 
By 2010, eight MPSP genotypes (1–8) were classified including the unclassified 
genotype from Brisbane, Australia (T. buffeli Warwick) [29–31]. MPSP genotype 6 
found in cattle and yak was reclassified and the taxonomic name Theileria sinensis 
was suggested to reflect divergence from the other members of the Theileria 
orientalis/sergenti/buffeli group [6, 32]. Three new genotypes from sheep, water buf-
falo and cattle were further identified [33] in Vietnam (N1, N2 and N3 respectively) 
bringing to current number of classified MPSP genotypes to 11 (Types 1–8 and 
N1–N3). Retrospective analysis of the genotypes previously identified with the 18S 
rRNA gene [28] against the current MPSP genotyping scheme shows that geno-
type A corresponds to Chitose while genotypes B and E correspond to Ikeda. 18S 
rRNA Genotypes C and D correspond to the Buffeli and Type 6 MPSP genotypes 
respectively. Further analysis revealed the 18S rRNA genotypes F and G identical to 
Theileria cervi a species found in elk. Buffeli sub-genotypes B1 and B2 identified in 
[25] correspond to the MPSP buffeli genotype and Type 4 respectively.

Molecular examinations have considerably clarified the taxonomy of T. orientalis. 
Asian isolates previously referred to as T. sergenti were found to be a mix of MPSP 
genotypes that were also commonly found in T. buffeli and T. orientalis isolates. Both 
Types 1 (Chitose) and 3 (Buffeli) were commonly found in both Australia and East 
Asia, with Type 3 spread globally. Hence more recent studies have begun to refer to 
this group by the common name T. orientalis [1, 34, 35].

Great efforts have been made by researchers to genetically characterise T. 
orientalis. However, current genetic characterisation methods utilise relatively few 
molecular markers. It has been well established that the primary mechanism driving 
genetic diversity in apicomplexans is through the sexual recombination; in the case 
of Theileria parasites, this occurs within the tick vector. Recombination has been 
relatively poorly studied in T. orientalis, however it has been suggested that recom-
bination between MPSP genotypes is unlikely due to the low sequence identities 
between types [33] and high sequence identities within each clade [1, 31, 36, 37].

2.3 Current taxonomic state of T. orientalis

Genetic diversity within and between the MPSP genotypes should be further 
investigated as it has the potential to resolve the controversy surrounding the 
taxonomic classification of T. orientalis, elucidate virulence factors driving differ-
ential pathogenicity, and has implications for vaccine design. A complete genome 
of T. orientalis (Ikeda) has now been sequenced and annotated and is available for 
further research [34], and whole genome sequencing of large numbers of isolates 
is now feasible. A recent study which presented draft genomes of Australian 
isolates of Ikeda, Chitose and Buffeli genotypes confirmed the MPSP phylogenies 
indicating that the apathogenic Chitose and Buffeli genotypes are more closely 
related to each other than to the pathogenic Ikeda genotype [37]. That study 
further suggested that T. orientalis may indeed encompass multiple species and 
subspecies. The average nucleotide identity (ANI) between the Ikeda genome 
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and those of the Chitose and Buffeli genotypes (82%) was comparable to that of 
T. annulata and T. parva (80%). While sequencing of additional representatives 
of these genotypes is desirable, the evidence from the ANIs combined with the 
differential pathogenicity of these genotypes suggests that T. orientalis Ikeda is 
a separate species to T. orientalis Chitose and T. orientalis Buffeli. Moreover, the 
ANI between T. orientalis Chitose and T. orientalis Buffeli (86%) was comparable 
to that of the murine Plasmodium spp. suggesting that there may be further 
species or subspecies-level diversity within T. orientalis genotypes. [37]. Whole 
genome sequencing of additional T. orientalis genotypes is warranted to deter-
mine whether a new species designation should be applied to T. orientalis Ikeda 
and whether this may extend to include the phylogenetically related Type 7 which 
has also been associated with clinical disease [38]. Additional genome-wide stud-
ies will also enable researchers to formulate vaccine strategies by characterising 
possible vaccine targets and allow genetic diversity investigations within parasite 
populations [1]. Current efforts to understand the recombination mechanisms of 
other species of Theileria that lead to genetic diversity and taxonomic uncertain-
ties [39–41] have been fruitful and it warrants researchers to conduct further 
investigations to answer the taxonomic questions surrounding T. orientalis.

3. Epidemiology

T. orientalis is a cosmopolitan parasite of cattle that also affects buffaloes and 
yaks [8]. T. orientalis infections have been globally reported in Australia [42–45], 
New Zealand [46], Southeast Asia [3, 33, 47–50] East Asia [6, 29–31, 36], South 
Asia [38, 51–53], Middle East [54–56], Africa [57–59], Europe [8, 60–65] and 
the Americas [1, 10, 66]. The distribution of Theileria species is dependent on 
the availability and competence of suitable tick vectors [7]. The principle vec-
tor of T. orientalis, H. longicornis, can be found in most of the countries where 
disease outbreaks have been reported (Table 1). In countries where distribu-
tion of H. longicornis is sparse or where the species is not known to occur, other 
Haemaphysalis spp. or other genera of ixodid ticks (Table 1) have been identified 
to be capable of transmitting the parasite, although the comparative competency 
of these species is unclear. The significance of these ticks as vectors of T. orientalis 
warrants further investigation.

3.1 Clinical disease outbreaks: Japan, Australia, New Zealand

In Japan, T. orientalis sourced from grazing cattle in Hokkaido was reported to 
cause 0.1% and approximately 2.5% of mortality and morbidity respectively [83]. 
In 2009, PCR analysis of the MPSP and p23 gene of T. orientalis revealed the pres-
ence of at least four genotypes (1, 2, 4 and 5) [29]. Further analysis [68] revealed 
Type 3 (Chitose) to be present in Japan and with earlier studies the authors sug-
gested a total of seven genotypes (1–3, 4, 5, 7 and 8) to be present [69, 84]. Studies 
conducted over a number of years implicated T. orientalis Ikeda (Type 2) as being 
linked to clinical disease [42, 83, 85].

In recent years, outbreaks of oriental theileriosis have been increasingly observed 
in a number of different countries and are usually identified as being associated 
with MPSP genotype Ikeda (Type 2) [29, 45, 46, 68]. Australia and New Zealand 
recently experienced major disease incursions linked to T. orientalis Ikeda despite 
other genotypes of the parasite being present in these countries for many years.

T. orientalis was first observed in Australian herds in 1910, and the introduc-
tion was linked to the importation of T. orientalis infected H. longicornis ticks on 
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Country T. orientalis MPSP 

genotypes

Host 

species

Vectors References

Australia 1, 2, 3, 5 Cattle H. longicornis [1, 42, 44]

New Zealand 1, 2, 3, 5 Cattle H. longicornis [46, 67]

Japan 1, 2, 3, 4, 5, 7, 8 Cattle H. longicornis, H. 

mageshimaensis, H. douglasi, I. 
persulcatus, I. ovatus

[5, 29, 34, 
36, 68–70]

Korea 1, 2, 3, 4, 5, 8 Cattle H. longicornis [30, 71–74]

Taiwan 3 Cattle H. longicornis [31]

Vietnam 1, 2, 3, 5, 7, N3 Cattle Rhipicephalus microplus [3, 33, 49]

5, N1, N2 Water 
buffalo

Unspecified

N1 Sheep Unspecified

Indonesia 7 Cattle Unspecified [48]

Thailand 1, 3, 5, 6, 7, N3 Cattle Unspecified [10, 47, 75]

1, 3, 4, 5, 7, N2, N3 Water 
buffalo

Unspecified

Cambodia 1, 3 Cattle Unspecified [49]

Myanmar 1, 3, 4, 5, 7, N3 Cattle R. microplus, Haemaphysalis spp. [50]

Philippines Unspecified, but 
possible Type 1 and/or 

Type 3

Cattle Unspecified [76, 77]

India 1, 3, 7 Cattle H. bispinosa, R. microplus [38, 52]

N2 Water 
buffalo

R. microplus [53]

Sri Lanka 1, 3, 5, 7 Cattle Unspecified [1, 51]

N1, N2 Water 
buffalo

Unspecified

China 1, 2, 3, 5, 6, 8 Cattle H. longicornis, H. qinghaiensis [6, 32, 
78–80]

3 Water 
buffalo

H. longicornis

6 Yak H. qinghaiensis

Mongolia 1, 3, 5, 7, N3 Cattle Dermacentor nuttalli [36]

Russia 1 Cattle H. longicornis [60]

Egypt 1, 2 Cattle Unspecified [56]

2 Water 
buffalo

Unspecified

Kenya 3, 5 Cattle Unspecified [58]

United 
Kingdom

3 Cattle H. punctata [1, 8]

Italy 1, 3 Cattle R. bursa [62]

Hungary Unspecified, PCR of 
18S rRNA was done to 
identify presence of T. 

orientalis

Cattle H. punctata [65]

Portugal Unspecified, RLB assay 
was done to identify 

presence of T. orientalis

Cattle H. punctata [64, 81]
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cattle from Japan [86, 87]. Surveys of cattle in New South Wales (NSW, Australia) 
performed in the mid-20th century revealed the presence of T. orientalis in 60% 
of examined blood smears [42, 86] and later studies found herd and individual 
animal seroprevalence of 75% and 41% respectively in endemic parts of Queensland 
[42, 87]. The parasite was considered to be relatively benign as it caused only mild 
anaemia [42]. Prior to 2006, reports of clinical theileriosis in Australia were rare 
and experimental transmission studies were unable to establish clinical infection 
in test animals, suggesting that Australian strains of T. orientalis were of the benign 
Buffeli genotype [8, 22, 42, 88]. Samples from cattle imported into Japan from 
Australia were shown to be positive for the Chitose genotype by MPSP restriction 
fragment length polymorphism (RFLP), showing evidence that Chitose was present 
in Australia prior to 1998 [31]. However, since 2006, there was a large increase in 
clinical T. orientalis outbreaks in coastal and highlands regions of NSW [44, 89] 
and other parts of Australia such as Queensland [43], Victoria [90, 91], Western 
Australia [92] and South Australia [93, 94] (Figure 1A). Most clinical theileriosis 
outbreaks were linked to the movement of periparturient cattle from inland areas 
to the coast and the introduction of naïve cattle into endemic areas and/or introduc-
tion of infected cattle to T. orientalis non-endemic areas [2, 42, 89]. Large scale 
surveillance efforts identified the Ikeda genotype as the sole infecting type or as a 
mixed infection with other genotypes in all herds examined [43–45, 90].

T. orientalis was first reported in New Zealand in 1982 [95] with suggestions 
that the parasite could have been introduced through the importation of cattle 
from Britain or Australia where the parasite was prevalent. Prior to 2012, the Ikeda 
genotype was not associated with clinical theileriosis in New Zealand. Since then 
outbreaks of T. orientalis of the Ikeda genotype have been reported in beef and dairy 

Country T. orientalis MPSP 

genotypes

Host 

species

Vectors References

Spain Unspecified, RLB assay 
was done to identify 

presence of T. orientalis

Cattle Haemaphysalis spp. [63]

Greece Unspecified, IFAT—
Indirect fluorescent 
antibody test for T. 

orientalis antigens

Cattle H. punctata [61]

Brazil 1, 2, 3, 4, 5, 7, N2 ,N3 Cattle R. microplus [1]

Unspecified Water 
buffalo

R. microplus [66]

USA 6 Cattle Unspecified [1, 10]

Ethiopia 1, 2, 3, 5 Cattle Unspecified, but T. orientalis 
DNA found in Amblyomma and 

Rhipicephalus species

[59]

Iran Unspecified Cattle H. punctata, H. longicornis [55, 82]

Turkey 1, 3 Cattle Hyalomma excavatum, R. 

annulatus

[54, 62]

Central 
Africa

Unspecified Cattle A. variegatum [57]

Majority of the unspecified vectors were suggested to be Haemaphysalis spp. MPSP genotypes Type 1 = Chitose, Type 
2 = Ikeda, Type 3 = Buffeli. The other eight genotypes (4–8 and N1–N3) have yet to be named.

Table 1. 
The global distribution of T. orientalis MPSP genotypes reported in four different host species and the possible 
transmission vectors.
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cattle herds in multiple regions of the North Island [96, 97]. In 2012, genotyping tests 
conducted on affected cattle herds of T. orientalis outbreaks further revealed three 
other genotypes present, Chitose, Buffeli and Type 5 [97]. Of the four genotypes, 
Ikeda was identified to be more pathogenic than Chitose and Buffeli in New Zealand 
[67]. Prevalence and spatial distribution studies showed T. orientalis Ikeda to predom-
inantly occur in the Northland (33 out of 35 herds; 94%) and Auckland and Waikato 
regions (63 out of 191 herds; 33%) where the transmission vector, H. longicornis is 
known to occur [96, 98] (Figure 1B). Only 2 out of 204 (1%) herds tested positive for 
T. orientalis Ikeda in the South Island of New Zealand where the distribution of  
H. longicornis is sparse and less common [96, 98].

3.2 Global distribution of T. orientalis

The geographic distribution of T. orientalis MPSP genotypes was previously 
reviewed by [1]. Since then, new clinical cases have been reported in Ethiopia [59] 
where T. orientalis was not known to occur, Type 5 was identified in cattle in Kenya 
[58], Type 2 Ikeda was recently identified in Vietnam via cattle imported from 
Australia [3], and studies in Kerala, India, revealed for the first time that MPSP 
genotype N2 to cause clinical theileriosis in Asian water buffaloes [53]. The major-
ity of molecular distribution studies are based on the genetic characterisation of 
the T. orientalis MPSP gene. Some studies utilise other molecular markers such as 
the ITS 1, ITS 2, COX III and 18S rRNA genes to identify or characterise the para-
site [46, 66, 99]. Studies based on molecular markers other than MPSP could not 
accurately classify MPSP genotypes, therefore, the identity of the MPSP genotypes 
found in some studies remain unclear [1].

As described above, most studies have implicated T. orientalis Ikeda (Type 2) in 
oriental theileriosis outbreaks [29, 43, 46, 68]. However, some studies have sug-
gested MPSP genotypes Chitose (Type 1) [46, 74] and 7 [38] to be associated with 
clinical disease. The clinical relevance of these genotypes cannot be confirmed 
as COX III and 18S rRNA genes were used to characterise the samples instead of 
the MPSP gene in one study [46] or the possibility of mixed infections with Ikeda 
genotype was not investigated [1, 38, 74]. Nonetheless, Type 7 is phylogenetically 
related to the Ikeda genotype [1], and may indeed represent a pathogenic genotype 

Figure 1. 
Map of Australia (A) and New Zealand (B) showing the extent of spread of theileriosis during the recent 
disease incursions in each respective country. The areas in which T. orientalis Ikeda is enzootic closely mirrors 
the distribution of the vector tick H. longicornis.



Ticks and Tick-Borne Pathogens

8

and should be the subject of further study. MPSP genotype N2 seems to be predomi-
nant among water buffalo populations although it has also been reported in cattle 
in Brazil. Type N2 was identified to cause fatal oriental theileriosis in Asian water 
buffaloes [53] but its virulence against cattle and other animals is unclear. Further 
distribution studies are required in order to determine host specificity of type N2. 
Cross-infection profiles between host animals in different countries may vary. For 
example, in India, Types 1, 3 and 7 are found in cattle and only type N2 is found in 
water buffaloes. But, in Thailand, Types 1, 3, 5, 7 and N3 can be found in both cattle 
and water buffaloes [47, 75]. This suggests that the tick vectors of a specific region 
may display host specificity limiting transmission to the preferred host or the tick 
vectors may have different preference for different genotypes. Previously, studies 
on T. parva have demonstrated that different tick populations have different prefer-
ence for particular genotypes [39]. Whether this holds true for T. orientalis remains 
unclear, and warrants further investigation.

3.3 Vectors of T. orientalis

Although, the ixodid tick, Haemaphysalis longicornis, is considered to be the 
principal vector of T. orientalis [5, 67, 89, 94], the parasite has been detected in 
other arthropods such as mosquitoes [100] and lice [94, 101, 102]. Several studies 
have also revealed several possible tick vectors other than H. longicornis (Table 1). 
Prior to the recent Australian T. orientalis outbreak, H. bancrofti and H. humerosa 
[103–106] were found to be more competent and efficient vectors compared to 
H. longicornis under experimental conditions, although it is noted that the H. 
humerosa used in these studies were latterly believed to be H. bremneri [106, 107]. 
These studies employed the ‘Warwick stock’ of T. orientalis which is of the Buffeli 
genotype. Interestingly, the extent of spread of clinical theileriosis in Australia  
(Figure 1A) caused by T. orientalis Ikeda corresponds very well to the known 
range of H. longicornis rather than to that of H. bremneri, H. bancrofti or indeed, 
H. humerosa Furthermore, studies on a range of tick species collected from the 
Gippsland region of Victoria, within the theileriosis endemic zone, only detected 
the presence of T. orientalis in H. longicornis [94]. Similarly, in New Zealand, 
disease is only detected within the known range of H. longicornis (Figure 1B) and 
indeed, H. longicornis is the only Haemaphysalis tick present in that country [98]. 
In parts of Australia, T. orientalis Buffeli and Chitose are known to occur outside 
the areas in which disease in enzootic and outside the known range of  
H. longicornis. Together, these findings suggest that different ticks transmit dif-
ferent genotypes of T. orientalis with different efficiencies or that the tick species 
displays variable selection for the different genotypes. In T. parva, particular 
genotypes have been shown to be favoured when passaged through different tick 
clones, suggesting that these genotypes are selected for in tick vectors [39]. Also 
in China, T. sinensis is limited to the surrounding regions of the Tibetan plateau 
[108] as the vector H. qinghaiensis is limited to this region [6]. Indeed, recent 
genome sequencing studies revealed that the Ikeda, Chitose and Buffeli genotypes 
are sufficiently divergent to be considered different species or subspecies [37] 
and therefore may be adapted to different tick hosts. Vector competency for the 
different genotypes aside from T. orientalis Buffeli [87, 104, 105] have not yet been 
investigated in detail.

Currently, information on tick species transmitting disease is somewhat 
confounded because the vector competency for the different genotypes has not 
been thoroughly investigated. In Japan, H. megaspinosa, H. douglasi, I. persulcatus 
and I. ovatus have been identified as other potential vectors of T. orientalis [5]. 
Additionally, these four ticks were found to preferentially transmit the pathogenic 
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T. orientalis Ikeda [42]. In Europe, H. punctata seems to be the predominant tick 
vector to transmit T. orientalis [8, 61, 64, 65, 81], but in other geographical loca-
tions such as East Asia [5, 6], Australia [94] and New Zealand [98], H. longicornis is 
identified as the predominant tick vector. Although only limited molecular surveys 
have been undertaken in Europe, T. orientalis Ikeda has not been identified in this 
region. The specific relationship between type Ikeda and H. longicornis, in Japan [5], 
China [6], Australia [94] and New Zealand [98] where the Ikeda genotype is limited 
to H. longicornis distribution, combined with the absence or sparse distribution of 
H. longicornis in Europe [109], suggests that the Ikeda genotype may have a specific 
relationship with H. longicornis.

The epidemiology of T. orientalis is important as it enables researchers to 
understand distribution patterns and set up appropriate biosecurity measures. It is 
clear that there are gaps in the current knowledge of T. orientalis transmission and 
distribution. Further research is essential to identify potential tick vectors that may 
preferentially transmit certain MPSP genotypes of T. orientalis. Molecular charac-
terisation and investigations of the MPSP genotypes coupled with whole genome 
studies could provide insights on the pathogenicity and genetic diversity, therefore 
enabling the implementation of efficient control strategies against this emerging 
disease agent.

4. Lifecycle and transmission

Evidence suggests that H. longicornis is a major vector of T. orientalis. This 
species is a three host tick meaning that each life stage of the tick will feed on a 
different host before each moult. H. longicornis parasitises cattle and other domestic 
ruminants [98, 110] and it undergoes obligate parthenogenesis to reproduce, as the 
adult female is able to lay fertile eggs in the absence of a male [111]. The three host 
lifecycle of H. longicornis has four life stages, an egg, larvae, nymphal and adult 
stage. Eggs hatch 30–90 days after being laid. The hatched larvae begin questing for 
its blood meal by climbing vertically on blades of grass to seek a host. H. longicornis 
have enhanced survivability as they are not specific in feeding even though they 
have a preference for cattle. Each engorgement occurs for 3–4 days before the tick 
falls to the ground and moults to the next stage.

In the tick vector, the Theileria lifecycle begins with blood engorgement on 
a mammalian host during which infected erythrocytes containing piroplasms 
are ingested by the tick. These piroplasms differentiate into gametocytes in the 
midgut of the tick and undergo a brief sexual stage to form zygotes that enter the 
gut epithelial cells. Motile kinetes are developed by meiotic division within the gut 
epithelial cells. Following meiosis, the parasite escapes into the haemolymph during 
the tick moulting phase and migrates to the salivary glands where sporogony occurs. 
Theileria kinetes invade salivary cells, develop into sporoblasts, and then into infec-
tious sporozoites which are injected into the mammalian host when the moulted tick 
feeds again [112]. Sporozoites are inoculated into the mammalian host through the 
hypostome of the feeding tick. In T. parva and T. annulata, sporozoites invade the 
mammalian host leukocytes to develop multinucleate syncytial schizonts. At this 
point Theileria spp. can be separated into two evolutionary groups based on their 
ability to transform host leukocytes leading to clonal expansion of infected lym-
phoid cells [113]. Unlike T. parva and T. annulata, T. orientalis does not transform 
the invaded leukocytes. The schizonts undergo merogony to develop merozoites 
and rupture the leukocytes to invade the erythrocytes and form piroplasms [114]. 
When the tick feeds on the infected mammalian host, the T. orientalis lifecycle is 
completed.
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Transmission of T. orientalis in the tick is transstadial, as the parasite can be 
transmitted from one instar to the next. Ticks that ingest erythrocytes infected 
with piroplasms transmit the parasite when they moult to the next instar [115]. 
Transovarial transmission, parasite transmission from adult female to the next 
generation of eggs, has yet to be scientifically demonstrated [103] by any transmis-
sion studies although some researchers have speculated that Theileria might involve 
transovarial transmission in ticks [116, 117].

Interestingly, T. orientalis infection dynamics varies depending on the genotype 
transmitted. A study on T. orientalis temporal dynamics in 10 animals revealed 
that Ikeda was detected first when naïve animals are exposed to herds infected 
with a mix of Ikeda, Chitose and Buffeli genotypes [35]. Thus the Ikeda genotype 
possesses a shorter pre-patent period than the other two genotypes, which may 
be due to a faster growth rate, out-competition of the other genotypes, or perhaps 
more efficient transmission by the tick vector [35]. Similar observations were made 
in temporal monitoring of mixed Ikeda and Chitose infections in experimentally 
infected cattle in Japan [25, 118].

Transplacental parasite transfer from pregnant cattle to offspring through the 
placenta has been confirmed through molecular and serological methods for a range 
of Theileria spp. This mode of transmission has been demonstrated in species such 
as T. annulata [119] T. equi [120, 121], and T. lestoquardi [122]. Transplacental trans-
mission also occurs in T. orientalis infection [71, 123, 124]. Early studies [123] used 
blood film examination to demonstrate that transplacental transmission occurs in 
calves but at a low rate of 5% (5/100 calves that are 1–2 days old). The authors also 
determined the parasitaemia of newborn calves and post-grazing calves to be simi-
lar and suggested the low levels of parasitaemia in newborn calves to be ineffective 
in producing immunity against T. orientalis [123]. In contrast, 100% of the calves 
(n = 5) from experimentally infected dams were demonstrated to be T. orientalis 
positive and infected dams sometimes aborted the calves (two out of five dams) at 
approximately 6–7 months of gestation [71]. However, the dams in the study had an 
extremely high tick burden of approximately 200 ticks which had been artificially 
fed on cows with high parasitaemia [71]. In contrast, another recent study in New 
Zealand [125] did not detect transplacental transmission despite using sensitive 
molecular techniques. Recently, an Australian study [124] used molecular methods 
to confirm transplacental transmission of T. orientalis in field-affected cattle, but 
at low rate of approximately 2% (2/98 calves) similar to the study of [123]. In that 
study, abortion did not appear to correlate with transplacental transmission of T. 
orientalis, instead the authors posited that, abortion may occur due to hypoxia in 
the foetal calves due to maternal anaemia, placental insufficiency, or other factors 
related to maternal pathology [123].

In addition to ticks, T. orientalis can also transmit mechanically through the 
inoculation of infected blood [8, 101] or via other biting arthropods such as the 
sucking louse (Linognathus vituli) [102, 126] and potentially the horse flies (Tabanus 
trigeminus) and stable flies (Stomoxys calcitrans). These biting arthropods have been 
hypothesised to be able to mechanically transmit T. orientalis through the proboscis 
of the biting flies or regurgitation of blood into the animal host [101, 102, 126]. In 
Australia, Theileria DNA was not detected in March flies (Dasybasis sp.) collected 
in outbreak regions in Gippsland, Victoria [94]; however, T. orientalis was detected 
in mosquitoes collected from the same area. In addition, a xenosurveillance study in 
the United Kingdom has revealed T. orientalis in 16 out of 105 (15.2%) blood meals 
in mosquitoes [100]. The risk of transmission by mechanical vectors is likely to be 
dependent on the parasitaemia of the infected blood being transferred by these 
biting arthropods [101].
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Mechanical transmission through routine husbandry practices is another poten-
tial method of T. orientalis transmission. A recent Australian study showed that T. 
orientalis could be mechanically transmitted with volumes as low as 0.1 mL of blood 
and persist for at least 5 months in the infected bovine after blood inoculation [101]. 
Thus, injuries sustained during yarding and transport of cattle, or routine hus-
bandry procedures such as vaccination, blood transfusion, castration or ear notch-
ing performed where contaminated instruments are re-used can result in iatrogenic 
transfer of T. orientalis infection. Aside from blood transmission, there is potential 
for mechanical transfer of the parasite via the oral route. Dam to calf transfer of 
the apicomplexan Neospora caninum has been suggested to occur via the colostrum 
with pathogen entry via the oral mucosa. Recent findings that T. orientalis is present 
in colostrum raise the possibility that a similar mode of transfer may be possible by 
this species in calves, although this is yet to be confirmed [101].

Although there is now clear evidence from a number of studies that T. orientalis 
can be transmitted mechanically, including by haematophagous arthropods, this 
mode of transmission would not be expected to maintain the parasite life cycle. 
Mechanical transfer bypasses the sexual stage of the lifecycle where genetic recom-
bination occurs. The direct transfer of haploid stage piroplasms from one host to 
another may result in reduced genetic diversity, a feature of apicomplexans which 
facilitates immune evasion [127–129]. Thus, mechanical transmission of T. orientalis  
may allow the organism to persist in the herd when tick numbers are low, but 
passage through the tick is likely to be important for the overall survivability of the 
parasite [101].

Although different forms of T. orientalis transmission have been identified, more 
research is required in order to increase awareness and formulate efficient control 
and preventive strategies to reduce disease incidence and stress on livestock.

5. Pathogenesis

Unlike T. parva and T. annulata that transform host leukocytes leading to fatal 
lymphoproliferation [130–132], the major pathogenic effect caused by T. orientalis 
is through the destruction of host erythrocytes and subsequent anaemia. Schizonts 
can be detected transiently in the lymph nodes, spleen and liver of infected cattle 
approximately 10 days post-inoculation with sporozoites [132]. However, schizonts 
in T. orientalis are rarely associated with major pathogenic effects as the schizont-
infected cells are not commonly found in the peripheral blood [132]. Piroplasms can 
be detected in the host erythrocytes approximately 10 days post-inoculation and 
anaemia develops approximately 10 days later following detection of piroplasms 
when parasite load and serological response peaks [133]. Host animals sometimes 
also experience transient pyrexia and reduction in white blood cell count as anae-
mia develops [132, 134]. Animals that have been immunologically exposed to T. 
orientalis have lower parasitaemias and recover from infections earlier and with less 
morbidity. However, the haemoparasites can persist in the host, potentially until 
death, and can cause relapse through the resumption of piroplasm proliferation 
when animals face stress from pregnancy, lactation or rapid changes of environ-
mental or rearing conditions [3, 132].

The pathogenic effects of anaemia consequent to infection although not well 
established [135]; have been studied extensively. Splenic capture of erythrocytes is 
likely the primary cause of anaemia rather direct lysis of erythrocytes by the patho-
gen [133]. In malaria infection, splenic clearance of both infected and uninfected 
erythrocytes is known to occur and may be the consequence of activation of splenic 
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macrophages or altered red pulp resulting in an increase in mechanical erythrocyte 
retention [136]. Yagi et al. [137] demonstrated that survival of both infected and 
uninfected erythrocytes decreased in T. orientalis infected calves and suggested 
that denaturation of blood plasma may play a role in this reduced survivability as 
reported for other protozoan infections [138–140]. Studies of T. annulata have dem-
onstrated that anaemia might be an immune-mediated process as indicated by the 
presence of a haemagglutinin [141]. However, in T. orientalis infection the destruc-
tion of erythrocytes can occur in the absence of immunoglobulin or the involvement 
of complement [142]. Oxygen radicals released from the lysed erythrocytes may 
also play a role in pathogenesis as observed for Plasmodium infections [140]. Indeed, 
[143] demonstrated the development of anaemia in association with elevated levels 
of methemoglobin, a product of haemoglobin oxidation. Oxidative damage of 
erythrocytes occurs when superoxide radicals are released simultaneously to the 
increased levels of methemoglobin which may result in their removal from circula-
tion by the reticuloendothelial (mononuclear phagocyte) system [132, 143].

As described in detail in Section 3, the pathogenicity of T. orientalis is genotype-
dependent unlike the transforming theilerias T. parva and T. annulata [1]. However 
this may reflect the fact that the T. orientalis genotypes display species-level diver-
gence [37] and pathogenicity of T. orientalis Ikeda may be driven by as-yet unidenti-
fied virulence factors.

6. Clinical disease, infection dynamics and the immune response

In the early stages of clinical oriental theileriosis, signs of muscle weakness, 
ataxia, and abortion are observed in infected animals. A variety of clinical findings 
such as the lack of appetite, pyrexia, elevated heart rate, abnormal breathing, pale 
mucous membranes and jaundice have been reported [89]. Aggression in clinically 
affected animals has occasionally been observed and may be caused by the altera-
tion of mentation as a result of cerebral hypoxia [89]. All of these symptoms are a 
result of the anaemia in the host animal. Identification of anaemia can be achieved 
by measuring haematocrit (packed cell volume), which in severely infected cattle 
can be as low as 8% [144]. In T. annulata infections, bovine cerebral theileriosis 
associated with aggression was identified as a result of lymphocytic proliferation 
and blood vessel inflammation [145].

In T. orientalis both clinical and subclinical infections are known to frequently 
occur as a combination of genotypes [29, 42, 44, 146]. In Japan and Australia, T. 
orientalis Ikeda occurs with Chitose genotypes at high frequency with or without 
the presence of benign genotypes [45, 90, 147] and surveys from the Eastern coast 
of Australia have revealed genotypes Buffeli and Chitose occur in most subclinical 
infections [43]. The Ikeda genotype has been linked with higher parasite load and is 
evident in 100% of the samples that are clinically infected with Ikeda only or a mix-
ture of Ikeda and Chitose [146]. In the clinically mixed infections, semiquantitative 
data revealed Ikeda to be the dominant genotype (58%) [146]. Within the genotype 
Chitose, there are two subtypes, Chitose A and Chitose B [35, 146]. In clinical 
samples from Australia, Chitose A was been noted to commonly occur with Ikeda 
at a high frequency (approximately 95% of cases examined) and is often detected 
at high parasite loads, while Chitose B occurs with Ikeda at a lower frequency [35]. 
Whether Chitose A is contributing to pathogenesis remains unclear. Although, the 
genotype Chitose was suggested to be able to solely establish a clinical infection in 
New Zealand cattle [46], the cytochrome oxidase III and 18S rRNA genes rather 
than the MPSP gene were used to characterise the samples, therefore the genotype 
of the parasite involved in that study remains unconfirmed. Nonetheless, if the 
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cattle were naïve to Chitose genotype it is possible that this may have led to clinical 
disease. Regardless, the Ikeda genotype has been associated with recent clinical 
outbreaks in New Zealand [67, 96, 97]. Another Korean study [74] also suggested 
Chitose to independently establish clinical infection in cattle, but mixed infections 
were not accounted for in the study.

Higher susceptibility to clinical theileriosis is observed in association with cattle 
movements; especially where naïve cattle are newly introduced to an endemic area, 
and/or infected animals are introduced to a non-endemic area with competent 
vectors [43]. Naïve cattle become rapidly infected in the presence of infected vector 
ticks, with time to patency (as determined by qPCR) as early as 11 days post- 
introduction to an infected herd [35]. Overall parasite load peaks around 40 days 
post-introduction with the onset of anaemia occurring 8–10 days later, although 
drops in haematocrit commence at the onset of the patent period. Interestingly, in 
mixed infection with Ikeda and Chitose genotypes (with or without Buffeli geno-
type), the Ikeda genotype is detected first and also peaks first. Declines in Ikeda 
genotype are then followed by an increase in the Chitose suggesting a genotype 
switching mechanism which may be driven by the host immune response [35, 148].

Additional factors may drive disease susceptibility in cattle such as breed or the 
age of the animal. In Japan, beef cattle of the Wagyu breed have been reported as 
being less susceptible to clinical infections [149]. Although potentially a factor in 
disease susceptibility, the effect of age has not been well-studied. Some cases occur-
ring in regions where adult cattle had previously been exposed T. orientalis reported 
calves at 6 to 14 weeks of age to have high mortality and severe morbidity [150, 151] 
which coincides with high parasitaemias which are consistently observed in calves 
from Theileria-endemic areas [124]. While MPSP antibodies are sometimes detect-
able in the colostrum of dams and appear to be transferred to calves [101], any 
passive immunity appears to be short lived, with antibodies undetectable in calves 
by 4 weeks of age [124]. Lack of protection from maternal antibodies likely explains 
the high infection intensities and clinical disease observed in calves.

In adult cattle, seroconversion to the MPSP occurs approximately 14 days after 
patency and humoral responses to this protein persist for at least 11 weeks post-
infection [133]. However, a study of 256 T. orientalis-infected animals showed that 
humoral responses to the MPSP are much more frequently observed in animals expe-
riencing clinical anaemia (89%) versus those with subclinical infections (45%). It is 
unsurprising therefore that seroconversion to the MPSP is also strongly correlated 
with both parasite load and the Ikeda genotype [133]. Another study demonstrated 
that humoral responses to experimental infection with T. orientalis (via mechanical 
transfer) are variable and only established after persistent infection [152]. The role 
of humoral immunity in protecting against T. orientalis infection in adult cattle is 
unclear. Cell-mediated rather than humoral immunity is generally considered more 
important in responding to intracellular pathogens; however once established, 
humoral immunity may assist in preventing the pathogen from gaining cell entry, 
as for Babesia bovis [153]. Further work is required to determine whether animals 
that have experienced clinical theileriosis are immune to disease recrudescence and 
whether immunity against one genotype confers protection against another.

Studies of the transforming theilerias, T. parva and T. annulata, have shown that 
cattle that recover from infection are able to establish immunity against homolo-
gous strains but succumb to heterologous strains suggesting that immune responses 
are highly specific for particular parasite epitopes [154, 155]. Immunity is mediated 
via cytotoxic T lymphocytes (CTL) which target parasitized lymphocytes but allow 
parasitized erythrocytes to persist [129]. Thus the immune pathways important in 
protection against non-transforming theilerias such as T. orientalis may be more 
akin to those of Babesia species [133].
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7. Diagnosis

Oriental theileriosis can be diagnosed by various methods such as microscopy, 
serology, molecular techniques and xenodiagnosis. Bovine erythrocytes are anucleate, 
therefore those infected with piroplasms can be visualised under a light microscope using 
DNA stains (such as Giemsa or Diff-Quik) [156]. In carrier-state animals, erythrocyte 
infections are commonly observed in the low parasitaemia range of 0.02–0.03% [85, 157]. 
Parasitaemia in clinically affected animals suffering severe anaemia and other related 
clinical signs may range from >1–30% [46, 89]. Light microscopy is a quick and inex-
pensive method for the initial differential diagnosis of possible clinical theileriosis [89]. 
It has been used to describe many of the first species of Theileria after Koch’s [158] initial 
description of T. parva [159]. However, the technique is limited as a diagnostic tool as it is 
considerably less sensitive than PCR and does not enable the differentiation of morpho-
logically similar piroplasms [160, 161]. The differentiation between similar piroplasms is 
important to distinguish the clinically important species such as T. parva; T. annulata and 
T. orientalis from other less clinically significant species such as T. taurotragi and T. mutans. 
Light microscopy is unable to differentiate between pathogenic and apathogenic geno-
types of T. orientalis. Furthermore, light microscopy lacks the sensitivity to adequately 
detect clinically-benign carrier animals [45, 159].

While a number of serological tests exist for the detection of T. orientalis  
[29, 87, 133, 152, 162], these assays are currently not genotype-specific and in some 
cases also cross-react with other Theileria species [152, 162]. Serological tests are 
of a similar sensitivity to blood smear examination and are most reliable when the 
animals are clinically affected, but are unsuitable for testing newly infected animals 
that have not yet seroconverted [133]. Currently, serological methods do not offer 
any advantage over molecular methods for determining whether animals have been 
exposed to T. orientalis since this organism establishes lifelong infections and can be 
detected in the blood well beyond the initial infection period.

PCR is currently the gold standard for sensitive detection of T. orientalis [133]. 
PCR can detect infection in cattle up to 2 weeks before the infected erythrocytes 
can be observed under a light microscope [29]. Conventional PCR methods have 
high sensitivity and have been validated for diagnostic use [43–45, 69]. However, 
conventional PCR assays are laborious to perform and do not provide information 
on parasite load making it impossible to distinguish between clinically infected 
animals and subclinical carriers. To address these problems, a number of real time 
semi-quantitative and quantitative PCRs have been developed for the detection 
of T. orientalis [146, 163–166]. The majority of these assays have been designed to 
specifically detect the pathogenic Ikeda genotype [93, 146, 163, 164, 166] and in 
some cases several genotype specific assays have been multiplexed [146, 163, 166]. 
Genotype discrimination has been most successfully achieved using assays targeting 
the MPSP gene [146, 163] while some other molecular markers have been shown to 
be insufficiently discriminatory [167].

The high prevalence of subclinical carrier animals infected with clinically-
relevant genotypes [43] makes accurate quantification critical to correct diagnosis, 
particularly in the presence of confounding factors. In order to address this, a 
TaqMan probe-based assay targeting the T. orientalis MPSP was used to establish 
clinical thresholds for disease to facilitate diagnosis [146]. Using this assay, animals 
with T. orientalis gene copy numbers above 300,000 are highly likely to display 
clinical signs; while those with gene copy numbers below 15,000 are considered 
subclinical carriers. Cattle with gene copy numbers between 15,000 and 300,000 
are frequently clinically affected but may also be recovering from disease or in-
contact with clinically affected cohorts [146].
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8. Treatment and control of T. orientalis

8.1 Chemotherapy

The increase in oriental theileriosis outbreaks in recent years highlights the 
need for effective treatment and control measures for this disease. Chemotherapy 
remains an important strategy in combating protozoan diseases [168]. 
Chemotherapeutics such as imidocarb, oxytetracyclines and halofuginone have 
been used to treat oriental theileriosis [2]. In Australia, imidocarb and oxytetra-
cyclines are some of the registered chemicals which in some studies, appeared to 
have a positive response on cattle with low parasitaemia, but a poor response in 
severely infected cattle [169]. Menoctone, a hydroxynaphthoquinone compound 
was discovered to have anti-theilerial properties [170] and two active analogues, 
parvaquone [171] and buparvaquone [172] were developed shortly thereafter; 
which treated Theileria infections in cattle with high efficacy [173]. Total elimina-
tion of T. orientalis infection was achieved in splenectomised calves by a chemical 
mixture of primaquine and buparvaquone, or primaquine with halofuginone [174]. 
In Japan, buparvaquone was demonstrated to be effective enough to be used as a 
single chemical treatment [175]. A single intramuscular injection dose of 2.5 mg/
kg buparvaquone was sufficient to treat the Buffeli, Chitose and Ikeda genotypes 
[2, 176]. In contrast, imidocarb was identified to have little effect on T. orientalis 
infection [177]. Prior to 2010, buparvaquone resistance in T. annulata has never 
been documented [173]. However, in P. falciparum and Toxoplasma gondii, resistance 
against atovaquone, a hydroxynaphthoquinone compound, was well documented to 
be caused by the mutation of the mitochondrial cytochrome b gene [178, 179]. The 
mode of action of buparvaquone in T. orientalis is not well established, but a study 
in coccidian parasites suggests an effect on the generation of energy [180]. While 
buparvaquone treats Theileria infections with great efficacy when used in the early 
stages of disease, resistance observed in apicomplexan infections are a growing 
concern and is a problem with chemotherapeutic agents in general.

An Australian study [169] showed that treatment with buparvaquone leads to 
the retention of residues in cattle tissue. The tissue residues were present up to 
147 days post treatment with buparvaquone and as such this chemotherapeutic 
has long withholding periods and has not been approved for use at all in Australia. 
Previously in Japan, chemicals such as pamaquine and primaquine phosphate 
were commonly used treat T. orientalis infections but due to declining efficacy, its 
usage was discontinued [177]. This declining efficacy further revealed the inef-
ficacy of primaquine phosphate to eliminate T. orientalis alone [174]. It requires a 
combination of chemicals as discussed above to successfully eliminate T. orientalis 
infection. As such, chemotherapy options have been limited due to the variations 
of drug efficacy. The development and identification of chemical compounds 
suitable for the treatment of T. orientalis is important, however, drug discovery 
is both time consuming and expensive. There are other important preventive 
measures worthy of investigating such as the control of competent vectors and 
management of animals that can facilitate the reduction of T. orientalis outbreaks.

8.2 Vector control and animal management

Vector control is important to reduce the rapid spread of T. orientalis outbreaks. 
Restriction of grazing cattle movements may assist in reducing exposure to infected 
H. longicornis ticks. Control of this vector can also be achieved by using acaricides 
such as multi-seasonal pour-on flumethrin [83]. This method has been successfully 
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demonstrated in Japan to reduce T. orientalis infection [83], but it is not permitted for 
use in Australia due to the possibility of unacceptable residues [181]. Currently, the 
acceptable methods of tick control in Australia are the application of synthetic pyre-
throids in the form of short-acting dips and sprays that can contain amitraz, cyper-
methrin with chlorfenvinphos and deltamethrin with ethion [2, 181]. The usage of 
these cheap and common acaricides although economic (A$0.50–A$1.50 per head), 
might lead to resistance in the tick vectors, which in the long run will incur higher 
cost due to the requirement for more expensive macrocyclic lactones (approximately 
A$600 per treatment for a 100-cow herd) for tick control [182]. H. longicornis as 
described above is a three-host tick; therefore it is a challenge for these acaricides to 
be effective at controlling this species due to a limited host attachment period.

An alternate method to control T. orientalis transmission by ticks would be the 
development of a vaccine that targets exposed antigens of the tick [132]. Currently, 
there is a commercialised vaccine against B. microplus [183] and similar attempts 
have been made by utilising tick saliva proteins (p29, p34 and p35) against H. 
longicornis to produce a vaccine [184, 185]. The immunised animals when exposed 
to ticks, display interference that reduce tick growth and increase mortality of the 
ticks.

Besides controlling the tick vectors, proper management of animals can also 
reduce T. orientalis infection or re-infection. Infected animals are susceptible to 
relapses when faced with stress factors as discussed above. Supportive therapy 
such as blood transfusion can be performed to improve the anaemic conditions in 
affected animals; however, these therapies are time-consuming and expensive and 
may only be practical to treat valuable stud animals. Animal movement should be 
kept to a minimum to prevent elevated blood pressure which can cause the animal 
to collapse [186]. Intravenous fluids and nutritional supplements may also benefit 
affected animals [2] and intramuscular injection with iron dextran over the course 
of 3 days can aid recovery of infected animals [187]. The treatment and control of 
T. orientalis is multi-faceted and it requires all of the different elements discussed in 
order to be effective.

8.3 Vaccine development

Vaccination is viewed as the preferred method of control for oriental theile-
riosis. Unfortunately no vaccines currently exist for this disease; however, live 
vaccines for T. parva and T. annulata have been successfully used to treat East Coast 
fever and tropical theileriosis for over 40 years. Vaccination with highly passaged 
macroschizont-infected cell lines is possible for T. annulata due to the stimulation 
of immunity with low doses of attenuated cells which do not induce clinical disease. 
In contrast, for T. parva, the doses required to stimulate an immune response also 
induce clinical disease, therefore vaccination against T. parva involves simultaneous 
vaccination with sporozoites (homogenised ticks) and treatment with long-acting 
formulation of oxytetracycline to suppress disease. Because vaccination with 
a single strain of T. parva leaves animals susceptible to heterologous challenge, 
immunisation involves a mixture of three isolates which provides broad protection 
against disease [188].

The vaccination strategy employed for T. annulata is not directly transferrable to 
T. orientalis due to the non-transforming nature of this species and a lack of cultiva-
tion methods for this organism. The “infect and treat” method used for T. parva has 
potential promise for control of T. orientalis but is currently somewhat limited by a 
lack of suitable chemotherapeutic agents for parasite suppression.

Vaccination against tick fever, caused by the closely related piroplasmids, Babesia 
bovis and B. bigemina, also employs live attenuated organisms and is administered 
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to calves between 3 and 9 months of age when they are less susceptible to disease. 
This vaccination strategy has not been attempted with T. orientalis but unlike for tick 
fever, calves are highly susceptible to oriental theileriosis [150, 151]. Nonetheless, 
live vaccination is still considered one of the most promising approaches for control 
of oriental theileriosis. It has been suggested that vaccination with benign genotypes 
of T. orientalis may provide cross protection against the pathogenic genotypes [189]; 
however recent genome studies suggesting that the differences between genotypes 
are at the subspecies or species level make this more doubtful [37]. Furthermore, 
despite a relatively high seroprevalence T. orientalis in Australia (due to the presence 
of benign strains), extensive outbreaks caused by T. orientalis Ikeda occurred across 
the entire range of the vector tick. Combined with data showing that infections with 
T. orientalis are usually of mixed genotype [45, 90, 146, 190], there is little evidence 
to suggest that vaccination with T. orientalis Buffeli, Chitose or other genotypes 
would provide cross protection against T. orientalis Ikeda.

Development of a subunit vaccine is another possible avenue for control of 
oriental theileriosis. Early studies showed that passive immunisation of calves 
with an anti-MPSP monoclonal provided protection against development of 
disease upon challenge [191]. Therefore the MPSP was selected for use in subunit 
vaccine formulations consisting of recombinant baculovirus-expressed MPSP or 
synthetic MPSP peptides (containing KEK motifs) mixed with Freund’s adjuvant 
or encapsulated in mannan-coated liposomes. Following immunisation with 
these vaccine formulations, calves were splenectomised and challenged with 
Ikeda or Chitose sporozoite stocks. Animals immunised with high dose peptide or 
recombinant MPSP had reduced parasitaemias relative to control calves and were 
protected from clinical signs of oriental theileriosis [190]. Despite these promis-
ing preliminary results, a subunit vaccine for T. orientalis has not been pursued 
further. Subunit vaccines are generally considered problematic when working with 
apicomplexans due to genetic diversity among strains. Indeed, in their subunit 
vaccine trial Onuma et al. observed homologous rather than heterologous protec-
tion between T. orientalis MPSP genotypes [190]. Furthermore, antigens such 
as the MPSP which are immunogenic are also under immune pressure, resulting 
in genetic drift. These issues may be overcome by using multiple antigens in the 
subunit vaccine formulation or targeting antigens which are not normally immu-
nogenic. A greater understanding of how the bovine immune system responds to 
T. orientalis is required before further work on vaccine development can mean-
ingfully proceed. Despite the hurdles in developing a vaccine for T. orientalis, it 
remains a worthy goal given the ongoing burden that this disease imposes on cattle 
production throughout Asia and Australasia.

9. Conclusion

T. orientalis is an apicomplexan parasite of economic significance around 
the world to both beef and dairy industries. This review has highlighted several 
knowledge gaps surrounding oriental theileriosis from taxonomic uncertainties, 
vector preferences and treatment and control measures. Development of effec-
tive therapeutics or prophylactic measures such as vaccines remains a priority 
due to recent spread of oriental theileriosis into new areas across the Asia Pacific 
region. Advancements in whole genome sequencing technologies promise to 
provide new insights into the T. orientalis taxonomy, genetic diversity and the 
underlying mechanisms of pathogenesis, all of which underpin successful devel-
opment and implementation of efficient control strategies against this emerging 
parasite.
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