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Abstract

In recent years, opportunistic and nosocomial fungal pathogens have been dominated 
by yeasts of the genus Candida. Most of the research has focused on Candida albicans 
since it is the most prominent etiological agent. There are numerous publications that 
describe the biology, virulence factors, morphology, immunity, genomics, diseases, 
and laboratory aspects of Candida albicans. In this chapter we offer a historic perspec-
tive of C. albicans and focus on other non-albicans candida (NAC) that cause serious 
disease. We review the current knowledge of emerging NAC pathogens with useful 
graphics and current references. This chapter is laid out as an overview and is geared 
for students seeking basic information and may be superficial for an infectious diseases 
clinician.

Keywords: C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. guilliermondii, C. auris 
and C. krusei, non-albicans candida (NAC), fungal pathogen

1. Introduction

By the end of the twentieth century, hospital-acquired fungal infections were on the rise. 

Infections by yeasts of the genus Candida have become one of the most common causes of 

bloodstream infections [1]. The increase in fungal infections is typically attributed to the 
longer survival of immuno-compromised individuals as well as the increase in the number 

of people in long term health care facilities undergoing, immunosuppressive therapy, long-

term catheterization, broad-spectrum antibiotic use among others. This alarming increase 

in nosocomial fungal infections has alerted clinicians and scientist that yeasts, previously 

thought innocuous and relegated to plant pathology or industrial use were capable of caus-

ing serious illness.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



While infections caused by Candida species are typically superficial and restricted to the uro-

genital or mucosal oral cavities, they are also capable of entering the bloodstream leading to 

deep-tissue infections [2].

The predominant yeasts in bloodstream infection remain restricted to the genus Candida [3] 

most of which, belong to the CTG clade, where the CTG codon is translated as Serine rather 

than Leucine [4]. Although the recent rise in the number of these infections [5] is mainly 

associated to C. albicans, non-albicans candida (or NAC) related diseases are also increasingly 

reported in different parts of the world [6]. The relative rates of infection among all Candida 

infections are shown in Figure 1. There are at least a dozen Candida species that can be patho-

genic for humans, but more than 90% of reported invasive infections are associated with C. 

albicans, C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis [7] .

The definition of a new or “emerging” pathogen is subjective at best. For example, how many 
independent isolations are required before an emerging pathogen is established as an infec-

tious agent? Indications of emerging infections typically consist of case reports. The incidence 

of yeast infections is likely under-reported because it is dependent on clinical diagnosis and 

their desire to investigate, then confirm the novelty of the etiological agent, write a compelling 
report, and to withstand the critique and rigor of publishing the report. A close partnership 

between a research scientist and a clinical physician is critical for the most rigorous reports.

Furthermore, a single report describing several cases of infection by a novel microbe does 
not necessarily indicate that a new infection has emerged. Since these temporally separated 

clinical samples must be confirmed as being independent and not affected by laboratory 
practices, personnel and/or environmental factors [8]. For example, recent retrospective stud-

ies of blood stream infection caused by the genus Candida, reported C. albicans, C. tropicalis, 

C. glabrata, C. parapsilosis, C. guilliermondii, and C. krusei. This list closely resembles the list of 

known pathogenic Candida species in 1963 [3] suggesting that the emergence of other yeasts 

Figure 1. Relative rates of infection with Candida species.
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as potential bloodstream isolates is a reflection of the changes in medical and laboratory prac-

tices since the early 1960s. Another important variable is that the advances in genomic tools 

coupled with the ability of contemporary blood culture systems and procedures to support 

the growth of the unusual yeast isolates have greatly accelerated the frequency of isolation 

and identification of novel (non-C. albicans) isolates as important pathogen.

For the purposes of this chapter we limit the definition of emerging pathogens to those that 
have recently appeared within a population or those whose incidence or geographic range is 

rapidly increasing or threatens to increase in the near future or those caused by previously 

undetected or unknown infectious agents.

2. Established pathogens of the Candida species

2.1. Candida albicans

The first description of a yeast infection was of thrush, by Hippocrates in the fifth century 
B.C. [9]. Since its first microscopic detection in thrush swabs by Langenbeck, subsequently 
Berg and Gruby [9] in 1839, Candida albicans has been confirmed to be the primary etiologic 
agent of thrush and cause of many other forms of mucosal disease. In fact, C. albicans is most 

frequently isolated species from human yeast infections [3]. Here we touch upon some of 
key features that make C. albicans a successful pathogen. The various morphological forms 

of C. albicans (Figure 2) have been associated with the shift from commensal or pathogenic 

states. The change from yeast to hyphae is thought to help cell adhesion and facilitate tissue 

infection, macrophage evasion and biofilm development [10].

C. albicans is a diploid polymorphic yeast (Figure 2) of human mucosal surfaces, a fungus that 

commonly found in the gastrointestinal (GI), respiratory, and urogenital tracts. It is gener-

ally commensal but able to turn into an opportunistic pathogen in immunocompromised or 

immuno-deficient individuals. It is the major species causing invasive candidiasis (46.3%), fol-
lowed by C. glabrata (24.4%) and C. parapsilosis (8.1%) [11]. Systemic infections of C. albicans often 

cause death with a mortality rate of ∼40% [12]. One reason leading to over growth of C. albicans 

is its ability to respond to a myriad of environmental imbalances such as changes in nutrition, 

temperature and pH [13]. Other important factors that increase the risk of C. albicans infection 

are prolonged treatment with broad spectrum antibiotics, surgical procedures, various diseases 

such as diabetes, trauma, and other genetic disease or congenital malformation. [2].

Candida albicans belongs to the CTG clade of fungal species and translates canonical leucine 

codons, CTG, to serine [14]. It prefers to use glucose as the carbon and has multiple approaches 

to transport and metabolize glucose. Nutritional changes alter virulence of C. albicans both 

during systemic infection as well as mucosal vaginitis, suggesting that alternative carbon 

sources within host environments are important during C. albicans infections [15].

Post-transcriptional mechanisms underlying this transition include mRNA stability, alterna-

tive transcript localization, and translation and influence C. albicans virulence processes. Below 

we highlight some key pathways but for details refer to book Candida and Candidiasis [16].
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At the transcriptional level, C. albicans fibrin Sac6 modulates morphogenesis and oxidative 
stress responses [17]. As mentioned above, metabolic adaptation a key virulence determinant 

is involved in the susceptibility of C. albicans to antifungal drugs as well as stress resistance 

and innate immune responses [18]. C. albicans typically infects epithelial cells through two 

specific mechanisms, active penetration and endocytosis. Before the infection, C. albicans 

transfer between commensal and invasive states through distinct genetic pathways to regu-

late the expression of hypha-specific and/or phase-specific genes. And these genes express 
proteins to regulate directly or indirectly to the pathogenesis and virulence of C. albicans [19]. 

The gastro-intestinally induced transition (GUT) highlights how these pathways are used 

[20]. Superficial candida infections require the interaction between fungal cell surface proteins 
or pathogen associated molecular patters (or PAMPs) with host innate immune cells system 
or pathogen recognition receptors (or PRRs) (Figure 3). For example, cell-wall β-glucans can 

stimulate monocyte reprogramming as one of the main immunological responses in hosts [2].

When interacting with macrophages, the SPS system is stimulated in the nutrient poor host 

environment and is critical for resistance of C. albicans to macrophages. It consists of three 

components; an amino acid transporter, SSY1, a membrane associated protein PTR3 and a 

chymotrypsin-like serine endoprotease, SSY5. Under conditions of carbon deprivation, sig-

naling through the Stp2 transcription factor triggers the use of amino acids as carbon source 

which helps neutralize the acidic environment of the phagosomes [21]. C. albicans employs 

several mechanisms to evade immune detection (Figure 3, [22, 23]).

C. albicans has significant phenotypic and genetic diversity. It contains a diploid genome of 14.4 
megabases arranged within eight chromosomes [24]. The heterozygosity and heterozygous 

Figure 2. Candida albicans polymorphology.
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of genome is thought to be related with C. albicans virulence and the genomic instability is 

crucial in its pathogenesis [2]. Differences specific to strains may contribute on the interaction 
of C. albicans and host [24].

Detection and identification of various yeasts has been a challenge. These yeasts can be dis-

tinguished morphologically on CHROMagar or spider media (Figure 4). However, genome 
sequencing is the most reliable method for species identification. In addition, detection of 
microsatellites also represents a reliable method for molecular typing and genetic analysis 

of Candida. A recent Candida distribution study conducted in a hospital, reported a clonal 

population including 62 identified genotypes among the tested isolates [25]. Beyond that, 

multilocus sequence typing (MLST) is another valuable method to understand the epide-

miology of systemic Candida infections [2]. Here the DNA of seven housekeeping genes is 
sequenced. The results showed that MLST of C. albicans isolates are highly reproducible 

and sensitive. Comparative studies using MLST database of C. albicans are available online 

(http://calbicans.mlst.net/). These studies allowed further stratify the geographic isolation 

of C. albicans. For example, the most common MLST cluster within the C. albicans species is 

defined as clade 1. While, clade 2 is mainly located in the United Kingdom, clade 4 includes 
isolates from the Middle East and Africa, clade 11 includes isolates from continental Europe, 

and clades 14 and 17, where various gene clusters are regrouped include isolates from the 

Pacific region [26].

Figure 3. Host-Pathogen interactions. 1. Immune cells chemotax towards the pathogen, 2. 
fungal cell wall components pathogen associated molecular patterns (PAMPs) interact with 
macrophage via Pathogen Recognition Receptors(PRRs) such as Dectin-1 and Mannose 

Receptor that recognize β-(1,3)-glucan and mannan respectively, 3. Phagocytosis, 4. Host 
avoidance, 5. Pathogen lysis. 6. Pathogen escape, 7. Phagosomal extrusion where pathogen is 

expelled without lysis and 8. Pyroptosis.

Emerging Pathogens of the Candida Species
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Pathogen profile: Diploid, belongs to the CTG clade, genome sequence available, antifungal 
resistance is moderate, molecular laboratory tools available.

2.2. Candida glabrata

Candida glabrata is often the second most common cause of candida infections after C. albi-

cans. Historically, it has been considered nonpathogenic within the normal flora of healthy 
individuals without causing serious infection in humans. During the late 1990s, C. glabrata 

genetics was the most advanced among the non-albicans Candida (NAC) species due to its 

haploid status, its classical codon usage which allows direct usage of S. cerevisiae tools), and its 

high frequency of isolation in hospitals [27]. C. glabrata infections can be mucosal or systemic 

and often occur in immunocompromised persons or people with diabetes [28].

In contrast to most Candida species, C. glabrata is not dimorphic and exists as small blasto-

conidia under all environmental conditions both as commensal and pathogenic. In animal 

models C. glabrata is relatively nonpathogenic suggesting that it has few virulence attributes 
[28]. However, within the host environment, C. glabrata spreads rapidly, and is difficult to 
treat because it is resistant to many azole antifungal agents. Therefore, C. glabrata infections 

have a high mortality rate in compromised hospitalized patients [28].

C. glabrata has haploid genome, in contrast to the diploid genome of C. albicans and some 

NAC species [29]. It is distinguishable from C. albicans by its small-subunit rRNA [28]. 

C. glabrata only use glucose and trehalose. Such unique sugar utilization among Candida 

species can be applied to identify yeast to the level of genus and species. Now commercial 

kits (API 20C, Uni-Yeast-Tek, and YeastIdent) are available to identify C. glabrata in mixed 
cultures [28].

Both C. glabrata and C. albicans are commensal suggesting that similar host mechanisms such 

as suppressing expression of pathogenic determinants may be at play to effectively prevent 

Figure 4. Colony morphology of Candida krusei, Candida auris, Candida albicans vs. Saccharomyces cerevisiae.
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infection of both microorganisms. However, the relatively low virulence of C. glabrata in ani-

mal models compared to C. albicans suggests genes controlling the virulence of C. glabrata may 

be different from those in C. albicans [28].

C. glabrata isolates are often associated with high resistance to the azole class of antifungal 

agents and less susceptibility to most other antifungal agents including amphotericin B [30]. 

Several mechanisms of azole resistance of C. glabrata have been identified, such as increased 
P-450-dependent ergosterol synthesis, an energy-dependent efflux pump of fluconazole and 
possibly via a multidrug resistance-type transporter [28].

Pathogen profile: Haploid, does not belong to the CTG clade, genome sequence available, anti-
fungal resistance is high, several molecular laboratory tools available.

3. Emerging pathogens of the Candida species

3.1. Candida auris

Fluconazole-resistant Candida has been identified as a serious public health threat (www.cdc.

gov). Among these, Candida auris has simultaneously and independently emerged on three 

continents in several countries as a multi drug resistant fungal pathogen with high mortality 

[31]. Phylogenetic analysis and polymorphism typing indicate that C. auris strains are clonal 

suggesting likely transmission from an environmental source.

Candida auris, as the name suggests, was first isolated from the drainage of the external ear 
a Japanese patient [31] and 15 Korean patients in 2009 [32]. Identification of it is challeng-

ing with standard microbiologic techniques. It frequently exhibits multidrug-resistance. Ever 
since these initial cases, C. auris has become an emerging global health threat causing massive 

invasive infections and outbreaks in healthcare facilities. Cases have already been identified 
in India, South Africa, Kuwait, the United Kingdom, Venezuela, Brazil, the United States, 
Colombia, Pakistan, Spain, Germany, Israel, Norway, and Oman [33].

Phylogenetically, C. auris is closer related to Candida haemulonii and Candida ruelliae [31] while 

distantly related to other more common pathogens C. albicans and C. glabrata [34]. Four distinct 
clades have been identified from geographic separate origins, suggesting almost simultane-

ous emergence of populations [35]. Susceptibility to antifungal reagents and survival from 

phagocytosis is largely different among four clades (CDC report).

Risk factors for C. auris infection appear to be similar to infections from Candida in general. C. 

auris is reported to grow at temperatures ranging from 35 to 42°C. It forms pink colonies on 

chromogenic media. C. auris does not form pseudohyphae (Figure 4) but capable of forming 

biofilms [36] and adhering to catheter material, although to a lesser degree as compared to 

Candida albicans [37]. Some C. auris strains produce phospholipase and proteinase, which may 

account for the variability in pathogenicity in a murine model [37].

The genomes of several isolates have been sequenced and they appear to parse into four distinct 

clades by geographic region [35]. Clades were separated by thousands of single-nucleotide 
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polymorphisms, but within each clade isolates were typically clonal. Various mutations in 
ERG11, the gene encoding for lanosterol 14-alpha-demethylase and induced upon prolonged 

growth with antifungal drugs were shown to be associated with azole resistance in each geo-

graphic clade.

Again, while whole genome sequencing is the most reliable method for species identification, 
PCR and real-time PCR assays have shown excellent accuracy and have been effective for 
diagnosis, to rapidly identify C. auris [38]. The development of new antifungal medications 

with activity against C. auris will be vital to controlling C. auris as therapeutic options are 

already limited. Also aggressive infection control measures are critical to reducing the spread 

of C. auris [33].

Pathogen profile: Haploid, belongs to the CTG clade, Genome sequence available, antifungal 
resistance is high, several minimal molecular laboratory tools available.

3.2. Candida krusei

Candida krusei was first discovered in 1839 by Langenbeck from a patient with typhus, 75 years 
later Castellani proposed the suggestion that C. krusei may cause disease in humans [39]. Since 

then, it has been generally considered as a commensal in warm-blooded animals with low 

pathogenicity and virulence. In humans, C. krusei is generally considered to be a transient 

commensal and is infrequently isolated from mucosal surfaces. However, since 1960s there 
has been an increase in the number of reports of C. krusei as a human pathogen.

In contrast to most other ovoid shaped Candida spp., C. krusei cells are generally elongated 

in a feature similar to C. kefyr (formerly known as C. pseudotropicalis) among clinically impor-

tant Candida spp. C. krusei has various colony morphologies. It has a multilayered cell wall 

consisting of an outer irregular coat of flocculent material, an electron-dense zone, a granular 
layer, a less granular layer, a thin layer of dense granules and another sparsely granular layer 

outside the cell membrane. The mannan component of the C. krusei cell wall has been shown 

to be different from other Candida spp. in containing (1–2) and (1–6) side chains in the ratio 
of 3:1 as being lightly branched [40]. Such differences may account for the variable behavior 
of C. krusei in biological fluids such as saliva and bronchial lavage fluid comparing with other 
Candida spp.

C. krusei has two basic morphological forms, yeast and pseudohyphae and both are often 

present simultaneously in growing cultures and not easily separated. C. krusei grows at a 

37°C but can withstand temperature up to 45°C. C. krusei can grow in vitamin-free media even 

though most common Candida spp. require biotin or additional vitamin for growth. C. krusei 

ferments and assimilates glucose only as carbohydrate [39].

Like C. auris, C. krusei can adhere to abiotic surfaces but not to the same extent as C. albicans. 

Although adhesion to host surfaces is essential for colonization and invasion, C. krusei is able 

to colonize readily to inert surfaces such as implants and catheters by virtue of its cell surface 

hydrophobicity. Less pathogenic species—C. parapsilosis, C. pseudotropicalis (now C. kefyr) and 

C. glabrata—usually produce significantly less biofilm than the more pathogenic C. albicans, 

Candida Albicans10



but C. krusei produced the most extensive biofilm on the surfaces of polyvinyl chloride cath-

eter disks regardless of the growth medium. This could demonstrate the very high cell surface 

hydrophobicity, and adherence of C. krusei to inert plastic surfaces, which may then have 

other species, facilitated biofilm development [39]. C. krusei does not adhere to buccal epithe-

lial cells whereas C. tropicalis, C. parapsilosis, C. guilliermondii, and C. kefyr do.

The susceptibility to lysozyme, an antimicrobial enzyme produced in phagosomes has been 

used as a method to assess the microbial virulence. Such tests indicate that the susceptibil-

ity to lysozyme of C. krusei > C. parapsilosis > C. tropicalis > C. guilliermondii > C. albicans > C. 

glabrata, the latter being the most resistant to lysozyme [41]. Interesting when pre-incubated 

in sucrose-supplemented media, C. krusei becomes highly sensitive to lysozyme as compared 

to C. albicans.

Pathogen profile: Diploid, does not belong to CTG clade, genome sequence available, antifun-

gal resistance is high, minimal molecular laboratory tools available.

3.3. Candida kefyr

C. kefyr was first found in dairy products such as fermented milk, cheese, and yoghurt [42]. It 

was first isolated from a C. kefyr sample in 1909, named Saccharomyces fragilis at first, then C. 

pseudotropicalis and was reclassified as Kluyveromyces marxianus [43].

C. kefyr is rarely associated with disease [44] representing ~1% isolates of Candida spp. from 

clinical specimens [7, 45] (Figure 1). The first case of invasive C. kefyr (C. pseudotropicalis) was 

identified in a 58-year-old female with metastatic adenocarcinoma of the breast [46]. It has 

been reported to colonize oral cavities, gastrointestinal tract, and urinary tract. All infected 

patients were immunocompromised and had several potential risk factors [43] . There are 

only a few published cases of invasive C. kefyr infections.

These emerging pathogens of the Candida species themselves are typically not more virulent 

than C. albicans. It is generally thought that their conversion from commensalism to parasit-

ism is largely determined by the host immune status [39]. In some cases these pathogens are 

resistant to multiple antifungal agents. For example, >90% of the recently emergent C. auris 

isolates are resistant to fluconazole, >30% are resistant to amphotericin B, and >5% to echino-

candins, and >40% are resistant to classes of antifungal agents, while 4% are resistant to all 

three classes of antifungals available [35].

Pathogen profile: Ploidy is not determined, does not belong to CTG clade, Genome sequence 
available, antifungal resistance is moderate, few molecular laboratory tools available.

4. Other Candida species

Candida lusitaniae was firstly isolated from warm-blooded animals and was shown to cause 
opportunistic infections in humans in 1979 [47]. It is distinguished from other Candida 

species by its resistance to Amphotericin B however resistance profile in vivo is similar to 
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other Candida species. Like most pathogens of the Candida species, C. lusitaniae has similar 

ability to colonize individuals but can opportunistically infected in immune-compromised 

patients [48].

Pathogen profile: Haloid, belongs to CTG clade, genome sequence available, antifungal resis-

tance is moderate—high, few molecular laboratory tools available.

Candida tropicalis is another prevalent NAC pathogen in Candida species. In immunocompro-

mised mice and human patients, C. tropicalis isolates appeared to have increased virulence. 

Secreted aspartyl proteinase 5 and 9 (Sap5 and Sap9) antigens are expressed by C. tropicalis. 

Invasive C. tropicalis infections were found more frequently in acute leukemia or bone marrow 

transplants patients may indicate that polymorphonuclear leukocytes are the first defense 
line against of C. tropicalis [49]. Overexpression of ERG11 gene mutations in C. tropicalis likely 

causes resistance to azoles.

Pathogen profile: Diploid, belongs to CTG clade, genome sequence available, antifungal resis-

tance is moderate, several molecular laboratory tools available.

Candida dubliniensis is a species of chlamydospore- and germ tube-positive yeast, primarily 

recovered from HIV-infected individuals and AIDS patients. It has been shown to grow well 
at temperatures ranging between 30 and 37°C but not 42°C. C. dubliniensis is unable to express 
beta-glucosidase activity [50].

Pathogen profile: Diploid, belongs to CTG clade, genome sequence available, antifungal resis-

tance is moderate, several molecular laboratory tools available.

Candida parapsilosis has increased in significance and prevalence over the past 2 decades. 
The infections are mainly associated with prosthetic devices and catheters, especially in the 

nosocomial spread. Risk factors of C. parapsilosis infections include the hydrolytic enzymes 

secretion, prosthetics adhesion, and biofilm formation [51].

Pathogen profile: Diploid, belongs to CTG clade, genome sequence available, antifungal resis-

tance is moderate-high, several molecular laboratory tools available.

Candida guilliermondii is the sixth frequently isolated Candida species, an emerging patho-

gen in Latin America that rarely causes invasive candida infections. However, it has been 
reported to exhibits reduced susceptibility to fluconazole [52] thus further study of the anti-

drug mechanism is required.

Pathogen profile: Haploid, belongs to CTG clade, genome sequence available, antifungal resis-

tance is high, several molecular laboratory tools available.

Candida lypolytica (also known as Yarrowia Lipolytica) isolates formed narrow, multi-branched, 

true hyphae on cornmeal-Tween 80 agar [53]. C. lipolytica is a weakly virulent pathogen that 

is most clearly vascular catheter-related. It is sensitive to Amphotericin B and Ketoconazole 
in vitro.

Pathogen profile: Haploid, does not belongs to CTG clade [54], genome sequence partially 

available, antifungal resistance is moderate [55], few molecular laboratory tools available.
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Candida rugosa rarely causes invasive infections; however, recently, isolates have been shown 

to be an increasing cause of fungal infections especially in Latin America. Besides, C. rugosa 

appears decreased susceptibility to fluconazole with various patterns following geographic 
regions [56].

Pathogen profile: Haploid, belongs to CTG clade, genome sequence is not available, antifungal 
resistance is high, few molecular laboratory tools available.
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