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Abstract

State-of-the-art automatic speech recognition (ASR) systems map the speech signal into its
corresponding text. Traditional ASR systems are based on Gaussian mixture model. The
emergence of deep learning drastically improved the recognition rate of ASR systems.
Such systems are replacing traditional ASR systems. These systems can also be trained in
end-to-end manner. End-to-end ASR systems are gaining much popularity due to simpli-
fied model-building process and abilities to directly map speech into the text without any
predefined alignments. Three major types of end-to-end architectures for ASR are atten-
tion-based methods, connectionist temporal classification, and convolutional neural net-
work (CNN)-based direct raw speech model. In this chapter, CNN-based acoustic model
for raw speech signal is discussed. It establishes the relation between raw speech signal
and phones in a data-driven manner. Relevant features and classifier both are jointly
learned from the raw speech. Raw speech is processed by first convolutional layer to learn
the feature representation. The output of first convolutional layer, that is, intermediate
representation, is more discriminative and further processed by rest convolutional layers.
This system uses only few parameters and performs better than traditional cepstral fea-
ture-based systems. The performance of the system is evaluated for TIMIT and claimed
similar performance as MFCC.

Keywords: ASR, attention-based model, connectionist temporal classification, CNN,
end-to-end model, raw speech signal

1. Introduction

ASR system has two important tasks—phoneme recognition and whole-word decoding. In

ASR, the relationship between the speech signal and phones is established in two different

steps [1]. In the first step, useful features are extracted from the speech signal on the basis of

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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distribution, and reproduction in any medium, provided the original work is properly cited.



prior knowledge. This phase is known as information selection or dimensionality reduction

phase. In this, the dimensionality of the speech signal is reduced by selecting the information

based on task-specific knowledge. Highly specialized features like MFCC [2] are preferred

choice in traditional ASR systems. In the second step, discriminative models estimate the

likelihood of each phoneme. In the last, word sequence is recognized using discriminative

programming technique. Deep learning system can map the acoustic features into the spoken

phonemes directly. A sequence of the phoneme is easily generated from the frames using

frame-level classification.

Another side, end-to-end systems perform acoustic frames to phone mapping in one step only.

End-to-end training means all the modules are learned simultaneously. Advanced deep learn-

ing methods facilitate to train the system in an end-to-end manner. They also have the ability

to train the system directly with raw signals, i.e., without hand-crafted features. Therefore,

ASR paradigm is shifting from cepstral features like MFCC [2], PLP [3] to discriminative

features learned directly from raw speech. End-to-end model may take raw speech signal as

input and generates phoneme class conditional probabilities as output. The three major types

of end-to-end architectures for ASR are attention-based method, connectionist temporal clas-

sification (CTC), and CNN-based direct raw speech model.

Attention-based models directly transcribe the speech into phonemes. Attention-based encoder-

decoder uses the recurrent neural network (RNN) to perform sequence-to-sequence mapping

without any predefined alignment. In this model, the input sequence is first transformed into a

fixed length vector representation, and then decoder maps this fixed length vector into the

output sequence. Attention-based encoder-decoder is much capable of learning the mapping

between variable-length input and output sequences. Chorowski and Jaitly proposed speaker-

independent sequence-to-sequence model and achieved 10.6%WERwithout separate language

models and 6.7% WER with a trigram language model for Wall Street Journal dataset [4]. In

attention-based systems, the alignment between the acoustic frame and recognized symbols is

performed by attention mechanism, whereas CTC model uses conditional independence

assumptions to efficiently solve sequential problems by dynamic programming. Attention

model has shown high performance over CTC approach because it uses the history of the target

character without any conditional independence assumptions.

Another side, CNN-based acoustic model is proposed by Palaz et al. [5–7] which processes the

raw speech directly as input. This model consists of two stages: feature learning stage, i.e.,

several convolutional layers, and classifier stage, i.e., fully connected layers. Both the stages are

learned jointly by minimizing a cost function based on relative entropy. In this model, the

information is extracted by the filters at first convolutional layer and modeled between first

and second convolutional layer. In classifier stage, learned features are classified by fully

connected layers and softmax layer. This approach claims comparable or better performance

than traditional cepstral feature-based system followed by ANN training for phoneme recog-

nition on TIMIT dataset.

This chapter is organized as follows: In Section 2, the work performed in the field of ASR is

discussed with the name of related work. Section 3 covers the various architectures of ASR.

Section 4 presents the brief introduction about CNN. Section 5 explains CNN-based direct raw
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speech recognition model. In Section 6, available experimental results are shown. Finally,

Section 7 concludes this chapter with the brief discussion.

2. Related work

Traditional ASR system leveraged the GMM/HMM paradigm for acoustic modeling. GMM

efficiently processes the vectors of input features and estimates emission probabilities for each

HMM state. HMM efficiently normalizes the temporal variability present in speech signal. The

combination of HMM and language model is used to estimate the most likely sequence of

phones. The discriminative objective function is used to improve the recognition rate of the

system by the discriminatively fine-tuned methods [8]. However, GMM has a shortcoming as

it shows inability to model the data that is present on the boundary line. Artificial neural

networks (ANNs) can learn much better models of data lying on the boundary condition.

Deep neural networks (DNNs) as acoustic models tremendously improved the performance

of ASR systems [9–11]. Generally, discriminative power of DNN is used for phoneme recogni-

tion and, for decoding task, HMM is preferred choice. DNNs have many hidden layers with a

large number of nonlinear units and produce a very large number of outputs. The benefit of

this large output layer is that it accommodates the large number of HMM states. DNN

architectures have densely connected layers. Therefore, such architectures are more prone to

overfitting. Secondly, features having the local correlations become difficult to learn for such

architectures. In [12], speech frames are classified into clustered context-dependent states using

DNNs. In [13, 14], GMM-free DNN training process is proposed by the researchers. However,

GMM-free process demands iterative procedures like decision trees, generating forced align-

ments. DNN-based acoustic models are gaining much popularity in large vocabulary speech

recognition task [10], but components like HMM and n-gram language model are same as in

their predecessors.

GMM or DNN-based ASR systems perform the task in three steps: feature extraction, classifi-

cation, and decoding. It is shown in Figure 1. Firstly, the short-term signal st is processed at

time “t” to extract the features xt. These features are provided as input to GMM or DNN

acoustic model which estimates the class conditional probabilities Pe ijxið Þ for each phone class

i∈ 1;…; If g: The emission probabilities are as follows:

pe xtjið Þ∝
p xtjið Þ

p xtð Þ
¼

P ijxtð Þ

p ið Þ
∀i ∈ i,…, I (1)

The prior class probability p ið Þ is computed by counting on the training set.

DNN is a feed-forward NN containing multiple hidden layers with a large number of hidden

units. DNNs are trained using the back-propagation methods then discriminatively fine-tuned

for reducing the gap between the desired output and actual output. DNN-/HMM-based

hybrid systems are the effective models which use a tri-phone HMM model and an n-gram

language model [10, 15]. Traditional DNN/HMM hybrid systems have several independent

components that are trained separately like an acoustic model, pronunciation model, and
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language model. In the hybrid model, the speech recognition task is factorized into several

independent subtasks. Each subtask is independently handled by a separate module which

simplifies the objective. The classification task is much simpler in HMM-based models as

compared to classifying the set of variable-length sequences directly. Figure 2 shows the

hybrid DNN/HMM phoneme recognition model.

On the other side, researchers proposed end-to-end ASR systems that directly map the speech

into labels without any intermediate components. As the advancements in deep learning, it has

become possible to train the system in an end-to-end fashion. The high success rate of deep

learning methods in vision task motivates the researchers to focus on classifier step for speech

recognition. Such architectures are called deep because they are composed of many layers as

compared to classical “shallow” systems. The main goal of end-to-end ASR system is to sim-

plify the conventional module-based ASR system into a single deep learning framework. In

earlier systems, divide and conquer approaches are used to optimize each step independently,

whereas deep learning approaches have a single architecture that leads to more optimal system.

End-to-end speech recognition systems directly map the speech to text without requiring

predefined alignment between acoustic frame and characters [16–24]. These systems are gener-

ally divided into three broad categories: attention-based model [19–22], connectionist temporal

classification [16–18, 25], and CNN-based direct raw speech method [5–7, 26]. All these models

have a capability to address the problem of variable-length input and output sequences.

Attention-based models are gaining much popularity in a variety of tasks like handwriting

synthesis [27], machine translation [28], and visual object classification [29]. Attention-based

models directly map the acoustic frame into character sequences. However, this model differs

from other machine translation tasks by requesting much longer input sequences. This

model generates a character based on the inputs and history of the target character. The

Figure 1. General framework of automatic speech recognition system.

Figure 2. Hybrid DNN/HMM phoneme recognition.
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attention-based models use encoder-decoder architecture to perform the sequence mapping

from speech feature sequences to text as shown in Figure 3. Its extension, i.e., attention-based

recurrent networks, has also been successfully applied to speech recognition. In the noisy

environment, these models’ results are poor because the estimated alignment is easily

corrupted by noise. Another issue with this model is that it is hard to train from scratch due

to misalignment on longer input sequences. Sequence-to-sequence networks have also

achieved many breakthroughs in speech recognition [20–22]. They can be divided into three

modules: an encoding module that transforms sequences, attention module that estimates the

alignment between the hidden vector and targets, and decoding module that generates the

output sequence. To develop successful sequence-to-sequence model, the understanding and

preventing limitations are required. The discriminative training is a different way of training

that raises the performance of the system. It allows the model to focus on most informative

features with the risk of overfitting.

End-to-end trainable speech recognition systems are an important application of attention-

based models. The decoder network computes a matching score between hidden states gener-

ated by the acoustic encoder network at each input time. It processes its hidden states to form a

temporal alignment distribution. This matching score is used to estimate the corresponding

encoder states. The difficulty of attention-based mechanism in speech recognition is that the

feature inputs and corresponding letter outputs generally proceed in the same order with only

small deviations within word. However, the different length of input and output sequences

makes it more difficult to track the alignment. The advantage of attention-based mechanism is

that any conditional independence assumptions (Markov assumption) are not required in this

mechanism. Attention-based approach replaces the HMM with RNN to perform the sequence

prediction. Attention mechanism automatically learns alignment between the input features

and desired character sequence.

Figure 3. Attention-based ASR model.
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CTC techniques infer the speech-label alignment automatically. CTC [25] was developed for

decoding the language. Firstly, Hannun et al. [17] used it for decoding purpose in Baidu’s deep

speech network. CTC uses dynamic programming [16] for efficient computation of a strictly

monotonic alignment. However, graph-based decoding and language model are required for

it. CTC approaches use RNN for feature extraction [28]. Graves et al. [30] used its objective

function in deep bidirectional long short-term memory (LSTM) system. This model success-

fully arranges all possible alignments between input and output sequences during model

training, not on the prior.

Two different versions of beam search are adopted by [16, 31] for decoding CTC models.

Figure 4 shows the working architecture of the CTC model. In this, noisy and not informative

frames are discarded by the introduction of the blank label which results in the optimal output

sequence. CTC uses intermediate label representation to identify the blank labels, i.e., no

output labels. CTC-based NN model shows high recognition rate for both phoneme recogni-

tion [32] and LVCSR [16, 31]. CTC-trained neural network with language model offers excel-

lent results [17].

End-to-end ASR systems perform well and achieve good results, yet they face two major

challenges. First is how to incorporate lexicons and language models into decoding. How-

ever, [16, 31, 33] have incorporated lexicons for searching paths. Second, there is no shared

experimental platform for the purpose of benchmark. End-to-end systems differ from the

traditional system in both aspects: model architecture and decoding methods. Some efforts

were also made to model the raw speech signal with little or no preprocessing [34]. Palaz

et al. [6] showed in his study that CNN [35] can calculate the class conditional probabilities

from raw speech signal as direct input. Therefore, CNNs are the preferred choice to learn

features from the raw speech. Two stages of learned feature process are as follows: initially,

features are learned by the filters at first convolutional layer, and then learned features are

modeled by second and higher-level convolutional layers. An end-to-end phoneme sequence

Figure 4. CTC model for speech recognition.
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recognizer directly processes the raw speech signal as inputs and produces a phoneme

sequence. The end-to-end system is composed of two parts: convolutional neural networks

and conditional random field (CRF). CNN is used to perform the feature learning and

classification, and CRFs are used for the decoding stage. CRF, ANN, multilayer perceptron,

etc. have been successfully used as decoder. The results on TIMIT phone recognition task

also confirm that the system effectively learns the features from raw speech and performs

better than traditional systems that take cepstral features as input [36]. This model also

produces good results for LVCSR [7].

3. Various architectures of ASR

In this section, a brief review on conventional GMM/DNN ASR, attention-based end-to-end

ASR, and CTC is given.

3.1. GMM/DNN

ASR system performs sequence mapping of T-length speech sequence features, X ¼

Xt ∈R
Djt ¼ 1, …, T

� �

, into an N-length word sequence, W ¼ wn ∈ υjn ¼ 1;…;Nf g where Xt

represents the D-dimensional speech feature vector at frame t and wn represents the word at

position n in the vocabulary, υ.

The ASR problem is formulated within the Bayesian framework. In this method, an utterance

is represented by some sequence of acoustic feature vector X, derived from the underlying

sequence of wordsW , and the recognition system needs to find the most likely word sequence

as given below [37]:

Ŵ ¼ argmax
w

p W jXð Þ (2)

In Eq. (2), the argument of p W jXð Þ, that is, the word sequence W , is found which shows

maximum probability for given feature vector, X: Using Bayes’ rule, it can be written as

Ŵ ¼ argmax
w

p XjWð Þp Wð Þ

p Xð Þ
(3)

In Eq. (3), the denominator p Xð Þ is ignored as it is constant with respect to W . Therefore,

Ŵ ¼ argmax
w

p XjWð Þp Wð Þ (4)

where p XjWð Þ represents the sequence of speech features and it is evaluated with the help

of acoustic model. p Wð Þ represents the prior knowledge about the sequence of words W and it

is determined by the language model. However, current ASR systems are based on a hybrid

Convolutional Neural Networks for Raw Speech Recognition
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HMM/DNN [38], which is also calculated using Bayes’ theorem and introduces the HMM state

sequence S, to factorize p WjXð Þ into the following three distributions:

arg max
w∈ υ

∗

p W jXð Þ (5)

¼ arg max
w∈ υ

∗

X

S

p XjS,Wð Þp SjWð Þp Wð Þ (6)

≈ arg max
w∈ υ

∗

X

S

p XjSð Þ, p SjWð Þp Wð Þ (7)

where p XjSð Þ, p SjWð Þ, and p Wð Þ represent acoustic, lexicon, and language models, respec-

tively. Equation (6) is changed into Eq. (7) in a similar way as Eq. (4) is changed into Eq. (5).

3.1.1. Acoustic models p XjSð Þ

p XjSð Þ can be further factorized using a probabilistic chain rule and Markov assumption as

follows:

p XjSð Þ ¼
YT

t¼1

p xtjx1,…, xt�1, Sð Þ (8)

≈

YT

t¼1

p xtjstð Þ∝
YT

t¼1

p stjxtð Þ

p stð Þ
(9)

In Eq. (9), framewise likelihood function p xtjstð Þ is changed into the framewise posterior

distribution p stjxtð Þ
p stð Þ which is computed using DNN classifiers by pseudo-likelihood trick [38].

In Eq. (9), Markov assumption is too strong. Therefore, the contexts of input and hidden states

are not considered. This issue can be resolved using either the recurrent neural networks

(RNNs) or DNNs with long-context features. A framewise state alignment is required to train

the framewise posterior which is offered by an HMM/GMM system.

3.1.2. Lexicon model p SjWð Þ

p SjWð Þ can be further factorized using a probabilistic chain rule and Markov assumption (first

order) as follows:

p SjWð Þ ¼
YT

t¼1

p stjs1,…, st�1,Wð Þ (10)

≈

YT

t¼1

p stj st�1,Wð Þ (11)

An HMM state transition represents this probability. A pronunciation dictionary performs the

conversion from w to HMM states through phoneme representation.

From Natural to Artificial Intelligence - Algorithms and Applications28



3.1.3. Language model p Wð Þ

Similarly, p Wð Þ can be factorized using a probabilistic chain rule and Markov assumption ((m-1)

th order) as an m-gram model, i.e.,

p Wð Þ ¼
YN

n¼1

p wnjw1;…;wn�1ð Þ (12)

≈

YN

n¼1

p wnjwn�m�1,…, wn�1ð Þ (13)

The issue of Markov assumption is addressed using recurrent neural network language model

(RNNLM) [39], but it increases the complexity of decoding process. The combination of

RNNLMs andm-gram language model is generally used and it works on a rescoring technique.

3.2. Attention mechanism

The approach based on attention mechanism does not make any Markov assumptions. It

directly finds the posterior p CjXð Þ, on the basis of a probabilistic chain rule:

p CjXð Þ ¼
YL

l¼1
p cljc1,…, cl�1, Xð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≜ patt C=Xð Þ

(14)

where patt CjXð Þ represents an attention-based objective function. p cljc1,…, cl�1, Xð Þ is obtained by

ht ¼ Encoder Xð Þ, (15)

alt ¼
ContentAttention ql�1; ht

� �

LocationAttentionð{al�1}
T
t¼1;ql�1;ht

� ;

(

(16)

rl ¼
XT

t¼1

altht, (17)

p cljc1,…, cl�1, Xð Þ ¼ Decoder rl; ql�1; cl�1

� �
(18)

Eq. (15) represents the encoder and Eq. (18) represents the decoder networks. alt represents the

soft alignment of the hidden vector, ht. Here, rl represents the weighted letter-wise hidden

vector that is computed by weighted summation of hidden vectors. Content-based attention

mechanism with or without convolutional features are shown by ContentAttention :ð Þ and

LocationAttention :ð Þ, respectively.

3.2.1. Encoder network

The input feature vector X is converted into a framewise hidden vector, ht using Eq. (15). The

preferred choice for an encoder network is BLSTM, i.e.,

Convolutional Neural Networks for Raw Speech Recognition
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Encoder Xð Þ≜BLSTMt Xð Þ (19)

It is to be noted that the computational complexity of the encoder network is reduced by

subsampling the outputs [20, 21].

3.2.2. Content-based attention mechanism

ContentAttention :ð Þ is shown as

elt ¼ gTtanh Lin ql�1

� �

þ LinB htð Þ
� �

(20)

alt ¼ Softmax eltf gTt¼1

� �

(21)

g represents a learnable parameter. eltf gTt¼1 represents a T-dimensional vector. tanh :ð Þ and

Lin :ð Þ represent the hyperbolic tangent activation function and linear layer with learnable

matrix parameters, respectively.

3.2.3. Location-aware attention mechanism

It is an extended version of content-based attention mechanism to deal with the location-aware

attention. If al�1 ¼ al�1f gTt¼1 is replaced in Eq. (16), then LocationAware :ð Þ is represented as

follows:

f t
� �T

t¼1
¼ R∗al�1 (22)

elt ¼ ɡ
Ttanh Lin ql�1

� �

þ Lin htð Þ þ LinB f t
� �� �

(23)

alt ¼ softmax etf gTt¼1

� �

(24)

Here, * denotes 1-D convolution along the input feature axis, t, with the convolution parame-

ter,R, to produce the set of T features f t
� �T

t¼1
:

3.2.4. Decoder network

The decoder network is an RNN that is conditioned on previous output Cl�1 and hidden vector

ql�1. LSTM is preferred choice of RNN that represented as follows:

Decoder :ð Þ≜ softmax LinB LSTMl :ð Þð Þð (25)

LSTMl :ð Þ represents uniconditional LSTM that generates hidden vector ql as output:

ql ¼ LSTMl rl; ql�1; cl�1

� �

(26)

rl represents the concatenated vector of the letter-wise hidden vector; cl�1 represents the output

of the previous layer which is taken as input.
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3.2.5. Objective function

The objective function of the attention model is computed from the sequence posterior

patt CjXð Þ ≈
Y

L

l¼1

p cljc
∗
1;…; c∗l�1;X

� �

≜ p∗att CjXð Þ (27)

where c∗l represents the ground truth of the previous characters. Attention-based approach is a

combination of letter-wise objectives based on multiclass classification with the conditional

ground truth history c∗l ,…, c∗l�1 in each output l.

3.3. Connectionist temporal classification (CTC)

The CTC formulation is also based on Bayes’ decision theory. It is to be noted that L-length

letter sequence,

C0 ¼ < b >; c1; < b >; c2; < b >;…; cL; < b >f g ¼ c0l ∈U ∪ < b >f gjl ¼ 1;…; 2Lþ 1
� �

(28)

In C0, c0l is always “ < b > ” and letter when l is an odd and an even number, respectively.

Similar as DNN/HMM model, framewise letter sequence with an additional blank symbol

Z ¼ zt ∈U ∪ < b >f gjt ¼ 1;…;Tf g (29)

is also introduced. The posterior distribution, p CjXð Þ, can be factorized as

p CjXð Þ ¼
X

z

p CjZ,Xð Þp ZjXð Þ (30)

≈

X

z

p CjZð Þ:p ZjXð Þ (31)

Same as Eq. (3), CTC also uses Markov assumption, i.e., p CjZ;Xð Þ ≈ p CjZð Þ, to simplify the

dependency of the CTC acoustic model, p ZjXð Þ, and CTC letter model, p CjZð Þ.

3.3.1. CTC acoustic model

Same as DNN/HMM acoustic model, p ZjXð Þ can be further factorized using a probabilistic

chain rule and Markov assumption as follows:

p ZjXð Þ ¼
Y

T

t¼1

p ztjz1,…, zt�1, Xð Þ (32)

≈

Y

T

t¼1

p ztj Xð Þ (33)

The framewise posterior distribution, p ztjXð Þ is computed from all inputs, X, and it is directly

modeled using bidirectional LSTM [30, 40]:

Convolutional Neural Networks for Raw Speech Recognition
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p ztjXð Þ ¼ Softmax LinB htð Þð Þ, (34)

ht ¼ BLSTMt Xð Þ (35)

where Softmax :ð Þ represents the softmax activation function. LinB :ð Þ is used to convert the

hidden vector, ht, to a Uj j þ 1ð Þ dimensional vector with learnable matrix and bias vector

parameter. BLSTMt :ð Þ takes full input sequence as input and produces hidden vector htð Þ at t.

3.3.2. CTC letter model

By applying Bayes’ decision theory probabilistic chain rule and Markov assumption, p ZjXð Þ

can be written as

p C=Zð Þ ¼
p Z=Cð Þp Cð Þ

p Zð Þ
(36)

¼
YT

t¼1

p ztjz1;…; zt�1;Cð Þ
p Cð Þ

p Zð Þ
(37)

≈

YT

t¼1

p ztð jzt�1, CÞ
p Cð Þ

p Zð Þ
(38)

where p ztð jzt�1, CÞ represents state transition probability. p Cð Þ represents letter-based language

model, and p Zð Þ represents the state prior probability. CTC architecture incorporates letter-

based language model. CTC architecture can also incorporate a word-based language model

by using letter-to-word finite state transducer during decoding [18]. The CTC has the mono-

tonic alignment property, i.e.,

when zt�1 ¼ c0m, then zt ¼ c0l where l ≥m.

Monotonic alignment property is an important constraint for speech recognition, so ASR

sequence-to-sequence mapping should follow the monotonic alignment. This property is also

satisfied by HMM/DNN.

3.3.3. Objective function

The posterior, p CjXð Þ, is represented as

p CjXð Þ ≈
X

z

YT

t¼1
p ztjzt�1, Cð Þp ztjXð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≜ pctc C=Xð Þ

:
p Cð Þ

p Zð Þ
(39)

Viterbi method and forward-backward algorithm are dynamic programming algorithm which

is used to efficiently compute the summation over all possible Z: CTC objective function

pCTC CjXð Þ is designed by excluding the p Cð Þ=p Zð Þ from Eq. (23).
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The CTC formulation is also same as HMM/DNN. The minute difference is that Bayes’ rule is

applied to p CjZð Þ instead of p WjXð Þ. It has also three distribution components like HMM/

DNN, i.e., framewise posterior distribution, p ztjXð Þ; transition probability, p ztjzt�1, Cð Þ; and

letter model, p Cð Þ: It also uses Markov assumption. It does not fully utilize the benefit of end-

to-end ASR, but its character output representation still possesses the end-to-end benefits.

4. Convolutional neural networks

CNNs are the popular variants of deep learning that are widely adopted in ASR systems. CNNs

have many attractive advancements, i.e., weight sharing, convolutional filters, and pooling.

Therefore, CNNs have achieved an impressive performance in ASR. CNNs are composed of

multiple convolutional layers. Figure 5 shows the block diagram of CNN. LeCun and Bengio

[41] describe the three states of convolutional layer, i.e., convolution, pooling, and nonlinearity.

Deep CNNs set a new milestone by achieving approximate human level performance through

advanced architectures and optimized training [42]. CNNs use nonlinear function to directly

process the low-level data. CNNs are capable of learning high-level features with high com-

plexity and abstraction. Pooling is the heart of CNNs that reduces the dimensionality of a

feature map. Maxout is widely used nonlinearity and has shown its effectiveness in ASR tasks

[43, 44].

Pooling is an important concept that transforms the joint feature representation into the

valuable information by keeping the useful information and eliminating insignificant informa-

tion. Small frequency shifts that are common in speech signal are efficiently handled using

pooling. Pooling also helps in reducing the spectral variance present in the input speech. It

maps the input from p adjacent units into the output by applying a special function. After the

element-wise nonlinearities, the features are passed through pooling layer. This layer executes

the downsampling on the feature maps coming from previous layer and produces the new

feature maps with a condensed resolution. This layer drastically reduces the spatial dimension

of input. It serves the two main purposes. The first is that the amount of parameters or weight

is reduced by 65%, thus lessening the computational cost. The second is that it controls the

overfitting. This term refers to when a model is so tuned to the training examples.

Figure 5. Block diagram of convolutional neural network.
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5. CNN-based end-to-end approach

A novel acoustic model based on CNN is proposed by Palaz et al. [5] which is shown

in Figure 6. In this, raw speech signal is segmented into input speech signal s
c

t
¼

st�c;…; st;…; stþcf g in the context of 2c frames having spanning window win milliseconds. First

convolutional layer learns the useful features from the raw speech signal, and remaining

convolutional layers further process these features into the useful information. After

processing the speech signal, CNN estimates the class conditional probability, i.e., P i=sc
t

� �

,

which is used to calculate emission scaled-likelihood P sc
t
=i

� �

. Several filter stages are present

in the network before the classification stage. A filter stage is a combination of convolutional

layer, pooling layer, and a nonlinearity. The joint training of feature stage and classifier stage is

performed using the back-propagation algorithm.

The end-to-end approach employs the following understanding:

1. Speech signals are non-stationary in nature. Therefore, they are processed in a short-term

manner. Traditional feature extraction methods generally use 20–40 ms sliding window

size. Although in the end-to-end approach, short-term processing of signal is required.

Therefore, the size of the short-term window is taken as hyperparameter which is auto-

matically determined during training.

2. Feature extraction is a filter operation because its components like Fourier transform, dis-

crete cosine transform, etc. are filtering operations. In traditional systems, filtering is applied

on both frequency and time. So, this factor is also considered in building convolutional layer

in end-to-end system. Therefore, the number of filter banks and their parameters are taken

as hyperparameters that are automatically determined during training.

3. The short-term processing of speech signal spread the information across time. In tradi-

tional systems, this spread information is modeled by calculating temporal derivatives and

contextual information. Therefore, intermediate representation is supplied to classifier and

calculated by taking long time span of input speech signal. Therefore, win, the size of input

window, is taken as hyperparameter, which is estimated during training.

The end-to-end model estimates P i=sc
t

� �

by processing the speech signal with minimal assump-

tions or prior knowledge.

Figure 6. CNN-based raw speech phoneme recognition system.
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6. Experimental results

In this model, a number of hyperparameters are used to specify the structure of the network.

The number of hidden units in each hidden layer is very important; hence, it is taken as

hyperparameter. win represents the time span of input speech signal. kW represents the kernel

and temporal window width. dW represents the shift of temporal window. kWmp represents

max-pooling kernel width and dWmp represents the shift of max-pooling kernel. The value of

all hyperparameters is estimated during training based on frame-level classification accuracy

on validation data. The range of hyperparameters after validation is shown in Table 1.

The experiments are conducted for three convolutional layers. The speech window size (win is

taken 250 ms with a shift of temporal window dWð Þ 10 ms. Table 2 shows the comparison of

existing end-to-end speech recognitionmodel in the context of PER. The results of the experiments

conducted on TIMITdataset for this model are compared with already existing techniques, and it

is shown in Table 3. The main advantages of this model are that it uses only few parameters and

offers better performance. It also increases the generalization capability of the classifiers.

Hyperparameter Units Range

Input window size (win) ms 100–700

Kernel width of the first ConvNet layer (kW1) Samples 10–90

Kernel width of the nth ConvNet layer (kWn) Samples 1–11

Number of filters per kernel (dout t) Filters 20–100

Max-pooling kernel width (kWmp) Frames 2–6

Number of hidden units in the classifier Units 200–1500

Table 1. Range of hyperparameter for TIMIT dataset during validation.

End-to-end speech recognition model PER (%)

CNN-based speech recognition system using raw speech as input [7] 33.2

Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural

networks [36]

32.4

Convolutional neural network-based continuous speech recognition using raw speech signal [6] 32.3

End-to-end phoneme sequence recognition using convolutional neural networks [5] 27.2

CNN-based direct raw speech model 21.9

End-to-end continuous speech recognition using attention-based recurrent NN: First results [19] 18.57

Toward end-to-end speech recognition with deep convolutional neural networks [44] 18.2

Attention-based models for speech recognition [20] 17.6

Segmental recurrent neural networks for end-to-end speech recognition [45] 17.3

Bold value and text represent the performance of the CNN-based direct raw speech model.

Table 2. Comparison of existing end-to-end speech model in the context of PER (%).
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7. Conclusion

This chapter discusses the CNN-based direct raw speech recognition model. This model

directly learns the relevant representation from the speech signal in a data-driven manner and

calculates the conditional probability for each phoneme class. In this, CNN as an acoustic model

consists of a feature stage and classifier stage. Both the stages are trained jointly. Raw speech

is supplied as input to first convolutional layer, and it is further processed by several convol-

utional layers. Classifiers like ANN, CRF, MLP, or fully connected layers calculate the condi-

tional probabilities for each phoneme class. After that decoding is performed using HMM. This

model shows the similar performance as shown by MFCC-based conventional mode.
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