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Abstract

Hepatocellular carcinoma (HCC) is a pathology preceded mainly by cirrhosis of diverse 
etiology and is associated with uncontrolled dedifferentiation and cell proliferation pro-
cesses. Many cellular functions are dependent on mitochondrial function, among which 
we can mention the enzymatic activity of PARP-1 and sirtuin 1, epigenetic regulation of 
gene expression, apoptosis, and so on. Mitochondrial dysfunction is related to liver dis-
eases including cirrhosis and HCC; the energetic demand is not properly supplied and 
mitochondrial morphologic changes have been observed, resulting in an altered metabo-
lism. There is a strong relationship between epigenetics and mitochondrion since the first 
one is dependent on the correct function of the last one. There is an interest to improve or 
to maintain mitochondrial integrity in order to prevent or reverse HCC; such is the case 
of IFC-305 that has a beneficial effect on mitochondrial function in a sequential model of 
cirrhosis-HCC. In this model, IFC-305 downregulates the expression of PCNA, thymi-
dylate synthase, HGF and its receptor c-Met and upregulates the cell cycle inhibitor p27, 
thereby decreasing cell proliferation. Both effects, improvement of mitochondria function 
and reduction of tumor proliferation, suggest its use as HCC chemoprevention or as an 
adjuvant in chemotherapy.

Keywords: hepatocellular carcinoma, cell cycle, cell proliferation, mitochondria, 
epigenetics, IFC-305
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1. Introduction

Hepatocellular carcinoma (HCC) represents 80% of the primary liver cancer and, in minor pro-

portion, bile duct cancer and angiosarcoma of the blood vessels in the liver, but all of them have 

a poor prognosis. HCC is a major cause of cancer-related deaths globally. The incidence of HCC 

is increasing and has been rising in the last few decades [1]. The HCC is a complex pathology 

associated in 80–90% with chronic liver diseases like cirrhosis of diverse etiologies. Cirrhosis 

is a chronic degenerative disease of the hepatic parenchyma characterized by an inflammation 
process that leads to liver fibrogenesis. This process induces the loss of liver architecture and 
a diminution of functional parenchyma, which over time changes the environment of the cells 

resulting in chromosomal instability. The cause of cirrhosis transformation into HCC is not 

well known, but chromosomal instability could be an important factor for HCC generation 

in cirrhotic patients. The main problem of this pathology is the lack of early detection, recur-

rence of tumors following resection [2], and there are no effective therapies. To understand this 
complex pathology, it is convenient to have some knowledge of the structure and functions of 

the liver. Therapeutic options for HCC are very limited, and the incidence is very similar to the 

death rate per year. Only in the early stage of the disease, there are some approved therapies 

such as tumor ablation, surgical resection, and liver transplantation, but in advanced stages, 

when most patients are diagnosed, these treatments are not recommended. There is an average 

of 5-year survival below 20% with these therapies [3]. In intermediate and advanced stage-

HCC, the approved options are transcatheter arterial chemoembolization (TACE) and the 

multi-kinase inhibitor, sorafenib. TACE therapy could extend survival to 2 years [3]. Sorafenib 

extends survival of patients with advanced stage disease for only 3 months, and this medica-

tion causes considerable adverse effects and offers no symptom palliation [4]. There are other 

several clinical trial efforts focused on therapies involving multiple signaling pathways, most 
commonly related to tyrosine-kinase growth factor receptors, but they have inferior survival 

benefits and several adverse effects. Immunotherapy has demonstrated some efficacy, but, in 
general, molecular characterization to find effective treatments of HCC is needed.

The liver is the largest internal and heterogeneous organ in the body constituted by different 
kinds of cells like hepatocytes, endothelial cells, cells of the bile duct, Kupffer cells, hepatic stel-
late cells (HSC), oval cells and pit cells [5]. The liver is an organ highly irrigated by the portal 

venous system and blood is distributed by the hepatic sinusoids and the hepatic artery [6]. 

About 80% of the liver cells are hepatocytes, and are epithelial cells that form cords with high 

metabolic activity and contain a complete set of organelles: mitochondria, peroxisomes, lyso-

somes, Golgi complex and a well-organized cytoskeleton [7]. The space between cords of hepa-

tocytes and the endothelium is called the space of Disse. Endothelial cells constitute the wall of 

the hepatic sinusoids and are separated from the parenchymal cells by the space of Disse. They 

possess pores or fenestrae that permit the exchange of fluids [8]. These cells show endocytic 

activity and secrete several mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), inter-

feron, and nitric oxide as paracrine modulators. Kupffer cells are the fixed macrophages of the 
liver that can migrate along sinusoids. Their main function is an immunomodulatory one [9]. 

Pit cells are intrahepatic leucocytes with natural killer cell activity [10] and exert a cytotoxic 

activity toward tumor and virus-infected cells [11]. HSC, also known as lipocytes, fat stor-

ing cells, perisinusoidal cells, and vitamin A storing cells, are quiescent in normal conditions. 
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When they are activated, they play an essential role in the synthesis and degradation of the 

extracellular matrix (ECM) proteins and fibrogenic cytokines, like hepatocyte growth factor 
(HGF), insulin growth factor (IGR), transforming growth factor-β (TGF-β), and, consequently, 
induce cirrhosis. Biliary epithelial cells participate in the formation of bile; they are transported 

to the bile ducts or Canals of Hering. These cells have the potential to become oval cells [7]. The 

cell-free hepatic tissue represents 20% of the liver volume and constitutes the ECM located in 

the Disse space. The ECM contains structural proteins like collagen of different types, glyco-

proteins, fibronectin, tenascin, laminin, entactin, and perlecan. Their function is to maintain 
the hepatic architecture and the organization of the entire organ. Hepatocytes contribute with 

80–90% of the synthesis of liver collagen, which is degraded by metalloproteinases (MMPs) 

[12]. The liver has multiple functions needed for its own metabolism and for other organs; it 

participates intensely in the intermediary metabolism that occurs mainly in hepatocytes and 

is connected with the nutrients of the diet, reaching from the portal circulation, that is, in car-

bohydrates, proteins, and lipid metabolism. The liver also generates purines and pyrimidines 

for its own use and their distribution to other tissues in the form of adenosine, inosine, and 

hypoxanthine [13]. It also synthetizes and secretes plasma proteins and participates in the 

biotransformation of endogenous and exogenous compounds.

Previously, we have demonstrated that adenosine is a metabolic modulator of glucose and lip-

ids in the liver and adipose tissue [14]. This molecule also modulates in vivo the energy charge 

in the liver [15]. The nucleoside adenosine is a substance with multiphysiological effects in 
different tissues, the central nervous system, and cardiovascular system; it is responsible for the 
modulation of the immune response and acts as metabolic regulator. Its action could be auto-

crine, paracrine, and endocrine; its metabolism is very active with a high turnover and a very 

short half-live. Adenosine presents circadian variations in the rat, which correlated with ener-

getic homeostasis of the cell, modulation of membrane structure and function, cell proliferation, 

and genetic expression by regulating physiological methylation [16]. Exogenous adenosine 

administration to normal rats showed some pharmacological effects, like increased ATP levels 
simultaneous to a decrease in ADP and AMP, resulting in an increase of the energy charge of 

the liver [14]. Also, in the liver of fasted rats, adenosine induces an enhancement of glycogen 

synthesis [16] and an inhibition of fatty acid oxidation by inhibiting the extramitochondrial 
acyl CoA synthase and decreasing the plasma ketone bodies [17] These findings allowed us to 
demonstrate in vivo the Atkinson hypothesis of metabolism regulation by energy charge [18].

The redox state of the cell in different compartments, calculated by the NAD+/NADH (NAD+ 

and NADH nicotinamide adenine dinucleotide, oxidized and reduced) system, has been 

shown to be a key point in the control of metabolism [19]. Adenosine administration induces 

mitochondrial oxidation and promotes the oxidized state in the cytosol and mitochondria in 

the presence of fatty acid oxidation inhibition, which is induced by the nucleoside. It has been 
reported that adenosine modulates vasodilatation and vasoconstriction in the hepatic ves-

sels controlling blood flow from the hepatic artery [20]. All these results observed in normal 

animals led us to test the effects of the nucleoside in several models of acute hepatotoxicity: 
one induced with ethanol [21], the second with cycloheximide, and the third with carbon 

tetrachloride (CCl
4
). Although the toxic mechanism of each one is different, they yielded a 

similar response generating a fatty liver that was prevented by adenosine [21–23]. In this way, 

the nucleoside, through different mechanisms, protects the liver against acute toxicity.
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Continuous acute hepatotoxicity results in chronic liver injury with subsequent cirrhosis, with 
accumulation of ECM proteins, mainly collagen type I [24], accompanied by a deficient degrada-

tion of deposited collagen [25]. These conditions will induce a change in liver architecture with 

loss of its function. This is a complex process, for which no effective treatment has been developed 
yet. To study the effects of adenosine in this process, a model of cirrhosis induced in rats with CCl

4
 

was developed, in which two conditions were tested: prevention during cirrhosis development 

and reversion once it is already established [26, 27]. The simultaneous administration of adenosine 

partially blocked the stimulated collagen synthesis induced by the hepatotoxin, maintained high 

levels of hepatic collagenase activity, resulting in 50% diminution of fibrosis [26]. The effect of 
the nucleoside was clearly observed also in the reversion model; it was tested in well-established 

cirrhosis after 10 weeks of CCl
4
 administration. Five weeks after suspension of the toxin, animals 

were treated with saline or adenosine, the saline group increased the cirrhotic characteristics 

but the group of animals treated with the nucleoside revealed blocked fibrogenesis, increased 
collagen degradation and normalized collagen types ratio, promoted hepatocyte proliferation, 

accelerated normalization of liver function, and decreased oxidative stress. These results suggest 

adenosine as a potential therapeutic agent in the treatment of chronic hepatic disease.

The transfer of an interesting research finding to a clinical setting is complicated, but in col-
laboration with Dr. Francisco Hernández Luis from the National Autonomous University of 

Mexico’s School of Chemistry, we prepared several adenosine derivatives that were tested in 

the CCl
4
 induced cirrhosis. The aspartate of adenosine, named IFC-305, showed interesting 

results [28]; beneficial effects in structure and functional recovery were obtained with a fourfold 
lower dose of this adenosine derivative because it has a longer half-life. The hepatoprotective 

mechanism of IFC-305 on fibrogenesis was investigated by means of DNA microarrays analysis 
[29], showing that the expression of 413 differential genes deregulated in cirrhosis tended to be 
normalized by IFC-305 treatment. Fibrogenic genes, such as TGF-β, collagen type I, fibronectin 
I, increased their expression in cirrhotic groups, and IFC-305 diminished their expression sup-

porting the antifibrogenic action of the compound. These results highly suggest a diminution 
of chromosomal instability. With the increased understanding in chromatin organization of 

the eukaryote genome at genetic and epigenetic levels and remembering the previously com-

mented role of adenosine on physiological methylations, a possible epigenetic mechanism of 

the IFC-305 could participate in the obtained results. Global changes in DNA methylation, 

5-hydroxymethylation and histone H4 acetylation were decreased in cirrhosis and after the IFC-

305 treatment the normal values were recuperated. In contrast, the promoter of Col1a1 gene is 

hypomethylated in cirrhosis but gains DNA methylation upon treatment with IFC-305, correlat-

ing with a decrease of Col1a1 transcript and protein level, showing that the treatment restores 

globally and specifically epigenetic modifications [30]. The microarray analysis also showed 

modification of immunity genes which where explored in the CCl
4
 model; it was found that the 

IFC-305 compound reduced inflammatory cytokines and increased the anti-inflammatory ones 
like IL-10, supporting the modulation of the macrophage phenotypes M1 and M2 [31].

2. Hepatocytes proliferation in cirrhosis and cancer, modulation by IFC-305

The liver is an organ with regenerative capacity. Partial hepatectomy or diverse stimuli pro-

mote proliferation of parenchymal and non-parenchymal cells in order to recover the liver 
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mass and architecture. This process is regulated by cell cycle proteins, cytokines, growth fac-

tors, and matrix remodeling [32].

In acute liver injury, there is a classic wound healing process in which inflammation triggers 
scar formation that is subsequently resolved to enable regeneration of the damaged hepatic 
parenchyma. However, when there is a chronic liver injury, the normal regenerative process 

is impaired, and instead a net deposition of fibrillar collagen is predominant [33].

Cirrhosis is characterized by a decrease in hepatocyte proliferation, in part, because liver cells 

have a limited regenerative capacity restricted by telomere length. After several rounds of rep-

lication, telomeres reach a critically short length that induces cell cycle arrest, senescence, and 

apoptosis of hepatocytes. Telomere shortening also activates DNA repair pathways leading 

to chromosomal fusions and instability [34]. During cirrhosis-activated HSC, inflammatory 
cells secrete proliferative and angiogenic cytokines that contribute to a proliferative condition 

milieu, including: HGF, vascular endothelial growth factor (VEGF), and IL-6 [33]. This pro-

liferative milieu could stimulate the proliferation of altered hepatocytes carrying mutations 

of cell cycle checkpoint genes or could select genetically altered clones, promoting HCC [34].

Among the principal cell cycle checkpoints that are generally altered in HCC are the tumor 

suppressor p53 and Rb proteins. p53 is implicated in cell cycle control, DNA repair, apopto-

sis, and regulates different metabolic pathways [35, 36]. p53 is frequently mutated in HCC 
(28–50%) and core proteins from hepatitis B and C viruses can repress p53 activity [36]. The 

pRB protein is implicated in the progression from G1 into S phase. The Rb pathway is dis-

rupted in more than 80% of human HCC [34]. Gankyrin binds Mdm2 promoting proteasomal 

degradation of p53 and pRb. Both gankyrin and Mdm2 proteins are frequently overexpressed 
in human HCC [34, 35]. p53 is also implicated in the stimulation of ATP production by oxida-

tive phosphorylation (OXPHOS). p53 also decreases glycolysis and cellular reactive oxygen 

species (ROS) production by inducing a protein called TP53-induced glycolysis and apop-

tosis regulator (TIGAR). TIGAR blocks glycolysis by degrading fructose-2,6-bisphosphate. 

This inhibition redirects glucose-6-phosphate into the pentose phosphate pathway, which 

increases NADPH production increasing the antioxidant defenses. The inactivation of p53 

should decrease OXPHOS and increase glycolysis and ROS production in cancer cells [37].

It has been demonstrated that IFC-305 is able to stimulate hepatocytes proliferation in CCl
4
-

induced cirrhotic liver through the upregulation of proliferating cell nuclear antigen (PCNA), 

HGF, and p53, with an increase in energy and preservation of mitochondrial function [38].

On the other hand, in a sequential model of cirrhosis-HCC induced by diethylnirosamine 
(DEN), IFC-305 caused a tumor reduction, and this protective effect was associated with 
decreased cell proliferation in the HCC stage. This effect was associated with a decreased 
expression of PCNA, thymidylate synthase, HGF and its receptor c-Met, and the induction of 

the cell cycle inhibitor p27. IFC-305 also induced a diminution of gankyrin expression contrib-

uting to restoring p53 protein expression to control levels [39].

How could the same compound IFC-305 have opposing effects on proliferation in normal 
versus transformed hepatocytes? These could be mediated partly by a differential expression 
of the HGF-c-Met pathway driven by IFC-305 treatment, and the dual role of HGF/c-Met in 

cirrhosis and liver tumorigenesis. HGF expression is restricted to cells of mesenchymal origin, 

whereas the receptor c-Met is expressed in epithelial and endothelial cells. HGF is implicated 
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in cell proliferation, survival, morphogenesis, cell motility, and metastasis. This pathway plays 

a critical role in tissue protection and regeneration. It has been used as a therapeutic agent in 

fibrosis of different organs. The protective actions of HGF are associated with promotion of 
cell proliferation, migration, and morphogenesis that would help tissues reorganization [40]. 

Its protective role is also related to its anti-inflammatory action and its regulation of the cel-
lular redox state, driven by upregulation of the antioxidant enzymes and glutathione reduced 

(GSH), as well as by repression of two major pro-oxidant systems: NADPH oxidase and/or 

Cyp2E1 [41]. Nevertheless, the HGF/c-Met pathway in HCC contributes to tumor develop-

ment by stimulating cell proliferation, invasion, and metastasis [40]. We observed that, in the 

cirrhotic liver induced by CCl
4
, the hepatoprotector IFC-305 incremented HGF expression 

[38], which could have a protective role in the regenerative capacity of the liver. On the other 

hand, in DEN-induced HCC, the IFC305 treatment downregulated HGF and c-Met expression, 

which contribute to liver tumorigenesis reduction [39]. HGF and c-Met can be potentiated by 

ROS in hepatoma cells [41, 42]. It was described that, in the sequential model of cirrhosis-HCC 
with DEN, there are dysfunctional mitochondria and the administration of IFC-305 restored 

the mitochondrial function and regulated parameters implicated in metabolism, as well as the 

mitochondrial dynamics modified by DEN intoxication [43]. Therefore, the IFC-305 could be 

suppressing expression of HGF via the improvement of mitochondrial redox in DEN carcino-

genesis. On the other hand, the restoration by IFC-305 treatment of the p53 protein expression 

in CCl
4
-induced cirrhosis and in DEN-induced carcinogenesis, among other effects, could 

contribute to the restoration of ATP production by OXPHOS and to the decrease of ROS pro-

duction. However, the exact molecular mechanism by which IFC-305 causes different effects 
on hepatocytes proliferation in cirrhosis and HCC requires further clarification.

3. Mitochondrial alterations in the HCC: the effect of the IFC-305 
compound

Mitochondria are responsible for energy metabolism in eukaryotic cells; they generate ATP 

through oxidative phosphorylation. In addition, an important part of the ATP synthesis is the 

donation of electrons by the tricarboxylic acids chain (TCA) to the electron transport chain 

(ETC), constituted by five complexes (I-V), NADH enters complex I and generates NAD+, 

and complex V forms ATP. Mitochondria regulate the energetic state, the redox state, and the 

metabolism of the cells, being able to generate the epigenetic intermediaries becoming the 

main therapeutic target of many kinds of cancer [44].

As a response to stress, the cells acquire a metabolic adaptation, which is an important area 
of research due to its relationship with different illnesses [45]. In chronic liver diseases like 

cirrhosis, energetic deficiency and alterations in energy parameters have been demonstrated 
independently of their etiology [46]. Otto Warburg suggested that mitochondria from tumor 
cells supply energy through glycolytic flow due to lack of oxygen or genetic-epigenetic 
alterations that affect oxidative metabolism [47]. Mitochondrial dysfunction is implicated in 

metabolic reprogramming in HCC. The increased ROS production and the reduced ATP gen-

eration may contribute to the HCC malignancy [48]. Metabolic alterations may decrease the 
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levels of acetyl CoA, which also plays an important role as modulator of gene expression [49]. 

In experimental models, including the CCl
4
-induced cirrhosis, mitochondrial dysfunction has 

been demonstrated because impaired mitochondrial respiration and ATP decreased levels 

have been observed [50, 51]. A metabolic adaptation in response to the ATP diminished levels 

is increased glycolysis [51]. A consequence of oxidative stress in chronic liver diseases is the 
decrease in metabolic flux, which includes alterations in the TCA enzymes, such as isocitrate 
dehydrogenase (IDH), which can produce oncometabolites when it undergoes mutations [52].

The redox state can be represented by the NAD+/NADH ratio, which is regulated by the 

ETC. Several enzymes depend on NAD+ like sirtuin-1 (Sirt-1), a member of deacetylases, and 

poly (ADP-ribose) polymerase-1 (PARP-1). A Sirt-1 substrate is the peroxisome proliferator-

activated receptor gamma co-activator 1-alpha (PGC-1α), which is upregulated in HCC and 
is responsible for orchestrating mitochondrial biogenesis, favoring accumulation of defec-

tive mitochondria [44]. On the other hand, PARP-1 modulates the transcription and DNA 

repair; however, in HCC, it is upregulated and is considered a hallmark of cancer [53]. The 

over-regulation of both enzymes in HCC may deplete the NAD+ that can be related to loss of 

mitochondrial membrane potential (ψm) and mitochondrial dysfunction [54]. Alterations in 

ψm induce the process of mitochondrial dynamics as a repair response to possible damage to 
this organelle. Mitochondrial dynamics depends on two mechanisms: fission and fusion; the 
first one is caused by various types of stress and requires protein activity such as Drp-1, on the 
other hand, fusion requires the recovery of ψm and proteins such as mitofusin 1 and 2 (MFN 
1 and 2) [44]. Mitochondrial fusion promotes cristae formation and normal mitochondria 

phenotype [55]. Morphological alterations in mitochondria determined through electronic 

microscopy in various models of hepatic fibrosis have been described a long time ago [56, 57].

Previously, it has been discussed some of the effects of adenosine (base molecule of IFC-305), 
which include increase in energy parameters and regulation of the redox state. Considering 

this background and what has been described regarding the metabolic and mitochondrial 

changes in chronic liver damage, such as cirrhosis and HCC, it was decided to evaluate 

whether IFC-305 had any mitochondrial effect in the sequential model of cirrhosis-HCC.

In the sequential model of cirrhosis-HCC, decreased mitochondrial respiration, determined 
through oxygen consumption, and a decreased ψm were found, which reflected in a diminished 
ATP synthesis. In fact, the dimeric form (active form) of the F1F0 complex of ATPase is lost [43].

On the other hand, alterations in the mitochondrial redox state were observed, determined 

through the ratio of the levels of β-hydroxybutyrate/acetoacetate (NAD+/NADH). The activ-

ity of NAD-dependent enzymes was also affected, such is the case of IDH and PARP-1; this 
alteration induced a metabolic adaptation because increased levels of lactate were observed 

suggesting an increase in aerobic glycolysis [43].

It is known that the mitochondrion is capable of responding to several insults of stress 

through the activity of various nuclear-encoded proteins like PGC-1α and Sirt-1. However, 
the over-regulation of these proteins has been associated with the accumulation of dysfunc-

tional mitochondria, as described above. In the model previously described, these proteins 

were found increased. Dysfunctional mitochondria have been related to their morphology, 
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and we know that morphology is closely linked to dynamism. The ratio of Drp-1/MFN-2, 

proteins that regulate the mitochondrial dynamics, was increased favoring the fragmented 

form of mitochondria as verified through electron microscopy [43].

Important findings were observed with the IFC-305 treatment as described in Table 1 [43].

Uncoupled mitochondria depicted lower ATP synthesis due to the altered ψm and complex I 
activity. Previously, it has been demonstrated that complex I is sensitive to DEN toxicity, as 

NAD+ linked respiration is inhibited [58]. Recovery of these parameters with IFC-305 treat-

ment was observed, including the activity of NAD+-dependent IDH. The PARP-1 activity 

inhibition probably favored the NAD+ availability and contributed to the maintenance of the 

redox state. Mitochondrial function preservation and restoration allowed the normalization 

of the metabolism observed by lactate levels diminution.

On the other hand, the decreased Sirt-1 and PGC-1α in the groups treated with IFC-305 
suggested that abnormal mitochondrial accumulation was inhibited. In fact, mitochondrial 

dynamics regulation was induced by IFC-305. These results demonstrated mitochondrial 

impairment through functional, metabolic, and dynamic alterations in HCC, and the hepato-

protector IFC-305 helps to repair them, being a tumor suppressive mechanism.

These findings support the mitochondrial role in the establishment of HCC and the interplay 
with the nuclear genome as targets in the design of new therapeutic strategies for the HCC 

treatment. In this regard, the IFC-305 supports that idea and emerges as a new possible HCC 

therapy through mitochondrial regulation.

According to the above, there is a growing interest to find pharmacological strategies to block 
the effects of mitochondrial dysfunction in HCC. Regarding this, in the model of HCC induced 
with DEN, a study was conducted to determine the mitochondrial effects of ginkgolide B in 

Mitochondrial parameter Effect

Function Maintained and recovered:

• mitochondrial respiration

• ATP synthesis

• mitochondrial membrane potential

• dimeric form of the F1F0 ATPase subunit

• normal cellular redox state

Metabolic • Recovered the normal mitochondrial redox state

• recovered the IDH activity

• reduced lactate production

• diminished increased PARP-1 activity

Dynamics Avoided the accumulation of dysfunctional mitochondria through:

• down-regulation of PGC-1α and Sirt-1

• diminution of DRP-1/MFN-2 ratio

• Sirt-3 increment

Table 1. Effects of IFC-305 administration in mitochondria in the sequential model of cirrhosis-HCC.
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two different pharmaceutical formulations, finding a decrease in the mitochondrial genera-

tion of ROS and a decrease in the dissipation of the mitochondrial membrane potential [59]. 

Moreover, two of the most studied hepatoprotective compounds until now are resveratrol and 

N-acetylcysteine (NAC) [60]. On the one hand, resveratrol inhibits the formation of hepatocyte 

nodules in the DEN-induced HCC model plus phenobarbital administration; moreover, it is 

capable of modulating mitochondrial biogenesis [61]. On the other hand, NAC blocked phos-

phorylation of β-catenin, JNK, and c-jun activation, avoiding the development of liver damage in 
HCC transaldolase-deficient mice, a limiting enzyme for the non-oxidative branch of the pentose 
phosphate pathway, which is, at least in part, responsible for HCC generation [62]; furthermore, 

NAC stabilizes the mitochondrial membrane potential regulating mitochondrial dynamics [61].

4. Interaction of mitochondria and epigenetics in HCC: An overview

The epigenome can be altered not only by environmental factors, such as exposure to exog-

enous chemicals [63] but also by changes in the levels of endogenous cofactors and metabolites 

[64, 65]. The exact correlation between nucleus and mitochondrion allows for the maintenance 

of mitochondrial structure and function. On the one hand, the nuclear gene expression is regu-

lated by mitochondrial intermediates, like acetyl-CoA, ATP, NAD+, and s-adenosylmethionine, 

which are the link between the epigenome and calorie availability [47, 66]. In addition to the 

production of epigenetic substrates, mitochondria may be modified in their DNA (mtDNA). 
Some mitochondrial genes have been reported as hypermethylated in HCC; for example, mito-

chondrial ribosomal protein S12 (Mrps12), mitochondria-localized glutamic acid-rich protein 

(Mgrap), and transmembrane protein 70 (Tmem70) genes [67, 68]. On the other hand, the dis-

ruption of the step in the methylation of 5-mC to 5-hmC in the mitochondrial genome leads to 

the alteration of several OXPHOS genes, such as: NADH dehydrogenase (ubiquinone) 1 sub-

unit C2 (NDUFC2), NADH dehydrogenase (ubiquinone) flavoprotein 1 (NDUFV1), NADH: 
ubiquinone oxidoreductase subunit S6 (NDUFS6) from complex 1. These modifications, added 
to the mitochondrial damage by oxidative stress, can favor the loss of ETC function. In addition 

to that, it has been reported that the mitochondrial genome damage can affect the expression 
of nuclear genes [69–71]. Moreover, there is a deregulation of hepatic one carbon, and TCA 

cycle, therefore it driving the aberrant epigenetics changes [72–74]. The main consequence of 
depressing the TCA cycle is the reduced availability of α-ketoglutarate, leading to a decrease 
in the activity of α-ketoglutarate-dependent proteins, which are responsible for the hydroxyl-
ation of many substrates in the cell that are important in epigenomic control [74].

Tumor cell metabolism can be linked to epigenetic changes during carcinogenesis; recent 

research has focused on epigenetic studies in relation to metabolic pathways [75, 76]. HCC is 

a heterogeneous disease affected by various lifestyles and environmental factors. Epigenetic 
alterations are frequently caused by these factors and contribute to hepatocarcinogen-

esis. During HCC development, different alterations in global DNA methylation have been 
described; for example, global hypomethylation leads to aberrant overexpression of onco-

genes and large chromosomal instability [77, 78].

In cirrhosis and HCC, distinct patterns of aberrant DNA methylation associated with cirrhosis 
and HCC have been confirmed [79, 80].
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5. Conclusion

The pathophysiology of HCC is multifactorial and involves mitochondrial dysfunction. 

Mitochondria usually generate relevant modulators of gene expression controlled by epigen-

etic mechanisms. These alterations induce chromosomic instability that could give advan-

tages to subclones of cells to their outgrowth (Figure 1). Further studies are needed to find 

Figure 1. (A) In the model of liver injury induced by diethylnitrosamine (DEN), the architecture of the liver parenchyma is 

altered causing an exacerbated proliferation of various transformed clones, where the presence of a large number of tumors 

randomly distributed in each one is observed in the hepatic lobules. The preneoplastic nodules that form are surrounded 

by septa of collagen fibers; thus, favoring the evasion of the immune system and an ideal hypoxic microenvironment 
for the tumor cells. The genomic instability caused by the toxic as well as favoring mutations, for example in p53, and 

various alterations in different cellular modulators, among them HGF, c-Met, PCNA, gankyrin and p27. It also causes 
an increase of proteins, deacetylating PGC1-α, and, thus, modifies various nuclear genes exported to the mitochondria, 
causing accumulation of abnormal and dysfunctional mitochondria. (B) In the model of hepatocarcinoma induced by 

DEN, the administration of the adenosine derivative, IFC-305, has been shown to have various regulatory effects. The 
excessive accumulation of collagen fibers in preneoplastic nodules as well as the number and size of tumors are reduced. 
Also, cell morphology and DNA recover significantly. A decrease in the deacetylase Sirt-1, whose target is PCG1-α, has 
been observed, which allows the latter to remain acetylated and can be internalized to mitochondria, where it will promote 
its adequate morphology, dynamics and function. It has also been found that the compound IFC-305 acts on the levels of 
some important modulators in cancer (p53, HGF, C-Met…), maintaining or returning them to their concentrations under 

normal conditions. Overall, the aforementioned effects make this compound a possible therapeutic alternative.
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therapeutic strategies capable of maintaining and improving the mitochondrial integrity to 

avoid alterations in the epigenetic regulation of nuclear- and mitochondrial-encoded genes. 

These effects could suppress failures in cell cycle checkpoints and the uncontrolled prolifera-

tion to prevent or reverse HCC as demonstrated for IFC-305.
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HCC  hepatocellular carcinoma

PARP-1  poly (ADP-ribose) polymerase-1

TACE  transcatheter arterial chemoembolization

HSC  hepatic stellate cells

IL-1  interleukin-1

IL-6  interleukin-6

ECM  extracellular matrix

HGF  hepatocyte growth factor

IGR  insulin growth factor

TGF-β  transforming growth factor-β

MMPs  metalloproteinases

NAD+  nicotinamide adenine dinucleotide oxidized

NADH  nicotinamide adenine dinucleotide reduced

CCl4  carbon tetrachloride

IFC-305  aspartate of adenosine
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VEGF  Vascular Endothelial Growth Factor

OXPHOS oxidative phosphorylation

SCO2  chaperone protein “synthesis of cytochrome c oxidase 2”

ROS  reactive oxygen species

TIGAR  TP53-induced glycolysis and apoptosis regulator

PCNA  proliferating cell nuclear antigen

DEN  diethylnitrosamine

GSH  glutathione reduced

TCA  tricarboxylic acids chain

ETC  electron transport chain

IDH  isocitrate dehydrogenase

Sirt-1  sirtuin-1

PGC-1α  peroxisome proliferator-activated receptor gamma coactivator 1-alpha

ψm  mitochondrial membrane potential

MFN 1  mitofusin 1

MFN 2  mitofusin 2

NAC  N-acetylcysteine

mtDNA  mitochondrial DNA

Mrps12  mitochondrial ribosomal protein S12 gene

Mgrap  mitochondria-localized glutamic acid-rich protein gene

Tmem70  transmembrane protein 70 gene

NDUFC2 NADH dehydrogenase (ubiquinone) 1 subunit C2

NDUFV1 NADH dehydrogenase (ubiquinone) flavoprotein 1

NDUFS6  NADH: ubiquinone oxidoreductase subunit S6
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