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Abstract

For several decades, the increasing productivity in many industrial domains has led to a
significant and ever-increased interest to protective and hard coatings. In this context,
titanium-aluminum nitrides were developed and are now widely used in a large range of
applications, due to their high hardness, good thermal stability, and oxidation resistance.
This chapter reviews the thermodynamical characteristics of the Ti-Al-N system by
reporting the progress made in the description of the Ti-Al-N phase diagram and the main
mechanical and chemical properties of Ti1�xAlxN-based coatings. As a metastable phase,
the existence of the fcc-Ti1�xAlxN depends on particular process parameters, allowing
stabilizing this desirable solid solution. The influence of process parameters, with a par-
ticular interest for chemical vapor deposition (CVD) methods, on morphology and crys-
tallographic structure is then described. The structure of Ti1�xAlxN thin films depends
also on the aluminum content as well as on the annealing temperature, due to the
spinodal nature of the Ti-Al-N system. These changes of crystallographic structure can
induce an improvement of the hardness, oxidation resistance, and wear behavior of these
coatings. The main mechanical and chemical properties of physical vapor deposition
(PVD) and CVD Ti1�xAlxN-based coatings are also described.

Keywords: TiAlN coatings, CVD, aluminum content dependence, mechanical properties,
oxidation resistance

1. Introduction

Hard coatings started to be used at an industrial scale in the 1970s [1]. It was then titanium

nitride (TiN) obtained by thermal CVD and deposited on tungsten carbide tools in order to

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



improve not only the lifetime of tools but also their behavior during machining. Physical vapor

deposition technologies (PVD) were used in the mid-1980s for this type of application. “Vide et

Traitement Holding” started this activity in France in 1984 with cathodic arc deposition

technology, now widely used in this field. Titanium and chromium nitrides were the first

materials on the market in the field of coatings for cutting tools or molds. The evolution of

deposition reactors and research increasingly active on this issue has led to coatings with

multilayer architecture. Thus, titanium carbonitride (TiCN), whose layered architecture is

performed by modulating the introduction of reactive gases, led, in the early 1990s, to a

significant change of machining performances under severe conditions. The evolution of both

machining techniques, high-speed machining for example, and materials to be machined has

led to new alloy developments such as Ti1�xAlxN whose thermal stability and oxidation

resistance, in particular, are better than that of TiN. Ti1�xAlxN films are thus now industrially

used in a wide range of applications, from hard and barrier coatings on cutting tools or molds

[2] to electronic devices or optical coatings [3]. Since the late 1990s, new architectures have

been introduced on the hard coatings market. Indeed, the nanostructuring of deposited mate-

rials has allowed an increase of hardness while keeping Young’s modulus and internal resid-

ual stresses at relatively low values. These nanostructured coatings are essentially divided into

two kinds: at first, the heterostructures (superlattice, nanolayered films), stacks of two mate-

rials with thicknesses of nanometer size, and secondly, the nanocomposites consisting of

transition metal nitride crystallites of a nanoscale size in a matrix (nanocrystalline or amor-

phous) of a nonmetal covalent nitride [4]. This review chapter is focused mainly on the

Ti1�xAlxN material coatings. Thermodynamical basis and influence of the elaboration pro-

cesses, especially the thermal CVD, on the structure of the coatings are discussed. The main

properties (hardness, tribological properties, and oxidation resistance) of these coatings are

finally described regarding their dependence on Al content and deposition temperature. The

overall mechanisms related to these properties are also discussed. Information about other

properties as thermal and electrical conductivity, hydrogen permeation, or thermal expansion,

not presented here in details, should be found in [5–9].

2. Thermodynamical background

2.1. Phase thermodynamics basis

Phase stability (or metastability) is generally described using the change in Gibb’s free energy

G as a function of the concentration c. When ∂2Gð Þ=∂c2 ≥ 0, the system is thermodynamically

stable (or metastable). If ∂2Gð Þ=∂c2 < 0, the system is unstable and will decompose to form the

stable phases. Actually, for a two-phase system (or more), the free energy of the system is

described using a mixing term ΔGm. This free energy of mixing essentially defines the inter-

actions between the atoms and so the ability of the system to form a solid solution or to

segregate, i.e., to decompose into two distinct phases. This decomposition should be made by

two different ways, depending on the value of the system’s free energy. Figure 1 shows the

decomposition domains for a mixing of two elements A and B associated to the free energy
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curve at the temperature T. The curves 1 and 2 delimit the domain of the binodal decomposi-

tion. Below the curve 2, the decomposition will be spinodal, and above the curve 1, the solid

solution exists, regardless of the amount of the element B in the mixture. In the same way, on

the G curve (G vs. chemical composition, Figure 1), a demixing domain is identified by the

presence of a “hill” limited by two inflection points. Between these two points (points b and d

on Figure 1), the demixing will be spinodal. Between the inflection points and the two minima

of free energy (domains a-b and c-d on Figure 1), demixing will occur by nucleation-growth

mechanism [10]. This G curve is associated to the demixing curves of the TiN-AlN system.

2.2. Ti-Al-N system

2.2.1. Stable diagram

Thermodynamic calculations have mainly aimed at stabilizing, experimentally, the ternary

compounds as Ti3AlN, Ti3Al2N2, and particularly Ti2AlN, because of its Mn + 1AXn nature

(where M is a transition metal, A is an A-group element, and X could be C or N and 1 < n < 3)

[11–14]. Many authors have reported phase diagrams with rather good agreement with

Figure 1. Schematic representation of a typical free energy curve at a temperature T with the associated decomposition

domain. The two domains between the points “a-b” and “c-d” will show a nucleation-growth decomposition, while the

“b-d” domain is related to the spinodal decomposition [10].
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experimental results. Especially, Chen and Sundman achieved a quite complete modeling up

to 2500�C showing the evolution of the stability of these ternary compounds with temperature

and establishing a thermodynamical database with a good reliability compared to experiments

[15]. The pseudobinary diagram of the Ti-Al-N system is shown Figure 2 [16]. It is clearly

shown that mixing of AlN and TiN results in a biphased domain composed of the stable fcc-

TiN and hcp-AlN on the entire range of composition. It is only from 1250�C that a little

solubility of Al appears in the TiN structure.

2.2.2. Metastable diagram

As said previously, the thermodynamic aspects of the Ti-Al-N system do not predict the

existence of the solid solution, the solubility of Al in TiN is very low. It implies that the

experimentally observed Ti1�xAlxN solid solution is a metastable phase, i.e., it is kinetically

favorable to stabilize it rather than the stable phases. The metastable Ti1�xAlxN phases can

exist under two structures: an fcc-solid solution (also known as B1 structure), considered as the

mixing of the stable fcc-TiN and the metastable fcc-AlN, and an hcp-solid solution (B4 struc-

ture), considered as the mixing of the metastable hcp-TiN and the stable hcp-AlN. The depo-

sition kinetic then hinders the demixing and allows to stabilize these solid solutions [17, 18].

In order to better understand and discuss about the existence of the Ti1�xAl xN solid solu-

tion, a lot of thermodynamical studies, and more recently ab initio calculations, have been

realized for several decades. These calculations show that the shape of the ΔGm curve

clearly leads to demixing. More, the system is typically spinodal [19], i.e., the Ti1�xAlxN

Figure 2. Pseudobinary TiN-AlN stable phase diagram [16].
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phase must spontaneously decompose into fcc-TiN and fcc-AlN. Then, with increasing time

or temperature, fcc-AlN forms its hcp-AlN stable phase by germination and growth. This

implies that fcc-TiN and fcc-AlN are thermodynamically immiscible (see Figure 2).

Considering that fcc-Ti1�xAlxN solid solution is the result of the mixing of fcc-TiN and fcc-

AlN, the thermodynamical modeling of this system is based on an equilibrium between

these two phases with a total solubility. Anderbouhr et al. proposed thus a metastable

ternary diagram of the Ti-Al-N system, showing the presence of the fcc-Ti1�xAlxN phase

on the whole range of aluminum content [20, 21]. Thermodynamic values for the lattice

stability of fcc-AlN were based on experimental study led by Stolten et al. [17, 22]. How-

ever, experimental studies show that it is possible to deposit single-phased fcc-Ti1�xAlxN

with a maximum x ≈ 0.7 for PVD processes as magnetron sputtering [23, 24] or cathodic arc

[25, 26] and up to x ≈ 0.9 for coatings deposited by thermal CVD [27] or PECVD [27–29]

(with x defined as the Al/(Al + Ti) molar ratio). Above these values (x = 0.7 for PVD

techniques and x = 0.9 for LPCVD), the deposition of a hexagonal phase occurs (hcp-Ti1-

�xAlxN for PVD techniques and hcp-AlN for CVD processes). Thus, it seems to be difficult

to correlate the modeling of the Ti-Al-N ternary phase diagram and these evolutions of

structure with aluminum content.

Based on experimental results, a pseudobinary diagram (Figure 3) was proposed by Cremer

et al. [30, 31] and confirmed by further experiments. This diagram is now widely accepted by

many researchers. Although this diagram comes from experimental PVD data from films

obtained by magnetron sputtering up to 700�C, other data for higher temperatures were

extrapolated and are not in agreement with the current results, where deposition of an fcc-

Ti1�xAlxN single-phased film was obtained by LPCVD and PECVD up to x = 0.9 [27, 28].

Figure 3. Metastable pseudobinary TiN-AlN diagram based on experimental results from films obtained by magnetron

sputtering up to 700�C [31] (from experimental study in [30]).
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2.2.3. The spinodal nature of the Ti-Al-N system

As previously enounced, thermodynamical and ab initio calculations have clearly shown the

spinodal nature of the Ti-Al-N system. They also demonstrated that this spinodal decomposition

occurs in a wide range of temperature. In their study concerning demixing behavior of the fcc-

Ti1�xAlxN structure, Mayrhofer et al. [32] have notably found that the free energy curve of the

TiN-AlN mixture shows the presence of the spinodal decomposition up to 4000�C (Figure 4).

Thus, the existence of the Ti1�xAlxN solid solution is thermodynamically not possible up to this

temperature. However, recent calculations of a metastable phase diagram taking into account the

influence of the lattice vibrations due to temperature on free energy of the fcc-Ti1�xAlxN struc-

ture showed a considerable reduction of maximum temperature of the demixing domain [33].

Nevertheless, this calculated temperature (≈2600�C) is still higher than the common temperature

range used for deposition of coatings by CVDmethods (600–1800�C).

Calculations are also focused on the chemical spinodal nature of Ti-Al-N in order to explain

why the solid solution fcc-Ti1�xAlxN remains stable up to 700�C. Actually, spinodal decompo-

sition is distinguished from nucleation and growth by the spontaneous isostructural demixing

[19]. The total free energy evolutions, associated to the spinodal decomposition, depend on

several factors, as shown in the Eq. (1) [34]:

∆G ¼
1

2

d2G

dc2
Δc2 þ

K

λ2
Δc2 þ

E

1� ν
η2VmΔc

2 (1)

where Δc is the compositional variation c� c0, λ, the period of the compositional fluctuations,

K, a constant that depends on the bonding energy of the atoms, E, the Young’s modulus, ν, the

Poisson’s ratio, η, the lattice mismatch per unit of compositional variations η ¼ 1=að Þ da=dcð Þ,

and Vm, the molar volume. The first term refers to the change in free energy associated to the

Figure 4. ∆G curve of the TiN-AlN mixture as a function of the AlN content for different temperatures [32].
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decomposition, the second term describes the compositional fluctuations inside the material

and represents then the driving force for the spinodal decomposition, and the last term is

related to the strain energy associated to the formation of the two domains resulting from

spinodal decomposition. During spinodal decomposition, the compositional fluctuations

inside the material are amplified to form two isostructural phases with coherent or incoherent

interfaces [35]. However, the formation of these interfaces is accompanied by strain energy,

related to the lattice parameter misfit between the two phases formed after demixing (about

200–500 mJ/m2 for a coherent interface and 500–1000 mJ/m2 for incoherent interfaces).

According to the Hilliard and Cahn theory [34, 36], if this strain energy is sufficiently large, it

is able to balance the driving force for spinodal decomposition (i.e., compositional fluctua-

tions) and then, able to hinder spinodal decomposition. Thus, Zhang et al. show that spinodal

decomposition in the Ti-Al-N system occurs exclusively if coherent domains are formed [34,

36]. This phenomenon is responsible of the age-hardening effect observed in Ti1�xAlxN coat-

ings. The relationship between the spinodal decomposition parameters (especially the wave-

length of the compositional fluctuations) and the microstructure of the Ti-Al-N coatings was

recently studied by mean of the Calphad technique with good agreement with the experimen-

tal results obtained in the literature [37].

Alling et al. [38] studied the effect of pressure on the stability of the B1 structure. On one hand,

they found that contact pressure of 20 GPa gives a weak increase of the isostructural mixing

enthalpy for the fcc structure and then enhances slightly the spinodal decomposition. On the

other hand, the pressure leads to a significant reduction of the mixing enthalpy of fcc and hcp

structures and thus should delay the formation of the detrimental hexagonal structure for Al-

rich fcc-Ti1�xAlxN during operations as machining, where coatings are subjected to high

temperatures and pressures.

2.2.4. Thermal stability

As a metastable phase, the fcc-Ti1�xAlxN solid solution tends to return to its stable state when

temperature increases. The annealing process under vacuum thus leads to decomposition of

the solid solutions, firstly by spinodal decomposition to form the two coherent fcc domains

and then by nucleation of hcp-AlN. The spinodal decomposition is otherwise not always

observed during annealing experiments and stable phases fcc-TiN and hcp-AlN can be directly

formed, depending on annealing process [28]. Furthermore, the observation of the two cubic

TiN and AlN phases, as a result of the spinodal decomposition, can be difficult due to the close

position of some fcc-AlN X-ray diffraction responses with those of fcc-TiN. Recent studies on

the coefficient of thermal expansion of Ti1�xAlxN and CrAlN coatings have shown that the

presence of the B4 structure (hcp-Ti1�xAlxN or hcp-AlN) in the as-deposited state promotes the

further formation of these hexagonal phases during annealing [9].

The decomposition process is, as oxidation and hardness, highly dependent to the aluminum

content of the as-deposited coatings. Studies show that films with high aluminum contents,

and thus having a higher demixing energy than that of films with low aluminum contents,

tend to decompose at lower temperature [23, 28]. However, depending on annealing parame-

ters, the strain energy needed to the formation of the two cubic domains can retard the
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spinodal decomposition and then can increase the stability of the coating. Typically, the

decomposition of the solid solution occurs at temperatures between 700 and 900�C, depending

on the aluminum content in the as-deposited coating [23, 39]. LPCVD Ti1�xAlxN coatings with

aluminum content of about x = 0.8 deposited by Endler in 2008 have shown a particularly high

stability, with the first signs of decomposition at 1200�C [27]. The reasons for this exceptional

stability under vacuum conditions are not clearly defined. An increase of the thermal stability

of Ti1�xAlxN coatings can be achieved by adding elements as Si, Hf, or Ta [40–42].

3. Deposition of Ti1�xAlxN coatings

3.1. Crystallographic structure

As briefly described earlier in the thermodynamical description of the Ti-Al-N system, as-

deposited Ti1�xAlxN coatings have commonly three distinct structures: fcc, hcp, and a mix of

fcc and hcp. These crystallographic structures are obtained for both PVD and CVD coatings

and show a strong dependence on the aluminum content. For lower aluminum content,

aluminum atoms are considered to replace titanium atoms in the fcc-TiN structure and form

the single-phase fcc-Ti1�xAlxN. This phase is the desired one on tools for cutting operations,

needing high hardness, high thermal stability, and good oxidation resistance.

By increasing aluminum content in the films, a biphased structure appears. These phases are

cubic (fcc) and hexagonal (hcp), but their compositions depend on the deposition process.

Concerning PVD processes, for which condensation of a vapor on a cold substrate occurs, the

cooling rate are so high that deposition of metastable materials is expected. A mixture of fcc-

Ti1�xAlxN and hcp-Ti1�xAlxN can be observed, as reported by Chen et al. [23] for magnetron

sputtered coatings deposited at 500�C and a working pressure of 0.4 Pa. These results are in

agreement with the metastable diagram established by Cremer et al. (Figure 3). Concerning

the thermal CVD process, performed at high temperatures and then closer to the thermody-

namic equilibrium, a mixture of the stable phases fcc-TiN and hcp-AlN is generally reported

[23, 27]. The presence of fcc-AlN, in addition to the fcc-TiN and hcp-AlN phases, was also

found by Wagner et al. for APCVD coatings, forming a three-phase structure. The fcc-AlN

formation was attributed to the spinodal decomposition of the fcc-Ti1�xAlxN coatings, where

an excess of Al atoms in the fcc-Ti1�xAlxN solid solution leads to an increase of the demixing

energy and then cause the formation of fcc-AlN [43]. The aluminum content threshold, at

which this crystallographic transition occurs, depends on the deposition techniques and pro-

cess parameters (up to about x = 0.7 for PVD and up to x = 0.9 for CVD and PECVD). Anyway,

the presence of a mixture of these two phases is generally detrimental for both mechanical

properties and oxidation resistance of the films [7, 25, 26], except if a nanocomposite is formed

[44, 45]. This mixing of hcp and fcc structures remains up to x = 1 for coatings deposited by

CVD and PECVD processes [27, 44–46]. It should be noted, however, that the achievable

microstructures for LPCVD processes are a little bit more complex and very dependent of

process parameters. As denoted above, even though fcc-Ti1�xAlxN solid solutions were found

up to x = 0.9, the presence of nanocomposite structures was recently reported. The deposition
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of Ti0.05Al0.95N coatings, composed of an alternate of fcc-TiN/hcp-AlN nanolamellae embed-

ded in a Al-rich Ti1�xAlxN was thus found by Keckes et al. in 2013 [44]. More recently,

nanocomposite structures constituted by Ti-rich fcc-Ti1�xAlxN/Al-rich fcc-Ti1�xAlxN nanolam-

ellae (for 0.73 < x < 0.82) were also deposited in an industrial CVD facility [44, 47–49].

In the case of PVD, the deposition of a single-phase hcp-Ti1�xAlxN is observed for aluminum

contents above x ≈ 0.7. This phase is generally found to be detrimental for mechanical proper-

ties and oxidation resistance but some researchers found a better oxidation resistance for these

hcp-Ti1�xAlxN coatings deposited by unbalanced magnetron sputtering [23].

These microstructural changes are summarized in Figure 5. The structure obtained for differ-

ent deposition processes (PVD, PECVD, and thermal CVD), associated to their out-of-equilib-

rium level, is defined as a function of the aluminum content in the Ti1�xAlxN coatings. As fcc-

Ti1�xAlxN is a metastable phase, we could expect that higher aluminum content should be

obtained for the process with the highest out-of-equilibrium level, so for PVD processes.

However, as described above, higher aluminum content in the fcc phase is obtained for

LPCVD and PECVD processes. Atmospheric pressure CVD (APCVD) process, near to the

thermodynamic equilibrium, leads to relatively low aluminum contents in the fcc-Ti1�xAlxN

phase (about x = 0.4) [43].

3.2. Physical vapor deposition (PVD) of Ti1�xAlxN coatings

Vacuum cathodic arc deposition (CAD) process [50–53] is probably the most widely used PVD

technique on an industrial scale to prepare protective hard Ti1�xAlxN-based coatings on

cutting tools and forming molds [50, 54, 55]. The high ionization levels of cathodic arc

Figure 5. Crystallographic structures of Ti1�xAlxN coatings obtained for APCD, LPCVD, PECVD, and PVD processes

according to the aluminum content. “fcc” is related to the fcc-Ti1�xAlxN solid solution; “fcc + hcp” refers to a mix of fcc-

Ti1�xAlxN + hcp-Ti1�xAlxN for PVD coatings and to fcc-TiN + hcp-AlN for CVD and PECVD coatings; “hcp” refers to the

hcp-Ti1�xAlxN solid solution (data from [23, 27, 43, 46]).
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discharges and high ion energy can provide advantages such as enhanced adhesion required

for mechanical applications involving high loads. CAD allows deposition of a wide range of

hard compounds as nitrides or carbonitrides. However, CAD is also often associated to

macrodroplet generation that degrades the surface roughness of coatings. Droplets’ density in

the films, which is not redhibitory for cutting operations, has been significantly reduced thanks

to the development of high-performances cathodes. The current trend is to develop advanced

nanostructured hard coatings in order to enhance properties as hardness, toughness, and

oxidation resistance [54, 55]. The deposition of Ti1�xAlxN coatings by various PVD methods

was hugely documented since several decades. Then, this review will focus mainly on CVD

coatings and particularly on the thermal CVD process.

3.3. Chemical vapor deposition (CVD) of Ti1�xAlxN coatings

Thermal CVD deposition process is based on thermodynamic aspects, fluid mechanics, related

to the transport of gaseous precursors toward the substrates and kinetics of deposition,

allowing to synthetize metastable phases. Adjusting these parameters allows reaching a large

range of microstructure and morphologies. For example, the stabilization of the metastable fcc-

Ti1�xAlxN is the result of a low mobility of species at the substrate surface. Thus, low temper-

atures, high partial pressure, and low total pressure are required. Processes as LPCVD and

PECVD are now widely used in industrial plants for deposition of aluminum-rich Al-Ti-N

coatings. However, MOCVD processes remain rare, because of the highly volatile nature and

the high cost for preparing metalorganic precursors. Thus, regarding the lack of extended

literature on MOCVD Ti1�xAlxN coatings, the following parts will mainly focus on thermal

CVD and PECVD processes. Anyway, studies on MOCVD processes and specific precursors

are available in [21, 56–58].

3.3.1. Gaseous reactions

Although the deposition of Ti1�xAlxN coatings is widely performed by PVD and PECVD

processes, it is less common by thermal CVD processes. The good understanding of the

process needs to take into account a lot of parameters linked to thermal homogeneity and

distribution of gases. A detailed description of the fluid mechanics and thermic mechanisms

inside the reactor related to chemical vapor deposition systems is given in [59–63]. Here, we

briefly describe the gases production and reactions leading to the formation of coatings in the

Ti-Al-N system.

Deposition of TiN and AlN by thermal CVD is generally performed using metal chlorides as

TiCl4 and AlCl3. Gaseous TiCl4 is often generated with a bubbler by adjusting vapor pressure

in the TiCl4 tank but systems regulating directly the liquid flow of TiCl4 also exist. AlCl3 is

typically generated by in situ chlorination by passing HCl through Al platelets. Anderbouhr

et al. [64, 65] have also demonstrated the possibility to deposit Ti1�xAlxN coatings from TiCl3
and AlCl3 generated by passing Cl2, HCl, or TiCl4 on Ti-Al bulk alloys. However, the chlori-

nation conditions (temperature and pressure) could generate unwanted species, and particu-

larly solid <TiCl2> that precipitates below about 700�C [64]. This range of temperature is in the

common range used for generation of aluminum chlorides (300–400�C), in order to generate
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only AlCl3 and its dimer Al2Cl6 species. Thus, the direct chlorination of TiAl has to be realized

at temperatures above 700�C. The nitrogen source was initially N2, for the deposition on

carbide tools. NH3 is now commonly used, notably due to the development of microelectronics

industry. The lower stability of NH3 compared to that of N2 allows to react with TiCl4 and

AlCl3 at lower temperatures.

As previously said, the formation of the fcc-Ti1�xAlxN solid solution is envisioned to be the

result of the codeposition of the metastable fcc-AlN and stable fcc-TiN. The reaction process

using NH3 is considered to result mainly from the reactions (2) and (3):

6TiCl4 þ 8NH3 ! 6TiN þ 24HClþN2 (2)

AlCl3 þNH3 ! AlN þ 3HCl (3)

Other intermediate reactions forming complex molecules should also occur in the reactor

and in the exhaust system but their formation seems mainly to occur for APCVD process

[66, 67].

3.3.2. Morphology/microstructure

Thermal CVD deposition is highly dependent on the total pressure, partial pressure of pre-

cursors, as well as on the deposition temperature. An overall description of the effects of these

parameters could be summarized as follows [59, 68] and shown in Figure 6:

• High temperatures during deposition promote surface diffusion and adatom mobility,

leading to coarsening of the grains.

• In the same way, a low partial pressure (or a low supersaturation) allows better surface

mobility of atoms and then leads to coarse grains. Epitaxial coatings are then obtained for

high deposition temperatures and low partial pressure. High partial pressure and low

temperature rather give nanosized grains or amorphous coatings.

Figure 6. Summary of the typical microstructure of CVD coatings with regards to the deposition temperature and the

supersaturation [59].
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• The total pressure acting mostly on the diffusion in the boundary layer, a low total

pressure promotes diffusion in the boundary layer and the mass transport to the surface,

according to the Grove’s model [59]. Then, a higher supersaturation should be achieved

by lowering the working pressure.

Other parameters as distance of the substrate from gas inlet or discharge voltage for PECVD

techniques have also to be taken into account to optimize the morphology/microstructure of

the coatings.

TiN coatings obtained by CVD processes show generally columnar growth, according to the

Van der Drift model [69], and resulting from the competition between different crystalline

orientations. In fact, growth of grain is thermodynamically more favorable along some orien-

tations: the grains having these favorable orientations perpendicularly to the substrate surface

will be favored and will lead to column formation [69]. The preferential orientation depends

strongly on the process parameters (gas ratios, deposition temperature, partial pressure of each

precursors, etc.). As an example, for TiN coatings deposited at atmospheric pressure, Cheng

et al. found, at high temperature and high N2 partial pressure, a (200) texture while they found

a (110) texture at low temperature and high N2 partial pressure [70, 71]. In the same way, the

control of process parameters allows to achieve a wide range of morphologies [68]. Thus,

Figure 7. Microstructure of Ti1�xAlxN coatings for different aluminum content: (a) columnar structure of Ti0.92Al0.08N

deposited on silicon substrate by LPCVD [65]; (b) agglomerate-like structure of Ti0.23Al0.72N deposited on WC/Co

substrate by APCVD [43]; (c) nanocomposite fcc-Ti1�xAlxN/Al-rich fcc-Ti1�xAlxN arrangement forming cubes having the

(111) planes parallel to the surface [48].
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microstructures like agglomerate-like grains, lenticular-shaped grains, or star-shaped grains

were reported [70, 72–76].

In the case of Ti1�xAlxN, a strong dependence to Al content and process parameters is

observed. Thus, Anderbouhr et al. have deposited Ti1�xAlxN films by LPCVD in a laboratory

scale unit at temperatures from 600–1000�C and a pressure of 1130 Pa [64]. They found fine

columnar morphology (Figure 7a) up to x = 0.2 and glassy morphology for the highest aluminum

contents (x ≈ 0.7). Wagner et al. have deposited Ti1�xAlxN up to x = 0.72 in an industrial

thermal CVD unit and at atmospheric pressure [43]. As it should be seen in Figure 7b, they

also found columnar growth for low Al contents (single-phased fcc-Ti1�xAlxN structure) but

coarse agglomerate-like structure for highest value of x (biphased fcc-TiN/hcp-AlN structure).

These results confirm the influence of working pressure on grain coarsening: the LPCVD

process allows achieving higher supersaturation on the surface of the growing film and then

leads to a grain refinement. These coatings have generally no preferential orientation. How-

ever, the recent deposition of Ti0.18Al0.82N nanocomposites reveals the particular formation of

“cubes,” growing with the [111] direction perpendicular to the substrate surface (see

Figure 7c). XRD analysis revealed the presence of both Al-rich fcc-Ti1�xAlxN and Ti-rich fcc-

Ti1�xAlxN solid solutions. Further TEM analysis revealed the presence of coherent Ti-rich fcc-

Ti1�xAlxN/Al-rich fcc-Ti1�xAlxN nanolamellae. The lattice accommodation between these

lamellae was attributed to the self-adjustment of the Ti, Al, and N concentration near the

interface [48]. PECVD coatings also show a grain refinement with increasing aluminum incor-

poration [28, 46, 77]. Other parameters have to be taken into account in order to describe

coatings’ morphologies obtained by PECVD processes. An increase of the gas inlet distance

seems to lead to a fine-grain morphology. This evolution should be related to the increase of

the aluminum content and the drop of the nitrogen content in the coatings. The higher gas inlet

distance leads to substoichiometric coatings (only 35 at% of nitrogen in the coatings instead of

the 50 at% for stoichiometric coatings) and showing a mixture of fcc-Ti1�xAlxN and hcp-

Ti1�xAlxN phases [46]. Discharge voltage does not seem to influence directly the morphology

of coatings but influences the aluminum content.

3.3.3. Chemical composition and crystallographic structure

Chemical composition is one of the most important characteristics in Ti1�xAlxN coatings due

to its strong influence on the crystallographic structure. Since the crystallographic structure is

highly dependent on the aluminum content, researches led on Ti1�xAlxN coatings focused

mainly on the optimization of the aluminum content in the films, particularly in the fcc

structure, allowing to reach the particular mechanical and chemical properties of Ti1�xAlxN

films.

3.3.3.1. Aluminum content

Although the deposition of Ti1�xAlxN coatings is widely performed by PVD processes, it is

less common by PECVD and thermal CVD processes. Thus, PVD fcc-Ti1�xAlxN single-

phased coatings are limited to x = 0.67–0.7. As an example, the single-phase fcc-Ti1�xAlxN

was obtained up to x = 0.67 in films deposited by magnetron sputtering [23], up to 0.65 by
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cathodic arc deposition [78, 79] and up to 0.71 by high-power impulse magnetron sputtering

(HiPIMS) [80]. This limit is consistent with the metastable solubility limit predicted by

thermodynamic and ab initio calculations. In contrast, CVD processes allow to deposit fcc

structure with higher aluminum contents. Even though the possibility to deposit fcc-

Ti1�xAlxN at atmospheric pressure (APCVD) and at relatively low temperatures (<700�C)

was demonstrated by Wagner et al. [43], the morphological aspects of the coatings and the

associated bad mechanical properties for high aluminum contents lead to some limitations

for APCVD processes. It seems thus difficult to deposit performant Ti1�xAlxN coatings by

APCVD with an aluminum content higher than 0.4. However, LPCVD development has led

to achieve deposition of aluminum-rich coatings with good mechanical properties and hav-

ing aluminum contents higher than that reached at atmospheric pressure. Anderbouhr et al.

have thus shown the possibility to deposit the fcc-Ti1�xAlxN solid solution up to x ≈ 0.7 by a

LPCVD process using titanium and aluminum chlorides [64, 65]. Later, Endler et al. obtained

fcc-Ti1�xAlxN up to x = 0.9 at 800�C and pressure < 10 KPa [27]. Fcc-Ti1�xAlxN coatings with

x ≈ 0.8 and deposited at pressure below 50 mbar are notably industrially used [81]. These

CVD coatings were deposited with AlCl3/TiCl4 gas ratio > 1, due to the higher stability of

AlCl3 than that of TiCl4. An increase of the AlCl3/TiCl4 ratio leads to a rise of the aluminum

content in the coating [27, 43, 64]. As shown in Figure 8, the same dependence is observed

for PECVD coatings [28, 29]. As specified previously, discharge voltage and gas inlet dis-

tance from the substrate strongly influence the chemical composition. Increasing discharge

voltage favors aluminum incorporation in the coatings [28, 46]. In the same way, increasing

distance from gas inlet strongly increases the aluminum content and, as a consequence, leads

to granular microstructure [46].

The reason for the huge gap between the metastable solubility limits of aluminum in the fcc-

TiN structure obtained for different deposition processes (around 0.7 for PVD, 0.9 for LPCVD

and PECVDmethods) is only poorly discussed in literature. However, Mayrhofer et al. [82] led

ab initio calculations to study the influence of the distribution of Al atoms substituting Ti in the

Figure 8. Evolution of the aluminum content in the Ti1�xAlxN coatings vs. AlCl3/TiCl4 ratio for PECVD coatings

deposited at 500�C and about 670 Pa [83].
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fcc-TiN structure. They found that the aluminum distribution giving the lowest quantity of Ti-

Al bonds led to high solubility limit. Their results showed notably an increase of the solubility

limit from x = 0.64 to x = 0.74 only by changing the atomic distribution of Al and Ti. Thus, they

concluded that the distribution of the aluminum atoms in the lattice is one of the factors

explaining the high solubility limit obtained for PECVD and LPCVD coatings.

3.3.3.2. Impurities

Another factor that should influence properties of the coatings is the chlorine incorporation

after CVD deposition. Concerning CVD process, for which the temperature is the key factor,

higher deposition temperatures promote precursor dissociation and thus lead to a decrease

of the chlorine content in the coatings. However, a rise of the aluminum precursor flow rate

leads to an increase of the Cl content in the film [43, 77, 83]. Concerning PECVD process, an

increase of the discharge voltage leads to a better dissociation of species and thus reduces Cl

content in the coatings [28, 46]. In the same way, increasing gas inlet distance leads to a

higher dissociation of Al precursor and then to decrease the Cl content [46]. Oxygen is also

generally identified as a detrimental element for the properties of the coatings. However,

while several studies describe the mechanisms responsible for the oxide formation (the

oxygen diffusion notably) during annealing of the Ti1�xAlxN coatings, no studies were

found concerning the effect of the oxygen content on the properties of the coatings (except

the oxide scale formation).

4. Properties of Ti1�xAlxN coatings

Ti1�xAlxN coatings are now extensively used for machining applications, where good mechan-

ical and chemical properties are needed in order to ensure the stability of the coatings in in-

service conditions. These properties are strongly dependent on the chemical composition of the

coating and the working temperature, which could lead to a change in structure of the coating.

Properties as hardness and oxidation resistance are then reviewed with respect to the alumi-

num content in the fcc-Ti1�xAlxN phase and deposition temperature.

4.1. Mechanical properties

4.1.1. Hardness

4.1.1.1. Al-content dependence of hardness

Hardness of the coating is a key property for increasing the wear resistance and improving

the tool lifetime of the cutting tools. The hardness of coatings is generally characterized by

mean of nanohardness tests. Among the mechanical properties of Ti1�xAlxN coatings, the

hardness is only indirectly related to the aluminum content via the crystallographic struc-

ture. Thus, an increase of the aluminum content in the fcc-Ti1�xAlxN phase leads to an

increase of the hardness. The main mechanism is solid solution hardening: the substitution

of Ti by Al atoms in the fcc-TiN leads to a lattice distortion and thus limits the motion of
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dislocations [28]. Above an aluminum content threshold, a mixture of two phases, the cubic

and hexagonal structures, is deposited. The presence of the hcp phase, observed for about

x = 0.7 in Ti1�xAlxN, leads to a drop in hardness of the coatings [8, 23], as it can be seen in

Figure 9. Highest aluminum contents lead, as specified earlier, to the deposition of hcp-

Ti1�xAlxN single-phased coatings, when a PVD method is used, associated with lower

hardness. The hardness of some coatings deposited by PVD, CVD, and PECVD methods

related to the structure and process parameters is summarized in the table given in Appen-

dix A. It can be seen that PVD Ti1�xAlxN monolayer coatings generally show hardness

between 25 and 30 GPa. Concerning CVD processes, for which the aluminum content in the

fcc-Ti1�xAlxN solid solution can reach values up to x = 0.9, hardness up to 32.4 GPa was

reported. Nanocomposite structures consisting of an alternate of fcc and hcp nanolamellae

were found to have a relatively high hardness (≈26 GPa) compared to other hcp-AlN-

containing coatings [45]. Higher hardness (36 GPa) was then obtained for fcc-Ti1�xAlxN/Al-

rich fcc-Ti1�xAlxN nanocomposites [47]. PECVD techniques, due to their high out-of-equilib-

rium nature, also allow to deposit coatings which are fcc-Ti1�xAlxN single-phased with x

values up to ≈0.91, as reported by Prange et al. [28]. The highest hardness of single-phased

coatings in this study was found for the fcc-Ti0.17Al0.83N with value of 38.7 GPa. Coatings

with aluminum content higher than 0.91 were deposited and hardness up to 5000 HV

(≈49 GPa) was reached. However, this huge increase in hardness is mainly attributed to the

biphased nanocrystalline structure associated with a significant grain refinement. The large

range of hardness observed for these different deposition processes can be explained by the

high dependence of hardness to many parameters as the grain size (according to the Hall-

Petch law), residual stresses, morphology, and structure of coatings [28, 84–87].

Figure 9. Evolution of hardness vs. aluminum content in coatings deposited by cathodic arc ion plating [25].
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4.1.1.2. Temperature dependence of hardness

The nitrides, like TiN, show a sharp decrease in hardness at temperatures above 400�C, because

of mechanisms as restauration and recrystallization [19]. However, alloying with elements theo-

retically immiscible in TiN like aluminum allows changing completely the temperature depen-

dence of the hardness. The evolution of the hardness as a function of temperature is related to

the thermal stability of the material and to its decomposition process. The coherent spinodal

nature of the decomposition of fcc-Ti1�xAlxN can only lead to the formation of fcc-TiN and fcc-

AlN with coherent interfaces, where the lattice mismatch allows hindering the dislocations’

movement and so resulting in an increase of hardness. This behavior is responsible of the so-

called age-hardening effect observed in Ti1�xAlxN coatings. However, the peak of hardness is

not observed at the same temperature for all coatings but depends also on the aluminum content

in the films. Thus, an fcc-Ti1�xAlxN coating with aluminum content close to the apparent solub-

ility limit (for example, 0.7 for PVD coatings) has higher demixing energy than coatings with

lower aluminum contents and has a trend to decompose more easily, as predicted by thermody-

namical and ab initio calculations [29]. These calculations are in agreement with experimental

studies showing that the age-hardening occurs earlier for Al-rich coatings. Chen et al. [23] have

thus led a study of the mechanical properties and thermal stability of Ti1�xAlxN coatings deposi-

ted by unbalanced magnetron sputtering process at 500�C, 0.4 Pa, and bias voltage of �60 V.

They clearly show that the temperature corresponding to the maximum hardness decreases

when Al content increases. This behavior is shown Figure 10.

Figure 10. Evolution of hardness vs. annealing temperature for coatings with different aluminum contents deposited by

unbalanced magnetron sputtering [23].
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It is also important to note that an enhancement of the hardness with temperature was also

observed in this study for an hcp-Ti0.25Al0.75N single-phased film [23]. Based on XRD analysis,

the authors proposed that this hardness enhancement is related to the formation of fcc-TiN

precipitates. This age-hardening effect can also be observed for nanocomposite coatings with

high hardness stable up to 1100�C, while the “standard” fcc-Ti1�xAlxN solid solution coatings

show a significant drop of hardness for temperatures above 1000�C [45, 47].

4.1.2. Residual stresses

Residual stresses act strongly on the mechanical properties of coatings. Compressive stresses

lead to better wear resistance, especially for adhesive wear at high temperature, by reducing

diffusion in the coating. However, a too high level of compressive stress can lead to cohesive

and/or adhesive spalling. For this reason, studies aim generally at obtaining coatings with the

smallest residual stresses. CVD coatings show generally lower residual stresses than PVD

coatings because of the atomic peening of the growing film, which leads to local densification

and so, to additional compressive stresses in PVD coatings.

Residual stresses are decomposed into two contributions: the thermal stresses, related to the

difference of coefficient of thermal expansion between the substrate and the coating; and the

intrinsic stresses, related to the process parameters and to morphology. The flux and kinetic

energy of species in the PVD processes, particularly those involving high ionization dis-

charges, can generate a local densification of the coating (atomic peening), leading to compres-

sive stresses, while, under low bombardment conditions, a columnar growth is associated to

tensile or low compressive stresses, depending on the intercolumnar distance, according to the

Hoffman model [88].

Residual stresses are generally measured using the substrates’ curvature technique and calcu-

lated by the Stoney’s formula. Values obtained in different studies are difficult to compare

because of the strong dependence to many factors. First, the “material” factors such as thick-

ness of coating, texture, presence of underlayer as TiN [27], TiAl, Ti1�xAlxN with gradual Al

content [89], or nature of substrate influence strongly the residual stresses after deposition.

Moreover, process parameters also play a role in the evolution of stresses, as deposition

temperature or bias voltage [90]. Ahlgren et al. [90] have thus shown that increasing the bias

voltage during the deposition of arc deposited Ti1�xAlxN leads to a significant increase of the

residual stresses in the coating. Stresses of �1.69 GPa were then obtained for a bias voltage of

�40 V, while values of �5.59 GPa were found at bias voltage of �200 V.

Shum et al. led a structural and mechanical study of Ti1�xAlxN films with respect to the Al

content [91]. The films were deposited by reactive close-field unbalanced magnetron

sputtering and high compressive stresses (≈ � 3 GPa) were measured for TiN. This result was

related to the low deposition pressure of 0.27 Pa, which favors an intense bombardment of the

growing film. They found that Al incorporation up to x = 0.41 leads to a significant decrease of

the residual stresses (Figure 11). For this Al content, the lowest compressive stresses of about

�0.35 GPa were measured and they attributed these results to the presence of amorphous AlN

around Ti1�xAlxN grains. When aluminum content is further increased, the residual stresses

rise up to value of ≈ � 1.5 GPa for pure AlN (Figure 11). This behavior was linked to the

increasing fraction of hcp-AlN.
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PVD coatings deposited on WC/Co carbides show compressive stresses between �1 and � 5

GPa [26, 90] and values above 5 GPa are reported to cause delamination of the film deposited

by cathodic arc deposition [90]. Concerning thermal CVD coatings, Endler et al., who depos-

ited fcc-Ti1�xAlxN single-phased films with x = 0.82 on WC/Co obtained compressive stress

less than 1 Gpa, partly due to the presence of a TiN sublayer [27]. The residual stresses

measured on coatings obtained by different deposition techniques are summarized in the table

in Appendix A.

4.2. Oxidation resistance

4.2.1. Overall mechanisms

During machining operations, cutting tools are subjected, in addition to mechanical stresses,

to high temperatures, that can reach 1000�C [92], which can lead to severe oxidation and

consequently to altered properties of the film. The oxidation resistance of Ti1�xAlxN coatings

is generally associated to the formation of a dense Al2O3 diffusion barrier layer that protects

Ti1�xAlxN against further oxidation. However, oxidation mechanisms are complex and the

evolution of the structures as a function of the aluminum content has a strong influence on the

oxidation behavior of the coatings. Nevertheless, although oxidation mechanisms are not now

completely defined, it is widely accepted that the formation of the oxide phase is the conse-

quence of the outward diffusion of Al associated with the inward diffusion of O [7, 93–95].

Moreover, analysis performed by RBS (and later by NRA [95]) shows that oxidation is associ-

ated to a nitrogen loss. This suggests that, in the first steps of oxidation, N is substituted by O,

and oxides and/or oxinitrides such as (Ti, Al)NxOy are formed. With further oxidation, the

composition of the system evolves progressively toward the pure Al2O3 and TiO2 layers as

a function of oxidation parameters. With increasing oxidation time or temperature, Ti begins

to oxidize to form rutile r-TiO2. The formation of this oxide can lead to crack formation

in the Al2O3 protective layer, acting as diffusion paths for oxygen and leading to the complete

oxidation of the coatings. Titanium atoms, by passing through these cracks, lead to the formation

Figure 11. Evolution of the residual stresses vs. aluminum content in Ti1�xAlxN thin films deposited by reactive unbal-

anced magnetron sputtering [91].
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of a porous and detrimental r-TiO2 top layer [40]. The oxidation behavior is thus mainly

dependent on the aluminum content in the coating and on the oxidation temperature.

4.2.2. Aluminum content dependence of oxidation resistance

Most of the studies on Ti1�xAlxN coatings focus on the necessity to increase aluminum incor-

poration in the coatings in order to promote better oxidation resistance. Actually, a continuous

decrease of the oxide thickness is observed with increasing aluminum content in the coating

[23], which indicates that the oxide layer prevents the coating from further oxidation. How-

ever, the oxidation resistance seems to be more related to the crystallographic structure (fcc,

hcp, or mixed fcc/hcp), which is linked to the aluminum content, rather than a direct depen-

dence to aluminum content.

Vaz et al. have summarized the evolution of the formed oxide layer regarding the temperature

and aluminum content (Figure 12). It was shown that oxidation resistance increases with

increasing the aluminum content in the coating as long as the films remain fcc single-phased

(up to x = 0.65 in this study) [24]. These results are in accordance with later experiments where

oxide thickness decreased with increasing aluminum content [23, 95]. According to the results

of Vaz et al., although a small amount of Ti and Al remains in the Al-rich top layer and Ti-rich

sublayer, respectively, the oxides formed at high temperatures and for low aluminum content

Figure 12. Schematic diagram summarized the temperature and aluminum content dependences of Ti1�xAlxN coatings

oxidation [24].
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are assumed to be almost “pure” Al2O3 and TiO2. However, with increasing x in the as-

deposited fcc-Ti1�xAlxN coatings, higher aluminum contents were found in the Ti-rich

interlayer. Thus, this Ti-rich layer cannot be attributed to TiO2 but rather to a mixed

aluminum-titanium oxide such as (Ti0.9Al0.1)Ox oxide. Other studies also report that the oxide

layer formed during oxidation at high temperature (above 800�C) is mainly composed of an

AlxTiyOz oxide [7, 23]. These results are consistent with the higher oxidation resistance

observed for Al-rich fcc-Ti1�xAlxN and it suggests that higher aluminum concentration, by

the formation of a dense AlO3 top layer, hinders oxygen diffusion and limits the formation of

the porous and detrimental r-TiO2.

Increasing aluminum content leads to the formation of the fcc/hcp biphased structure. Many

studies show that this material has a poor oxidation resistance [24, 25]. A further increase of

the aluminum content leads to the stabilization of the hcp-Ti1�xAlxN or hcp-AlN (depending

on the deposition temperature). These coatings were found by Vaz et al. to be totally composed

of the AlxTiyOz oxide at 850
�C. Although Ti1�xAlxN coatings with hcp single-phased structure

are generally found to have the worse oxidation resistance [24, 95], Chen et al. found an

unexpected high oxidation resistance for hcp-Ti0.25Al0.75N single-phased coatings [23]. CVD

or PECVD coatings with fcc single-phased structure obtained for x above 0.7 seem to have a

better resistance than PVD coatings (with lower aluminum content). Thus, Prange et al. found

no presence of the detrimental TiO2 for Ti0.21Al0.79N coatings oxidized at 800�C during 1 h [28],

while Ti0.18Al0.82N coatings deposited by LPCVD were found to oxidize only at temperatures

above 900�C [27]. Similar results were obtained for hcp/fcc Ti0.05Al0.95N nanocomposite coat-

ings, with the first signs of Al2O3 and TiO2 at a temperature of 950�C [45].

4.2.3. Temperature dependence of oxidation resistance

According to the results of Vaz et al. [24], coatings oxidized at lowest temperatures (below

600�C) are only composed of titanium-aluminum oxinitrides, while, for coatings oxidized at

higher temperatures, Ti1�xAlxOy oxides are observed [96]. These experiments confirm that, at

the lowest temperatures, only a part of the nitrogen atoms are “substituted” by oxygen and

escapes through the gas phase by forming N2. The Ti and Al contents were also found to be the

same than that of the as-deposited coatings, annealed at low temperature. However, high

temperatures favor the formation of Al2O3 and the Al and Ti contents in this oxide layer tend

obviously to be different than that of the as-deposited coatings.

4.3. Wear resistance

4.3.1. General wear mechanisms

The wear aspects take a large place in the research on hard coatings. During machining, wear

is the consequence of a combination of mechanical and chemical solicitations. The wear

mechanisms are also very dependent on the type of machining, tool geometry, material to be

machined, materials used for tool and coatings. Thus, this part is focused only on the descrip-

tion of the general wear mechanisms needed for the understanding of the wear properties of

Ti1�xAlxN coatings rather than an exhaustive description of these mechanisms.
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Wear can be divided into three steps, illustrated in Figure 13 and showing the evolution of the

flank wear of twist drills. Firstly, roughness can cause abrasive wear and the asperities are

“removed” after welding to the cutting tool. This step is related to a high friction coefficient

[64] associated with high wear rates [97]. The second step is characterized by both adhesive

and abrasive wears. With increasing the cutting time, the continuous removal of workpiece

particles by adhesive wear acts as a third-body, leading to abrasive wear. In this stage, the wear

slowly increases linearly with time. The last stage is characterized by high wear rates leading

to failure of the cutting tool [98]. The use of coatings as Ti1�xAlxN, because of their high

hardness and diffusion barrier properties, allows to limit the abrasive and adhesive wears.

The Al2O3 dense layer formed during cutting operations is also considered as the main factor

responsible for the wear resistance of Ti1�xAlxN coatings.

However, in addition to the wear mechanisms previously defined, coated tools are subjected to

peening due to mechanical and thermal stresses, leading to the appearance of fatigue cracks

that grow until coating failure [99]. Resistance to cracking of a coating can be estimated by the

plastic deformation ratio, given by H3=E∗² with E∗

¼ E= 1� ν
2

� �

, where H is the hardness, E*,

the effective Young modulus, E, the young modulus, and ν, the Poisson ratio of the coating.

Better resistance to cracking could be obtained for the highest H3=E∗² values [78, 87, 100, 101].

Further details on wear mechanisms are given in [99, 102–105].

4.3.2. Coefficient of friction (COF)

The friction coefficient plays a key role in the first step of wear mechanisms, where a high wear

rate is observed. However, the friction coefficient is dependent of many parameters such as the

nature of the workpiece material, loading force, or growth direction of the coating [106, 107].

For these reasons, results available in literature show a high dispersion. Then, values of

1.4 were found for arc-deposited TiN sliding against M2 steel [108]. High values of about 1

were also obtained for CVD TiN coatings sliding against Al2O3. However, lower values of 0.3

to 0.45 were found for unbalance magnetron sputtering TiN against M42 steel [91]. These

Figure 13. Three-step evolution of the flank wear of drills during drilling operations [97].
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lower values are reported to be due to the very thin oxide layer of several nanometers resulting

from the elevation of the temperature at the contact interface between tool and workpiece.

Regarding the work of Shum et al. [91], addition of a small amount of aluminum in TiN leads

to a huge increase of the COF (up to x ≈ 0.6). A further increase of the aluminum content does

not seem to strongly affect the COF, which stabilizes around 0.5 for x = 0.6. These results are

confirmed for high aluminum contents in PACVD films [28]. In this study, both monophased

films (x = 0.79) and biphased coatings (x = 0.96) have a COF around 0.5.

The temperature dependence of the COF does not seem to be clearly defined. Ohnuma et al.

thus studied friction of Ti0.6Al0.4N, Ti0.42Al0.58N, and Ti0.3Al0.7N coatings with fcc, fcc + hcp,

and hcp structures, respectively, against AISI 304 material [109]. Measurements were

performed at temperatures between 300 and 873 K. All coatings showed a COF between 0.6

and 0.9. Although a minimum value of 0.6 was found at 473 K for all coatings, no clear

correlation between COF and temperature was found and the evolution of the COF vs.

temperature could not be explained.

4.3.3. Wear properties of Ti1�xAlxN coatings

Wear behavior is generally determined by studying the wear track obtained by pin-on-disc

method [109] or multipass scratch test [91]. The results are highly dependent on many factors

such as material characteristics (substrate, counterbody), deposition parameters, and testing

parameters (critical loading force). It is thus difficult to make an exhaustive state of the art of

the wear behavior. However, some overall results or trends can be identified.

Tests at room temperature seem to be highly related to the structure of the coatings. Studies

show generally an increase of the wear resistance with increasing aluminum content in the fcc-

Ti1�xAlxN single-phased coatings, while the coatings with an fcc/hcp biphased structure, or

only with the hcp structure, have a lower wear resistance [26, 64, 109, 110]. These results are

consistent with the evolution of the hardness as a function of the aluminum content in the

Ti1�xAlxN coatings, influencing strongly the abrasive wear resistance of the coating. Tests

performed at high temperatures show that Ti1�xAlxN coatings have a better wear resistance

than that of TiN. Ohnuma found thus a diminution of the wear track depth for temperatures

above 600�C for Ti1�xAlxN coatings whatever the structure, as shown in Figure 14. This

behavior was related to the formation of the Al2O3 oxide layer, known to prevent adhesive

wear [109]. Regarding the plasticity index H3=E∗2, measurements show generally values above

0.1 [87] for Ti1�xAlxN coatings, allowing to have better erosion resistance than other common

nitrides such as TiN, CrN, or CrAlN [101].

4.3.4. In-service behavior of Ti1�xAlxN coatings

Even though the previously defined wear tests allow to estimate the wear behavior of

Ti1�xAlxN coatings, machining tests are generally performed to determine accurately the in-

service behavior of the coatings. The combined effects of several factors as stress and temper-

ature, as well as tool geometry, can act strongly on the wear behavior of the coated tool. In the

case of Ti1�xAlxN coatings, only few literature is available on the influence of aluminum
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content in Ti1�xAlxN during machining tests like milling or drilling. However, it appears that

even small amounts of aluminum in TiN coatings lead to a strong increase of the tool lifetime

[50, 64, 111]. Hörling et al. also showed that increasing aluminum content in the cubic

Ti1�xAlxN single-phased coatings led to a continuous increase of the tool lifetime until

x ≈ 0.66 (Figure 15). This behavior should be related to the higher hardness as well as a better

oxidation resistance [26, 110]. A further increase of the aluminum content leads to a drop of the

tool lifetime due to the presence of hcp-AlN with poor mechanical properties.

More details about the influence of machining parameters (cutting speed, cutting tool material,

and geometry) on the wear and breakage mechanisms of Ti1�xAlxN-coated tools during

Figure 14. Evolution of wear track depth vs. temperature for coatings with different crystallographic structures (single-

phase cubic for x = 0.4, two-phase cubic/hexagonal for 0.58, and single-phase hexagonal for x = 0.7) [109].

Figure 15. Evolution of the tool lifetime vs. Al content for Ti1�xAlxN coatings [26].
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machining of high-speed steel, Ni-based superalloys, aluminum and titanium alloys are

reported in [99, 112–114], respectively.

5. Summary

In this chapter, the thermodynamical basis, deposition, and some mechanical and chemical

properties of coatings based on Ti1�xAlxN and Ti1�xAlxSiyN have been reviewed. The general

mechanisms (hardening effect, oxidation mechanisms, and wear mechanisms) associated to

these properties were also discussed by pointing out the influence of the temperature and the

aluminum content in the films. Increasing aluminum content induces structural changes that are

directly associated with the properties. The high thermal stability and the age-hardening effect,

observed in titanium-aluminum nitride-based coatings, are related to the coherent spinodal

decomposition in the Ti-Al-N system. Concerning elaboration by means of CVD based pro-

cesses, the stabilization of the fcc-Ti1�xAlxN metastable solid solution can be achieved by a

combination of relatively low deposition temperatures, high partial pressures of reactive pre-

cursors, and low total pressure. As-deposited monolayer coatings show a higher hardness and a

better oxidation resistance when aluminum content is increased. Hardness up to about 30 GPa

and stability in air up to 800�C have been measured. These values outperform the typical values

of about 25 GPa for hardness and 500�C for the temperature of starting oxidation found for usual

TiN coatings. These properties are related to the B1-structure observed for Ti1�xAlxN coatings

with x up to 0.7 for PVD and 0.9 for PACVD and CVD processes. In in-service conditions, an

increase of hardness and oxidation resistance is also observed. The increased hardness is related

to the so-called age-hardening effect observed at elevated temperature (≈800�C) in the Ti-Al-N

system and the enhancement of oxidation resistance is associated to the formation of a dense and

protective Al2O3 top-layer. The adjustment of the aluminum content and the control of the

cutting parameters lead to better wear resistance and tool lifetime in machining operations, for

which both high mechanical and chemical stabilities are required.
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A. Appendix

Summary of mechanical properties depending on Aluminum content and structure of

Ti1�xAlxN Ti1�xAlxN coatings obtained by different deposition processes.
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Ref. x Structure Process Substrate Deposition

temperature (�C)

Pressure

(Pa)

Bias

voltage

(V)

Discharge

voltage (V)

Residual

stresses (GPa)

Hardness

(Gpa)

Young

modulus (Gpa)

[23] 0 fcc Magnetron

sputtering

Si 500�C 0.40 �60 / �1356 22.8 378

0.62 fcc Magnetron

sputtering

Si 500�C 0.40 �60 / �0.883 31.3 ≈380

0.67 fcc/hcp Magnetron

sputtering

Si 500�C 0.40 �60 / +0.102 27.2 ≈320

0.75 hcp Magnetron

sputtering

Si 500�C 0.40 �60 / +0.186 22.9 ≈255

[26] 0 fcc Arc evaporation WC/Co-6% 500�C / / / �2.9 28.5 617

0.66 fcc Arc evaporation WC/Co-6% 500�C / / / �3.1 32.6 627

0.74 fcc/hcp Arc evaporation WC/Co-6% 500�C / / / 32.3 595

[90] ≈0.5 fcc Arc evaporation WC/Co-6% / �40 to

�200

/ �1.7 to �5

[3] 0 fcc Close-field

magnetron

M42 steel or

Si

Room temperature 0.27 �50 / ≈ � 3 23 245.3

0.41 fcc Close-field

magnetron

M42 steel or

Si

Room temperature 0.27 �50 / ≈ � 0.35 31.4 315.2

0.48 fcc/hcp Close-field

magnetron

M42 steel or

Si

Room temperature 0.27 �50 / ≈ � 0.45 28.5 304.8

1 hcp Close-field

magnetron

M42 steel or

Si

Room temperature 0.27 �50 / ≈ � 1.5 13.8 175.2

[19] 0.66 fcc Cathodic arc

evaporation

WC/Co / / / / ≈37.5 /

[115] 0.48 fcc Cathodic arc

evaporation

WC/Co 550�C 2.00 �100 / / 31.2 /

[98] 0 fcc Cathodic arc ion

plating

WC/Co 450�C 2–5 �50 / / ≈20 /

0.6 fcc Cathodic arc ion

plating

WC/Co 450�C 2–5 �50 / / ≈30 /
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Ref. x Structure Process Substrate Deposition

temperature (�C)

Pressure

(Pa)

Bias

voltage

(V)

Discharge

voltage (V)

Residual

stresses (GPa)

Hardness

(Gpa)

Young

modulus (Gpa)

0.85 hcp Cathodic arc ion

plating

WC/Co 450�C 2–5 �50 / / ≈18.6 /

[25] 0 fcc Cathodic arc ion

plating

(Mo) 400�C 0.40 �100 / / ≈20.6 /

0.6 fcc Cathodic arc ion

plating

(Mo) 400�C 0.40 �100 / / ≈31.4 /

0.7 fcc/hcp Cathodic arc ion

plating

(Mo) 400�C 0.40 �100 / / ≈27 /

0.85 hcp Cathodic arc ion

plating

(Mo) 400�C 0.40 �100 / / ≈19.6 /

[110] 0 fcc Reactive DC

magnetron

SKH51 350�C 0.80 �80 / / ≈23.5 /

0.5 fcc Reactive DC

magnetron

SKH51 350�C 0.80 �80 / / ≈37.2 /

0.6 fcc/hcp Reactive DC

magnetron

SKH51 350�C 0.80 �80 / / ≈21.6 /

[116] 0.5 fcc Cathodic arc

evaporation

WC/Co 450�C 3.20 �40 / �2.48 27.1 515

[64] 0 fcc PACVD Z85 WCDV 500�C 50–100 / 150 +0.3 ≈29 ≈490

0.64 fcc PACVD Z85 WCDV 500�C 50–100 / 300 �3.2 ≈25.7 ≈365

[28] 0.02 fcc PACVD H11 steel or

WC/Co

510�C 150 / 430 / ≈23.5 /

0.83 fcc PACVD H11 steel or

WC/Co

510�C 150 / 480 / 38.7 /

0.91 fcc/hcp PACVD H11 steel or

WC/Co

510�C 150 / 530 / ≈49 /

[27] 0.82 fcc LPCVD WC/6%Co-

TiN

800�C <10.000 / / / 29.2 444

0.9 fcc LPCVD 800�C <10.000 / / / 32.4 539
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Ref. x Structure Process Substrate Deposition

temperature (�C)

Pressure

(Pa)

Bias

voltage

(V)

Discharge

voltage (V)

Residual

stresses (GPa)

Hardness

(Gpa)

Young

modulus (Gpa)

WC/6%Co-

TiN

0.82 fcc LPCVD WC/6%Co-

TiN

850�C <10.000 / / �0.45 / /

0.82 fcc LPCVD WC/6%Co-

TiN

800�C <10.000 / / �0.92 / /
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