We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

25

Discrete Particle Swarm Optimization Algorithm
for Flowshop Scheduling

S.G. Ponnambalam?, N. Jawahar? and S. Chandrasekaran?
IMonash University, 2Thiagarajar College of Engineering

3S R M V Polytechnic College

IMalaysia, >3India

1. Introduction

In the context of manufacturing systems, scheduling refers to allocation of resources over
time to perform a set of operations. Manufacturing systems scheduling has many
applications ranging from manufacturing, computer processing, transportation,
communication, health care, space exploration, education, distribution networks, etc.
Scheduling is a process by which limited resources are allocated over time among parallel or
sequential activities. Solving such a problem amounts to making discrete choices such that
an optimal solution is found among a finite or a countably infinite number of alternatives.
Such problems are called combinatorial optimization problems. Typically, the task is
complex, limiting the practical utility of combinatorial, mathematical programming and
other analytical methods in solving scheduling problems effectively. Manufacturing system
entails the acquisition and allocation of limited resources to production activities so as to
reduce the manufacturing cycle time and in-process inventory and to satisfy customer
demand in specified time. Successful achievement of these objectives lies in efficient
scheduling of the system. Scheduling plays an important role in shop floor planning. A
schedule shows the planned time when processing of a specific job will start on a machine.
It also indicates when a job will get completed on a machine. Scheduling is a decision-
making process of sequencing a set of operations on different machines in a manufacturing
unit. The objective of scheduling is generally to improve the utilization of resources and
profitability of production lines. Scheduling problem is characterized by three components
namely:
1. Number of machines, number of jobs and the processing time for each job using
appropriate machine
2. A set of constraints such as operation precedence constraint for a given job and
operation non-overlapping constraint for a given machine
3. A target function called objective function consisting of single or multiple criteria that
must be optimized.
Traditionally, scheduling researchers has shown interest in optimizing a single-objective or
performance measure while scheduling, which is not a reality. Practical scheduling
problems acquire consideration of several objectives as desired by the scheduler. When
multiple criteria are considered, scheduler may wish to generate a schedule which performs

www.intechopen.com

398 Particle Swarm Optimization

better with respect to all the measures under study, such solution does not exist. This
chapter presents the application of Discrete Particle Swarm Optimisation Algorithm for
solving flowshop scheduling problem (FSP) under single and multiple objective criteria.

2. Flowshop Scheduling

2.1 Description of FSP

In discrete parts manufacturing industries, jobs with multiple operations use machines in
the same order. In such case, machines are installed in series. Raw materials initially enter
the first machine and when a job has finished its processing on the first machine, it goes to
the next machine. When the next machine is not immediately available, job has to wait till
the machine becomes available for processing. Such a manufacturing system is called a
flowshop, where the machines are arranged in the order in which operations are to be
performed on jobs. A flowshop is a conventional manufacturing system where machines are
arranged in the order of performing operations on jobs. The technological order, in which
the jobs are processed on different machines, is unidirectional. In a flowshop, a job i with a

set of m operations i, i, ij,...,i,, isto be completed in a predetermined sequence. In short,

each operation except the first has exactly one direct predecessor and each operation except
the last one has exactly one direct successor as shown in Figure 1. Thus each job requires a
specific immutable sequence of operations to be carried out for it to be complete. This type
of structure is sometimes referred as linear precedence structure (Baker, 1974). Further, once
started, an operation on a machine cannot be interrupted.

Figure 1. Work Flow in Flowshop

2.2 Characteristics of FSP

Flowshop consists of m machines and there are n different jobs to be optimally sequenced

through these machines. The common assumptions used in modelling the flowshop

problems are as follows:

e Allnjobs are available for processing at time zero and each job follows identical routing
through the machines.

e Unlimited storage exists between the machines. Each job requires m operations and
each operation requires a different machine.

e Every machine processes only one job at a time and every job is processed by one
machine at a time.

e Setup-times for the operations are sequence-independent and are included in
processing times.

¢ The machines are continuously available.

e Individual operations cannot be pre-empted.

Further it is assumed that:

e Each job must be processed to completion.

e In-process inventory is allowed when necessary.

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 399

e There is only one machine of each type in the shop.
e Machines are available throughout the scheduling period.
e There is no randomness and the scheduling problem under study is a deterministic
scheduling problem. In particular
e The number of jobs is known and fixed.
e The number of machines is known and fixed.
e The processing times are known and fixed, and
e All other quantities needed to define a particular problem are known and fixed.
The general structure of typical n job m machine FSP is shown in Figure 2.

Job Processing order
M; M, Ms......... M
J1 Pt Pty Ptz Ptn
1P Pt Pty Ptz Ptn
Js Pt Pt Ptz Ptm
Jn Pt; Pty Ptz Pt

where Pt - processing time of job J in machine M
Figure 2. General Structure of Flowshop

2.3 Solution approaches for FSP

Computational complexity of a problem is the maximum number of computational steps
needed to obtain an optimal solution. For example if there are n jobs and m available
machines, the available number of schedule to be evaluated to get an optimal solution is
(n!)m. In a permutation flow based manufacturing system, the number of available schedules
is n!. Based on the complexity of the problem, all problems can be classified into two classes,
called P and NP in the literature. Class P consists of problems for which the execution
time of the solution algorithms grows polynomially with the size of the problem. Thus, a

problem of size m would be solvable in time proportional to m*, when k is an exponent.
The time taken to solve a problem belonging to the NP class grows exponentially, thus this

time would grow in proportion to t™, where t is some constant. In practice, algorithms for
which the execution time grows polynomially are preferred. However, a widely held
conjecture of modern mathematics is that there are problems in NP class for which
algorithms with polynomial time complexity will never be found (French, 1982). These
problems are classified as NP—-hard problems. Unfortunately, most of the practical
scheduling problems belong to the NP —hard class (Rinnooy Kan, 1976). Many scheduling
problems are polynomially solvable, or NP-hard in that it is impossible to find an optimal
solution here without the use of an essentially enumerative algorithm. FSP is a widely
researched combinatorial optimization problem, for which the computational effort
increases exponentially with problem size (Jiyin Liu & Colin Reeves, 2001; Brucker, 1998;
Sridhar & Rajendran, 1996; French, 1982). In FSP, the computational complexity increases
with increase in problem size due to increase in number of jobs and/or number of machines.

www.intechopen.com

400 Particle Swarm Optimization

To find exact solution for such combinatorial problems, a branch and bound or dynamic
programming algorithm is often used when the problem size is small. Exact solution
methods are impractical for solving FSP with large number of jobs and/or machines. For the
large-sized problems, application of heuristic procedures provides simple and quick method
of finding best solutions for the FSP instead of finding optimal solutions. A heuristic is a
technique which seeks (and hopefully finds) good solutions at a reasonable computational
cost. A heuristic is approximate in the sense that it provides a good solution for relatively
little effort, but it does not guarantee optimally. A heuristic can be a rule of thumb that is
used to guide one’s action. Heuristics for the FSP can be a constructive heuristics or
improvement heuristics. Various constructive heuristics methods have been proposed by
Johnson, 1954; Palmer, 1965; Campbell et al., 1970; Dannenbring 1977 and Nawaz et al. 1983.
Literature shows that constructive heuristic methods give very good results for NP-hard
combinatorial optimization problems. This builds a feasible schedule from scratch and the
improvement heuristics try to improve a previously generated schedule by applying some
form of specific improvement methods. An application of heuristics provides simple and
quick method of finding best solutions for the FSPs instead of finding optimal solutions
(Ruiz & Maroto, 2005; Dudek et al. 1992). Johnson’s algorithm (1954) is the earliest known
heuristic for the FSP, which provides an optimal solution for two-machine problem to
minimize makespan. Palmer (1965) developed a very simple heuristic in which for every job a
“slope index” is calculated and then the jobs are scheduled by non-increasing order of this
index. Ignall & Schrage (1965) applied the branch and bound technique to the flowshop sequencing
problem. Campbell et al. (1970) developed a heuristic algorithm known as CDS algorithm
and it builds m-1 schedules by clustering the m original machines into two virtual
machines and solving the generated two machine problem by repeatedly using Johnson’s
rule. Dannenbring’s (1977) Rapid Access heuristic is a mixture of the previous ideas of
Johnson’s algorithm and Palmer’s slope index. Nawaz et al.’s (1983) NEH heuristic is based
on the idea that jobs with high processing times on all the machines should be scheduled as
early in the sequence as possible. NEH heuristics seems to be the performing better
compared to others. Heuristic algorithms are conspicuously preferable in practical
applications. Among the most studied heuristics are those based on applying some sort of
greediness or applying priority based procedures including, e.g., insertion and dispatching
rules. The main drawback of these approaches, their inability to continue the search upon
becoming trapped in a local optimum, leads to consideration of techniques for guiding
known heuristics to overcome local optimality (Jose Framinan et al. 2003). And also the
heuristics has the problems like

1. Lack of comprehensiveness

2. Little robustness of conclusions

3. Weak/partial experimental design
For these reasons, one can investigate the application of metaheuristic search methods for
solving optimization problems. It is a set of algorithmic concepts that can be used to define
heuristic methods applicable to wide set of varied problems. The use of metaheuristics has
significantly produced good quality solutions to hard combinatorial problems in a
reasonable time. It is defined as an iterative generation process which guides a subordinate
heuristic by combining intelligently different concepts for exploring and exploiting the
search space, learning strategies are used to structure information in order to find efficiently

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 401

near-optimal solutions (Osman & Laporte, 1996). The fundamental properties which

characterize metaheuristics are as follows (Christian Blum & Andrea Roli, 2003):

e The goal is to efficiently explore the search space in order to find (near-) optimal
solutions.

e Techniques which constitute metaheuristic algorithms range from simple local search
procedures to complex learning processes.

e Metaheuristic algorithms are approximate and usually non-deterministic.

e They may incorporate mechanisms to avoid getting trapped in confined areas of the
search space.

e The basic concepts of metaheuristics permit an abstract level description.

e Metaheuristics are not problem-specific.

e Metaheuristics may make use of domain-specific knowledge in the form of heuristics
that are controlled by the upper level strategy.

e Today’s more advanced metaheuristics use search experience (embodied in some form
of memory) to guide the search.

Metaheuristics or Improvement heuristics are extensively employed by researchers to solve

scheduling problems (Chandrasekaran et al. 2006; Suresh & Mohanasundaram, 2004; Hisao

Ishibuchi et al. 2003; Lixin Tang & Jiyin Liu, 2002; Eberhart & Kennedy, 1995). Improvement

methods such as Genetic Algorithm (Chan et al. 2005; Ruiz et al. 2004; Sridhar & Rajendran,

1996), Simulated Annealing algorithm (Ogbu & Smith, 1990), Tabu Search algorithm

(Moccellin & Nagamo, 1998) and Particle Swarm Optimization algorithm (Rameshkumar et

al. 2005; Prabhaharan et al. 2005; Faith Tasgetiren et al. 2004) have been widely used by

researchers to solve FSPs. Metaheuristic algorithms such as Simulated Annealing (SA) and

Tabu Search (TS) methods are single point local search procedures where, a single solution

is improved continuously by an improvement procedure. Algorithms such as Genetic

Algorithm (GA), Ant Colony Optimization (ACO) algorithm and Particle Swarm

Optimization (PSO) algorithm belongs to population based search algorithms. These are

designed to maintain a set of solution transiting from a generation to the next. The family of

metaheuristics includes, but is not limited to, GA, SA, ACO, TS, PSO, evolutionary methods,

and their hybrids.

2.4 Performance measures considered

Measures of schedule performance are usually functions of the set of completion times in a
schedule. Performance measures can be classified as regular and non-regular. A regular
measure is one in which the penalty function is non-decreasing in terms of job completion
times. Some examples of regular performance measures are makespan, mean flowtime, total
flowtime, and number of tardy jobs. Performance measures, which are not regular, are
termed non-regular. That is, such measures are not an increasing function with respect to
job completion times. Some examples of non-regular measures are earliness, tardiness, and
completion time variance. In this chapter, the performance measures namely minimization
of makespan, total flowtime and completion time variance is considered for solving
flowshop scheduling problems. Makespan (C has been considered by many scheduling

max)
researchers (Ignall & Scharge, 1965; Campbell et al. 1970; Nawaz et al.1983; Framinan et al.
2002; Ruiz & Maroto, 2005). Makespan is defined as the time required for processing all the
jobs or the maximum time required for completing a given set of jobs. Minimization of

www.intechopen.com

402 Particle Swarm Optimization

makespan ensures better utilization of the machines and leads to a high throughput
(Framinan et al. 2002; Ruiz & Maroto, 2005). Makespan is computed using equation (1).

C, = max{C;,i=1,2,......,n } 1)

The time spend by a job in the system has been defined as its flow time. Total flowtime is
defined as the sum of completion time of every job or total time taken by all the jobs. Total
flowtime (Fs)of the schedule is computed using equation (2). Minimizing total flowtime

results in minimum work-in-process inventory (Chandrasekharan Rajendran & Hans
Ziegler, 2005).

F=)G @

Completion time variance is defined as the variance about the mean flowtime and is
computed using equation (3). Minimizing completion time variance (V;) serves to

minimize variations in resource consumption and utilization (Gowrishankar et al. 2001;
Gajpal & Rajendran, 2006; Viswanath Kumar Ganesan et al. 2006).

10)
Vi =3 (C) ©

= F. .)
where F =—L is the mean flowtime.

n

3. Particle Swarm Optimization Algorithm

3.1 Features of PSO
Particle Swarm Optimization (PSO) algorithm is an evolutionary computation technique
developed by Eberhart & Kennedy in 1995 inspired by social behavior of bird flocking or
fish schooling. PSO is a stochastic, population-based approach for solving problems
(Kennedy & Eberhart, 1995). It is a kind of swarm intelligence that is based on social-
psychological principles and provides insights into social behavior, as well as contributing
to engineering applications. PSO algorithm has been successfully used to solve many
difficult combinatorial optimization problems. PSO algorithm is problem-independent,
which means little specific knowledge relevant to a given problem is required. All we have
to know is the fitness evaluation of each solution. This advantage makes PSO more robust
than many search algorithms. In the last couple of years the particle swarm optimization
algorithm has reached the level of maturity necessary to be interesting from an engineering
point of view. It is a potent alternative optimizer for complex problems and possesses many
attractive features such as:
e Ease of implementation: The PSO is implemented with just a few lines of code, using
only basic mathematical operations.
e Flexibility: Often no major adjustments have to be made when adapting the PSO to a
new problem.
e Robustness: The solutions of the PSO are almost independent of the initialization of the
swarm. Additionally, very few parameters have to be tuned to obtain quality solutions.

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 403

e DPossibility to combine discrete and continuous variables. Although some authors
present this as a special feature of the PSO (Sensarma et al., 2002), others point out that
there are potential dangers associated with the relaxation process necessary for
handling the discrete variables (Abido, 2002). Simple round-off calculations may lead to
significant errors.

e Possibility to easily tune the balance between local and global exploration.

e Parallelism: The PSO is inherently well suited for parallel computing. The swarm
population can be divided between many processors to reduce computation time.

3.2 Applications of PSO

In recent years, PSO has been successfully applied in many areas. Currently, PSO has been
implemented in a wide range of research areas such as functional optimization, pattern
recognition, neural network training, fuzzy system control etc. and obtained significant
success. PSO is widely applied and focused by researchers due to its profound intelligence
background and simple algorithm structure. Many proposals indicate that PSO is relatively
more capable for global exploration and converges more quickly than many other heuristic
algorithms. It solves a variety of optimization problems in a faster and cheaper way than the
evolutionary algorithms in the early iterations. One of the reasons that PSO is attractive is
that there are very few parameters to adjust. One version, with very slight variation (or none
at all) works well in a wide variety of applications. PSO has been used for approaches that
can be used across a wide rage of applications, as well as for specific applications focused on
a specific requirement. PSO has been applied to the analysis of human tremor. The diagnosis
of human tremor, including Parkinson’s disease and essential tremor, is a very challenging
area. PSO has been used to evolve a neural network that distinguishes between normal
subjects and those with tremor. Inputs to the network are normalized movement amplitudes
obtained from an actigraph system. The method is fast and accurate (Eberhart & Hu, 1999).
While development of computer numerically controlled machine tools has significantly
improved productivity, there operation is far from optimized. None of the methods
previously developed is sufficiently general to be applied in numerous situations with high
accuracy. A new and successful approach involves using artificial neural networks for
process simulation and PSO for multi-dimensional optimization. The application was
implanted using computer-aided design and computer-aided manufacturing (CAD/CAM)
and other standard engineering development tools as the platform (Tandon, 2000). Another
application is the use of particle swarm optimization for reactive power and voltage control
by a Japanese electric utility (Yoshida et al., 1999). PSO has also been used in conjunction
with a back propagation algorithm to train a neural network as a state-of-charge estimator
for a battery pack for electric vehicle use. Determination of the battery pack state of charge is
an important issue in the development of electric and hybrid / electric vehicle technology.
The state of charge is basically the fuel gauge of an electric vehicle. A strategy was
developed to train the neural network based on a combination of particle swarm
optimization and the back propagation algorithm. Finally, one of the most exciting
applications of PSO is that by a major American corporation to ingredient mix optimization.
In this work, “ingredient mix” refers to the mixture of ingredients that are used to grow
production strains of microorganisms that naturally secrete of manufacture something of
interest. Here, PSO was used in parallel with traditional industrial optimization methods.
PSO provided an optimized ingredient mix that provided over twice the fitness as the mix

www.intechopen.com

404 Particle Swarm Optimization

found using traditional methods, at a very different location in ingredient space. PSO was
shown to be robust: the occurrence of an ingredient becoming contaminated hampered the
search for a few iterations but in the end did not result in poor final results. PSO, by its
nature, searched a much larger portion of the problem space than the traditional method.
Generally speaking, particle swarm optimization, like the other evolutionary computation
algorithms, can be applied to solve most optimization problems and problems that can be
converted to optimization problems. Among the application areas with the most potential
are system design, multi-objective optimization, classification, pattern recognition,
biological system modelling, scheduling (planning), signal processing, games, robotic
applications, decision making, simulation and identification. Examples include fuzzy
controller design, job shop scheduling, real time robot path planning, image segmentation,
EEG signal simulation, speaker verification, time-frequency analysis, modelling of the
spread of antibiotic resistance, burn diagnosing, gesture recognition and automatic target
detection, to name a few (Eberhart & Shi, 2001).

3.3 Working of PSO

PSO is initialized with a swarm of random feasible solutions and searches for optima by

updating velocities and positions. PSO algorithm is initialized with a set of several random

particles called a swarm. A set of moving particles (the swarm) is initially thrown inside the

multi-dimensional search space. Each particle is a potential solution, which has the ability to

remember its previous best position and current position, and it survives from generation to

generation. Each particle has the following features:

e It hasa position and a velocity

e It knows its neighbours, best previous position and objective function value.

e It remembers its best previous position.

At each time step, the behavior of a given particle is a compromise between three possible

choices

e To follow its own way

e To go towards its best previous position

e To go towards the best neighbour’s best previous position, or forwards the best
neighbour.

The swarm is typically modelled by particles in multi-dimensional space that have a

position and a velocity. These particles fly through hyperspace and have two essential

reasoning capabilities: their memory of their own best position and knowledge of their

neighborhood's best, "best" simply meaning the position with the smallest objective value.

Members of a swarm communicate good positions to each other and adjust their own

position and velocity based on these good positions. PSO shares many similarities with

evolutionary computation techniques such as GA, SA, TS and ACO algorithms. The PSO

system is initialized with a swarm of random solutions and searches for optima by updating

generations. The advantages of PSO are that PSO is easy to implement and there are few

parameters to adjust. PSO has been successfully applied in many areas: function

optimization, artificial neural network training, fuzzy system control, and other areas where

GA can be applied. Most of evolutionary techniques have the following procedure:

1. Random generation of an initial population

2. Reckoning of a fitness value for each subject. It will directly depend on the distance to
the optimum.

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 405

3. Reproduction of the population based on fitness values.
4. If requirements are met, then stop. Otherwise go back to step 2.
Evolutionary Algorithms use a population of potential solutions (points) of the search space.
These solutions (initially randomly generated) are evolved using different specific operators
which are inspired from biology. Through cooperation and competition among the potential
solutions, these techniques often can find near-optimal solutions quickly when applied to
complex optimization problems. There are some similarities between PSO and Evolutionary
Algorithms:
1. Both techniques use a population (which is called swarm in the PSO case) of solutions
from the search space which are initially random generated;
2. Solutions belonging to the same population interact with each other during the search
process;
3. Solutions are evolved using techniques inspired from the real world.
PSO shares many common points with GA. Both algorithms start with a group of a randomly
generated population; both have fitness values to evaluate the population. Both update the
population and search for the optimum with random techniques. Both systems do not
guarantee success. However, PSO does not have genetic operators like crossover and
mutation. Particles update themselves with the internal velocity. The information sharing
mechanism in PSO is significantly different. In GA, chromosomes share information with
each other. So the whole population moves like one group towards an optimal area. In PSO,
only global or local best particle gives out the information to others. It is a one-way
information sharing mechanism. Compared with GA, all the particles tend to converge to the
best solution quickly even in the local version in most cases/ PSO optimization algorithm
uses a set of particles called a swarm, similar to chromosomes in a binary-coded Genetic
Algorithm (GA). PSO and ACO are optimization algorithms based on the behavior of swarms
(birds, fishes) and ants respectfully. However, the particles are multidimensional points in
real space during the optimization. The PSO optimization run starts with a user-specified
swarm size and objective function used to evaluate objection function values, called fitness in
GA terminology. The particles are initialized randomly within the variable bounds and they
search for the optimum (maximum or minimum) in the search space with some
communication between particles. For a maximization (or minimization) problem, the
particles will move towards the particle with the highest (or least) objective function value
using a position update equation, that is stochastic. This is how randomness in introduced to
PSO algorithm. This position update method is similar to the use of crossover and mutation
operations used to generate new individuals in a new generation in the GA. However, the
PSO differs in that, updates of particle position usually involve the best particles (global or in
the neighborhood) of each particle. The position updating tends to always exploit the best
solution found so far. While this may lead to premature convergence, when all particles
positions become equal to that of the best particle (i.e., no diversity), there are schemes
designed to prevent such premature convergence. In the PSO literature, several
neighborhood schemes have been developed for the particle updating (Merkle and
Middendorf, 2000). This chapter aims to develop a metaheuristic algorithm called PSO
algorithm which is suitable for solving FSPs with the objective of minimising three
performance measures namely makespan, total flowtime and completion time variance.
Firstly, a single objective PSO is proposed and the above performance measures are
considered individually. Performance of the proposed single objective PSO is tested by

www.intechopen.com

406 Particle Swarm Optimization

solving a large set of benchmark FSPs available in the literature having number of jobs
varying from 5 to 500 and number of machines from 5 to 20.

3.4 Structure of PSO Algorithm

The pseudo-code of the simple PSO algorithm and its general framework are given in
Figures 3 and 4 respectively.

The basic elements of PSO algorithm are summarized below:

Particle: X} denotes the i particle in the swarm at iteration t and is represented by n

number of dimensions as X =[xf1,xit2,..,xitn], where xitj is the position value of the it

particle with respect to the j# dimension (j=1,2,...,n).
Population: pop' is the set of NP particles in the swarm at iteration ¢t i.e.,
pop' =[x§,x;,...,x;ﬂ,] :

Sequence: We introduce a new variable 7T}, which is a permutation of jobs implied by the

particle X| . It can be described as 7z} = [ﬂitl,ﬂ'itz,..,ﬂ'itn], where 7}

j 1s the assignment of job j of

the particle i in the permutation at iteration ¢.

Initialize swarm
Initialize velocity
Initialize position
Initialize parameters
Evaluate particles
Find the local best
Find the global best
Do
{
Update velocity
Update position
Evaluate
Update local best
Update global best
} (until termination)

Figure 3. Pseudocode of the PSO Algorithm

Particle velocity: V; is the velocity of particle i at iteration t. It can be defined as

V= [Vitl, Vip s Vi] , where vj is the velocity of particle i at iteration t with respect to the jt

dimension.

Local best: P! represents the best position of the particle i with the best fitness until
iteration t, so the best position associated with the best fitness value of the particle i obtained

so far is called the local best. For each particle in the swarm, Pit can be determined and
updated at each iteration t. In a minimization problem with the objective function f(ﬂ'it)
where 7} is the corresponding sequence of particle X; , the local best P of the i particle is

obtained such that f(ﬁf)S f (%f_l) where 7 is the corresponding permutation of local best P/

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 407

and 7} " is the corresponding sequence of local best P! . To simplify, we denote the fitness
function of the local best as fF° =f(7rit). For each particle, the local best is defined as

P = [pfl,pitz,...,pitn] where pfj is the position value of the i local best with respect to the jt

dimension (j=1,2,..,n).

Generate N particles at Random

Evaluate the sequences

v

Update particle Index (Pcurrent, Ppest, Gpest)

Is the Stopping

Criteria Satisfied? Yes

No ¢ Output the Results

Apply Velocity and Move the particle

Figure 4. The Framework of PSO Algorithm

4. Discrete PSO Algorithm for Single-Objective FSP

4.1 Pseudocode of the proposed discrete PSO algorithm

Particle Swarm Optimization algorithm starts with a population of randomly generated initial
solutions called particles (swarm). It is to be noted that the particle structure is taken as a
string, which consists of job numbers in certain order. The order of jobs in the string represents
a sequence. After the swarm is initialized, each potential solution is assigned a velocity

randomly. The length of the velocity of each particle |v|| is generated randomly between 0 and
n (Rameshkumar et al. 2005; Chandrasekaran et al. 2006) and the corresponding lists of

transpositions (iq, jq);q =1, Vk” are generated randomly for each particle. The above
formulation permits exchange of jobs (iy,j;),(iz,j2)----- (iHVH’jHVH) in the given order. Each
particle keeps track of its improvement and the best objective function value achieved by the
individual particles so far is stored as local best solution (e Py) , and the overall best objective
function achieved by all the particles together so far is stored as the global best solution (Gy)).

The particle velocity and position are updated continuously in all iterations. The iterative
improvement process is continued afterwards to further improve the solution quality. The
Pseudocode of the proposed discrete PSO algorithm is shown in Figure 5.

www.intechopen.com

408 Particle Swarm Optimization

Initialize swarm P t=0;
Initialize velocity vy and position Py
Initialize parameters

Evaluate particles

Find the local best °Py and global best G,
Do

{
for (k=1,N)
t+1

Update Velocity v, ;
Update Position P ;
Evaluate all particles;
Update °P" and G*', (k=1,N);
t—>t+1;
} (while t <t

max)

Figure 5. Pseudocode of the Proposed Discrete PSO Algorithm

The particle velocity and position are continuously updated using equation (4) and (5).

vitt=C, U, vi +C,U, rand()(°P{** = P{™!) + C,U, rand() (G, —Pf™) 4)
B =P+ vi! ©)

whereC,, C,andC;is called acceleration constants. The acceleration constants
C,, C,and C; in equation (4) guide every particle toward local best and the global best

solution during the search process. Low acceleration value results in walking far from the
target, namely local best and the global best. High value results in premature convergence of
the search process.

4.2 Procedural steps of the Discrete PSO Algorithm
The step by step procedure for implementing the proposed discrete PSO algorithm is as
follows.

Stepl: Initialize a swarm P, with random positions and velocities in the problem space X.

Step2: For each particle, evaluate the desired optimization fitness function
Step3: Compare the fitness function with its previous best. If current value is better than

previous best, then set previous best equal to current value and P, equal to the

current location X, .

Step4: Identify the particle in the neighborhood with the best success so far, and assign its
index to the variable G .

Step5: Apply local search algorithm to all the particles at the end of each iteration and
evaluate for the objective function.

Step6: Change the velocity and position of the particle according to equation (4) and
equation (5).

Step7: Loop to step (2) until a criterion is met (usually number of iterations).

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 409

4.3 Numerical lllustrations
An example illustrating the process of updating the velocity and the position of a sequence
is explained as follows:
Velocity update: The procedure for updating the velocity of all the particles in each iteration
is as follows: For example, let us assume
The sequence Pﬁ = {2,3,4,1}; ¢ =1 0C,=2, C;=2;U,=02, U,=04, U;=03;
v=(1,4),(2,3); °P{ = (1,43,2) and Gy, = (3,1,4,2) .
Velocity of the particle k at time step t+1 namely V™' is obtained using equation (4)
Vit =1x 0.2 [(14),2,3)] ®2x 0.4 [(143,2) - (2,34,1)] ®2x0.3[(3,1,42) - (2,3,4,1)]
where [(1,4,3,2) - (2,3,4,1)] represents a velocity such that applying the resulting
velocity to the current particle (2,3,4,1) yields a position (1,4,3,2).
Thus, V™' =02[(14), (23)] ® 0.8[(23), (14)] @ 0.6 [(1,2), (1, 4)]
=((1,4),(2 3)(1 2)
Position update: Position of the particle k at time step t+1 namely P, is obtained using
equation (5) by applying V™! over P} as follows.
P =(2341) + ((L4), 23)(12));
=(1,34,2) +((23),(1,2));, =(1432)+(12),
=(4,1,3,2)

vi|=2,

4.4 Performance Comparison

An extensive performance analysis using proposed discrete PSO algorithm is carried out by
means of evaluating the performance measures by solving the benchmark FSPs of Taillard
(1993). Extensive experiments are conducted to fix the parameters like number of particles,
number of iterations, selection of learning coefficients and initial swarm generation. The
evaluation of proposed discrete PSO algorithm is coded in Linux C and run on an Intel
Pentium III 900MHz PC with 128 MB memory.

Number of iterations: Number of iterations or termination criterion is a condition that the
search process will be terminated. It might be a maximum number of iteration or maximum
CPU times are normally to terminate the search process (Liu & Reeves, 2001; Gowrishankar
et al. 2001). In this chapter, for the single-objective optimization problems, an evaluation of
1000 x n x m number of sequences or particles is taken as the termination criterion.

Number of particles: Experiments have been conducted to identify the optimal swarm size
by solving a set of 30 different instances of Taillard (1993) for makespan objective with 20
jobs and machines varying from 5, 10 and 20 using discrete PSO algorithm. In
experimentation, the performance of the algorithm is better with swarm size 80 and the
same has been used throughout our evaluation.

Learning coefficients: The roll of learning coefficients or acceleration constants, namely
C,, C, and C; guide every particle towards the local best and the global best solutions

during the search process. Low acceleration value results in walking far from the target,
namely local best and the global best. High value results in premature convergence of the
search process. Experiments have been conducted using different combinations of learning
coefficients. To determine the best combinations of C;, C, and C; values by solving a set of

30 FSPs for makespan objective with 20 jobs and machines varying from 5, 10 and 20 using

www.intechopen.com

410 Particle Swarm Optimization

the proposed PSO algorithm. The values C;=1,C,=2 and C;=2shows better

performance and the same, has been used throughout our study.
Velocity coefficients: The velocity update is carried out after every iteration to improve the
search process. The velocity coefficients, namely U,,U, and Uj;guides the search to find

the optimal solution quickly. As per the experiments, the values for U,,U,andU; are

generated randomly between 0 and 1.

Initial Swarm Generation: For the generation of initial swarm one particle is generated from
the results obtained by certain algorithms for the desired optimization fitness function and
remaining particles of the swarm is constructed in a way that a permutation is produced
randomly. The particle generated from certain algorithms is added with randomly generated
particles at the beginning of the search. This insertion of the particle in initial swarm is to find
better sequences in each iteration of the search. And also it improves the performance of
discrete PSO algorithm in terms of finding near-optimal solutions. The algorithms selected for
generating the particle for different objective functions are listed below. For makespan
objective, one particle is generated using NEH heuristic of Nawaz et al. (1983) and is added to
the swarm. For total flowtime objective, one particle is generated based on the heuristic
developed by Rajendran. (1993) and is added to the swarm. For completion time variance
objective, a particle is generated based on the algorithm developed by Gajpal & Rajendran
(2006), and is added to the swarm. These algorithms have better start with the respective
objectives. Performance of the proposed discrete PSO with respect to makespan objective is
carried out in comparison with the benchmark solutions given by Taillard (1993) and with the
results published in the literature. The quality measure namely, “Average Relative Percent

Deviation” (RPD) is considered for the evaluation. During comparison, the corresponding

better values reported in the literature are taken. The RPD is computed using equation (6).
RPD=[G-C" /C"]x100 (6)
where, G represents the global best solution obtained by the proposed algorithm for a given

problem and C represents the upper bound value reported in the literature for the

corresponding objective function. Some sample results of problems ta001-ta010 of Taillard
(1993) is presented in Table 1.

Instances Problem RIZ;SOIﬂteS q OIi)iSaliites q RPD

ta001 1278 1278 0.0000

ta002 1359 1360 0.0736

ta003 1081 1088 0.6475

ta004 1293 1293 0.0000

ta005 1235 1235 0.0000

20x5 ta006 1195 1195 0.0000
ta007 1239 1239 0.0000

ta008 1206 1206 0.0000

ta009 1230 1237 0.5691

ta010 1108 1108 0.0000

RPD 0.1290

Table 1. Sample Results for Makespan

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 411

In order to evaluate the performance of the proposed discrete PSO with respect to the total
flowtime objective, the results are compared with the results of the popular performing
heuristics developed by Liu & Reeves (2001), M-MMAS Algorithm and PACO Algorithm
(Rajendran & Ziegler, 2004). Some sample results of problems ta001-ta010 for total flowtime
criteria is presented in Table 2.

Instances Problem szjgﬂtes d Olie’giif q RPD

ta001 14056 3 14033 -0.1636

ta002 15151 2 15151 0.0000

ta003 13403 3 13313 -0.6715

ta004 15486 2 15459 -0.1744

ta005 13529 3 13529 0.0000

20x5 ta006 131233 13123 0.0000
ta007 13559 2 13548 -0.0811

ta008 13968 1 13948 -0.1432

ta009 14317 2 14315 -0.0140

ta010 12968 2 12943 -0.1928

RPD -0.1441

Note: Superscript (1) refers to Heuristic Algorithm (Liu & Reeves, 2001) (2) M-MMAS Algorithm
(Rajendran & Ziegler, 2004) (3) PACO Algorithm (Rajendran & Ziegler, 2004)

Table 2. Sample Results for Total Flowtime

Instances Problem Rlzfasolites d Oiii?if q RPD

ta001 73040.55 3 72060.23 -1.3422

ta002 90885.27 2 89238.17 -1.8123

ta003 53894.49 2 53851.95 -0.0789

ta004 89822.05 4 87104.42 -3.0256

ta005 72350.55 2 72020.43 -0.4563

20x5 ta006 71665.73 2 70817.64 -1.1834
ta007 69088.45 2 68367.69 -1.0432

ta008 70214.31 2 69793.85 -0.5988

ta009 73329.22 2 72284.98 -1.4240

ta010 52580.03 1 52015.34 -1.0740

RPD -1.2039

Note: Superscript (1) refers to PACO Algorithm (Rajendran & Ziegler, 2004) (2) MMAS Ant Colony
Algorithm (Stuetzle, 1998) (3) NACO Algorithm with position-job insertion local search (Gajpal &
Rajendran, 2006) (4) NACO Algorithm with job-index based local search (Gajpal & Rajendran, 2006)

Table 3. Sample Results for Completion Time Variance

The performance of the proposed discrete PSO algorithm with respect to completion time
variance criterion, the results are compared with the results of ant colony algorithm with
random-job insertion local search by Gajpal & Rajendran (2006), M-MMAS Ant Colony
Algorithm by Stuetzle(1998), PACO Algorithm by Rajendran & Ziegler(2004), and three

www.intechopen.com

412 Particle Swarm Optimization

NACO Algorithm with position-job insertion and job-index based local searches by Rajendran
& Ziegler (2004). To our knowledge, the results of completion time variance objective using
PSO algorithm are not available in literature, the performance of the proposed algorithm is
compared with other metaheuristic results. Some sample results of problems ta001-ta010 of
Taillard (1993) for completion time variance objective are presented in Table 3.

The results show that the proposed single-objective discrete PSO algorithm performs better.
The negative sign in RPD values shows that the proposed discrete PSO algorithm generates

better results than the results reported in the literature considered. The summary of RPD
values obtained for all the FSP instances of Taillard (1993) are presented in Table 4.

Instances Number of Makespan Total Flowtime Completaon Time
problems Variance
20x5 10 0.1290238 -0.1440537 -1.2038674
20 x10 10 0.5334462 -0.0164544 -1.7613968
20x 20 10 0.5329960 -0.0260092 -0.8586390
50x 5 10 0.0890855 -0.2925054 -0.9330275
50 x 10 10 1.7541958 -0.0108922 -0.2059756
50 x 20 10 2.9814187 0.2434647 1.7126618
100 x 5 10 0.1713382 -0.7238382 1.2988817
100 x 10 10 0.6882989 -0.1191928 0.9198400
100 x 20 10 2.8784086 0.1476830 3.4646301
200 x 10 10 0.5498368 1.8246721 0.0000000
200 x 20 10 2.7011408 1.4120018 0.0000000
500 x 20 10 1.8172343 1.4205378 0.0000000

Table 4. RPD Values Obtained for the Various FSP Instances

The proposed discrete PSO algorithm generates good results with reasonable CPU time.
CPU time taken by the proposed discrete PSO algorithm for various FSPs are presented in
Table 5.

Instances Number of Makespan Total Completion
Problems Flowtime Time Variance
20x5 10 0m25.164s 0m>5.201s 0m6.642s

20x10 10 1m36.844s 0m12.113s 0m33.619s
20x20 10 6m22.854s 0m35.139s 2m16.764s
50x5 10 13m44.973s 0m39.888s 1m10.433s
50x10 10 55m38.305s 1m45.854s 6m19.487s
50x20 10 110m32.087s 10m33.215s 32m41.970s
100x5 10 19m42.310s 4m17.995s 10m39.676s
100x10 10 26m3.295s 9m22.616s 45m1.041s
100x20 10 62m14.918s 33mb57.255s 84m4.257s
200x10 10 143m25.161s 41m33.599s 50m27.703s

200x20 10 166m27.657s 79m?22.342s 129m58.384s

500x20 10 543m32.695s 792m17.371s 410m50.485s

www.intechopen.com

Table 5. CPU time taken for Various FSP Instances

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 413

5. Discrete PSO Algorithm for Multi-Objective FSP

5.1 Concept and terminology

The real-world scheduling problems are multi-objective in nature. In such cases, several
objectives must be simultaneously considered when evaluating the quality of the proposed
solution. In multi objective decision problems one desires to simultaneously optimize more
than one performance objectives such as makespan, tardiness, mean flowtime of jobs, etc.
multi-objective optimization usually results in a set of non-dominated solutions instead of a
single solution. The goal of multi-objective scheduling is to find a set of compromising
schedules satisfying different objectives under consideration. For a given finite set of
schedules generated by using a suitable algorithm for a multi-objective scheduling problem,
various objective functions f(x)={f;(x),f,(x),....,f(x)} can be evaluated. These schedules

are to be compared and a set of schedules called non-dominated solutions are to be identified.
For those solutions, no improvement in any objective function is possible without scarifying
at least one of the other objective functions. Some researchers have developed multi-
objective metaheuristics for solving flowshop scheduling problems (Pasupathy et al. 2006;
Prabhaharan et al. 2005, Loukil et al. 2005, Suresh & Mohanasundaram, 2004; Hisao
Ishibuchi et al. 2003; Ishibuchi & Murata, 1998; Sridhar & Rajendran, 1996). A survey of
multi-objective scheduling problems is given by T’kindt & Billaut (2001). A multi-objective
PSO algorithm has been proposed for minimizing weighted sum of makespan and
maximum earliness (Prabhaharan et al. 2005). A Pareto archived simulated annealing
algorithm for multi-objective scheduling has been proposed (Suresh & Mohanasundaram,
2004). Hisao Ishibuchi et al. (2003) proposed a modified multi-objective genetic local search
algorithm (MMOGLS) for multi-objective FSP. They showed that the performance of the
evolutionary multi-objective optimization algorithm can be improved by hybridization with
local search. They apply multi-objective GA for PFSP and the results are compared with
results published in the literature. Pasupathy et al. (2005) proposed a pareto-ranking based
multi-objective GA called Pareto genetic algorithm with local search (PGA-ACS) algorithm
for multi-objective FSP with an objective of minimizing the makespan and total flowtime.
Loukil et al. (2005) proposed multi-objective simulated annealing algorithm to tackle the
multi-objective production scheduling problems.

Pareto dominance: Among a set of schedules P, a schedule x'e P is said to dominate the
other schedule x*e P, denoted as (x1¢ xz) , if both the following conditions are true.

(i) The schedule x'e P is no worse than x* € P in all objectives.

(ii) The schedule x' € P is strictly better than x* € P in at least one objective.

When both the conditions are satisfied, x*is called as a dominated schedule and x! a non-
dominated schedule. If any of the above condition is violated, the schedule x!' does not

dominate the schedule x>. Among a set of schedules P, the non-dominated set P are those
that are not dominated by any member of the set (Deb, 2003).

Non-dominated front: The set of all non-dominated schedules.

Pareto optimal set: When the set P is the entire search spaceX, the resulting non-
dominated set is called the Pareto optimal set.

The primary objective is to find a set of non-dominated fronts for the FSPs with the
consideration of performance measures.

www.intechopen.com

414 Particle Swarm Optimization

5.2 Proposed Multi-objective Discrete PSO Algorithm
The discrete PSO algorithm proposed for single objective FSP has been suitably modified to
generate non-dominated solution set considering three performance measures
simultaneously. Before presenting the proposed algorithm, the non-dominated sorting
procedure, Pareto search procedure and the parameters considered are discussed below.
Non- Domination Sorting: Non-domination measures are used to find non-dominated set of
solutions. The following procedure is used to generate non-dominated particle or solution
set from the population of particles. Consider a swarm consisting of N solutions (particles).
Step 0: Begin with i=1; j=i+1, and repeat steps 1 and 2.
Step 1: Compare solutions x' and x’ for domination using the two conditions mentioned.
Step 2: If x} is dominated by x', mark x) as “dominated,” increment j, and go to step 1.
Otherwise mark x' as dominated, increment i, set j=i+1 and go to step 1.
All solutions that are not marked ‘dominated” forms a non-dominated solution set and these
are stored separately in a memory called archive.

Initialize the parameters

Generate the swarm and velocity

t=0: //iteration counter

Evaluate all the particles

Perform non-dominated sorting to identify Gy

Open Archive to store Gy,

Do {
Update position;
t=t+1
Evaluate
Do non-dominated sorting to identify Gy
Archive update
Update velocity
} while (t<t
Output Gy
Figure 6. Iterative search loop of the multi-objective discrete PSO algorithm

ta = 100;

max) :

Pareto Search: In case of a single objective scheduling optimization, an optimal solution forms
the Global best (Gj)) . Under multi-objective scheduling, with multiple objectives, G;, consist
of a set of non-dominated solutions. Once the swarm is initialized, G, (t = 0) is obtained after
non-dominated sorting of the particles. During the subsequent iterations, position and velocity
update of the particles are carried out using local best and global best. It is to be noted that one
solution is randomly chosen from the archive as Global best set. During every iteration, non-
dominated solution set is updated. This non-dominated solution set is added with the Archive
and the combined set is sorted for non-dominance. Dominated solutions within the combined
set are removed and the remaining non-dominated solutions forms G, (t=1). This procedure
is repeated to guide the non-dominated search process towards the Pareto region. Initially, a
set of particles are generated randomly and evaluated. Then the non-dominated sorting of
particles is done. Within the swarm, the non-dominated solution set i.e. Gf) is identified and
they are stored in an archive. Then the positions and velocities of the particles are updated
iteratively. These current sets of non-dominated solutions are combined with the archive

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 415

solutions. Non-dominated sorting of archive is done to identify the archive survival members.
This process is called Archive update. During this, all dominated members of the combined set
are removed. This procedure is repeated to guide the non-dominated search process towards
generating a solution front close to the Pareto region. After the termination criterion is met, the
solution set stored in the archive forms the result. The iterative improvement process of multi-
objective PSO algorithm is presented in Figure 6.

5.3 Performance of Multi-objective Discrete PSO Algorithm

In this section, the performance measures namely minimization of makespan, total flowtime
and completion time variance are considered simultaneously. It is to be noted that PSO
algorithm has been very rarely studied by researchers for solving FSPs with multi-objective
requirements.

Parameter Selection: Using the proposed algorithm, experiments are conducted to redesign
the algorithm with appropriate parameter settings. Parameters were identified by trial and
error approach for the better performance. The swarm size is taken as 80. The values of
acceleration constants are fixed by trial and error as C; =1;C, =2 and C; =2 . The values of

velocity coefficients U;,U, and U; are generated randomly between 0 and 1. Termination

criterion is taken as 100 iterations. The benchmark instances of Taillard (1993) form a set of 120
problems of various sizes, having 20, 50, 100, 200 and 500 jobs and 5, 10 or 20 machines have
been taken and solved. When the iterative search process is continued beyond 100 iterations,
solution quality is expected to improve further and the non-dominated front will converge
towards the Pareto front. Some samples of non-dominated solution sets obtained during 1st,
50th and 100th iterations of selected benchmark FSPs are presented in Table 6. to Table 10.

1st Iteration 50th Jteration 100th Iteration
C max FZ VT C max FZ VT C max FZ VT
2372 | 37335 | 143185.03 | 2418 37282 | 163238.72 | 2380 | 37749 | 121770.54
2385 | 37379 | 13483195 | 2450 | 37645 | 139131.23 | 2395 | 37465 | 130522.04
2410 | 36900 | 148013.59 | 2451 38181 | 137003.64 | 2458 | 37187 | 210477.03
2412 | 37674 | 129799.71 | 2495 36838 | 186985.58 | 2465 | 37341 | 187537.33
2412 | 36970 | 138733.95 | 2518 39668 | 127576.64 | 2488 | 36988 | 148466.05
2414 | 36786 | 157977.52 | 2544 | 36566 | 258462.42 | 2493 | 36787 | 244247.03
2425 | 36842 | 155318.20 | 2550 | 36352 | 180610.66 | 2518 | 36639 | 213526.66
2432 | 36071 | 225477.25 | 2633 37206 | 175815.11 | 2545 | 36177 | 189031.61
2437 | 36855 | 150071.23
2448 | 37604 | 125025.85
2451 | 36764 | 158552.28
2451 | 36600 | 172676.80
2464 | 37521 | 134748.27
2468 | 37875 | 124452.44
2480 | 39012 | 119837.64
2491 | 36170 | 154730.75
2523 | 38802 | 123177.59

Table 6. Non-dominated fronts obtained for 20 x 20 FSP (Problem ta025 of Taillard,1993)

www.intechopen.com

416 Particle Swarm Optimization
1st Iteration 50th Jteration 100th [teration
Cmax FZ VT Cmax FZ VT Cmax FZ VT
3840 | 127915 | 674615.63 | 4168 | 138549 | 801359.25 | 4192 | 143728 | 688058.06
3923 | 132364 | 655699.19 | 4170 | 139913 | 794893.25 | 4218 | 142073 | 835741.13
3979 | 130656 | 669600.50 | 4181 | 140250 | 769993.81 | 4226 | 136757 | 870648.81
3979 | 132435 | 633633.38 | 4188 | 138913 | 756248.50 | 4241 | 140962 | 788543.19
3982 | 132026 | 666358.94 | 4243 | 137007 | 882535.81 | 4245 | 138443 | 845496.63
4018 | 136354 | 604771.06 | 4254 | 141017 | 750998.31 | 4266 | 137938 | 828836.88
4023 | 132426 | 646723.94 | 4284 | 136183 | 929310.25 | 4298 | 137356 | 866164.31
4034 | 135781 | 631409.19 | 4290 | 137714 | 833303.44 | 4324 | 143038 | 776172.63
4058 | 131370 | 652795.69 | 4295 | 135927 | 845500.88 | 4329 | 143586 | 760850.94
4081 | 137607 | 586079.44 | 4319 | 142649 | 731565.19 | 4334 | 141675 | 780154.75
4084 | 136148 | 601373.06 | 4320 | 140119 | 747898.00 | 4343 | 136398 | 868004.75
Table 7. Non-dominated fronts obtained for 50 x 20 FSP (Problem ta055 of Taillard,1993)
1st [teration 50th Jteration 100th Iteration
Crnax Fs Vi Crnax Fy Vi Crnax Fy Vi
6719 | 414626 | 2332780.00 | 7079 | 442243 | 2714971.00 | 6977 | 429237 | 2643600.00
6736 | 407661 | 2339133.25 | 7122 | 431015 | 2619110.50 | 7187 | 429079 | 2992237.75
6754 | 407217 | 2426269.50 | 7125 | 430238 | 2888681.25 | 7222 | 423655 | 3181877.50
6759 | 414920 | 2322475.00 | 7279 | 427670 | 3036344.25 | 7266 | 427705 | 3032460.25
6772 | 421227 | 2319961.50 | 7307 | 426737 | 3014873.00 | 7287 | 426588 | 3061585.25
6776 | 420444 | 2215965.00
6780 | 406735 | 2308902.00
6785 | 417764 | 2299484.50
6804 | 417373 | 2165440.25
6934 | 402802 | 2477583.00
Table 8. Non-dominated fronts obtained for 100 x 20 FSP (Problem ta085 of Taillard,1993)
1st [teration 50th Jteration 100th Iteration
C max FZ VT C max FZ VT C max FZ VT
11883 | 1341992 | 8681969.00 | 12169 | 1370395 | 8968974.00 | 12213 | 1382492 | 9226709.00
11922 | 1378165 | 8301979.00 12246 | 1418388 | 8839896.00
11935 | 1361242 | 8654574.00 12304 | 1390924 | 9191086.00
11938 | 1365058 | 8581394.00 12361 | 1380781 | 9530417.00
11964 | 1363602 | 8492216.00 12445 | 1379004 | 9589141.00
11995 | 1355612 | 8551758.00
12020 | 1371423 | 8237680.50
12051 | 1369441 | 8470111.00
12115 | 1354810 | 8405068.00

Table 9. Non-dominated fronts obtained for 200 x 20 FSP (Problem ta105 of Taillard,1993)

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 417

1st Iteration 50th Jteration 100th Jteration

C max FZ VT C max FZ VT C FZ VT

max

27361 | 7380460 | 53524660.00 | 27802 | 7498389 | 54440864.00 | 27612 | 7421436 | 53180528.00

27417 | 7405289 | 51892856.00 | 27811 | 7402468 | 53268448.00 | 27765 | 7458248 | 53042776.00

27448 | 7419382 | 51504108.00 | 27999 | 7543786 | 53059836.00 | 27870 | 7440681 | 53140668.00

27465 | 7394286 | 52016468.00 | 28091 | 7529455 | 52754652.00 | 27891 | 7374759 | 53306856.00

27534 | 7392887 | 51930096.00

27593 | 7458730 | 51066888.00

27603 | 7373445 | 51681608.00

27638 | 7439401 | 51390116.00

27680 | 7445450 | 51262332.00

27700 | 7418177 | 51122680.00

27729 | 7492150 | 51039416.00

Table 10.Non-dominated fronts obtained for 500 x 20 FSP (Problem tal15 of Taillard,1993)

Normalized values of the performance measures are plotted for better visualization. Some
samples of non-dominated front obtained during 1st, 50th and 100th iterations of selected
benchmark FSPs are presented in Fig. 7. to Fig. 11.

6. Conclusion

Literature survey indicates that very few authors have studied the applications of multi-
objective scheduling in flowshop scheduling using particle swarm optimization algorithm is
scarce. This Chapter presents a discrete PSO algorithm to solve FSPs. This work has been
conducted in two phases. In the first phase, a discrete PSO is proposed to solve the single-
objective FSPs. In the second phase, a multi-objective discrete PSO algorithm is proposed to
solve the FSPs with three objectives. The performance of the proposed single-objective
discrete PSO is tested by solving a large set of benchmark FSPs. The quality measure namely

“Average Relative Percent Deviation” (RPD) is used to compare the solution quality
obtained with the results available in the literature. It shows that the proposed discrete PSO
algorithm performs better in terms of quality of results. Using the proposed algorithm,
experiments are conducted to redesign the algorithm with appropriate parameter settings.

The RPD for each set of instances are also shown in an efficient way. The parameters
selected for solving the problems are holds good. The proposed multi-objective discrete PSO
algorithm performs better in terms of yielding more number of non-dominated solutions
close to Pareto front during the search. It is seen that, when the number of iterations is more,
the non-dominated solution set generated is close to the Pareto front.

www.intechopen.com

418

Particle Swarm Optimization

Completion time variance

2600

Total flow time

2400

2400 2300

2700
2600
2500

Makespan

& First Iteration
O 50 lterations
+ 100 lterations

Figure 7. Non-dominated solution set obtained for 20 x 20 FSP (Problem ta025 of

Taillard,1993)

8000

~
=
S
S

>
=
S
S

5000

4000

Completion time variance

3000
4600

Total flow time

E

4400

4200

& First lteration
0O 50 lterations

+ 100 lterations

4600
4400
4200

4000

3800 3800

Makespan

Figure 8. Non-dominated solution set obtained for 50 x 20 FSP (Problem ta055 of

Taillard,1993)

10000
9000
8000

7000

Completion time variance

6000
7400

7200

7000

Total flow time

6600 6600

7400
7200
7000

6800

Makespan

¢ First lteration
O 50 lterations
+ 100 lterations

Figure 9. Non-dominated solution set obtained for 100x20 FSP (Problem ta085 of

Taillard,1993)

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 419

O First lteration
O 50 lterations
14 + 100 lterations

1.35

w

1.25

Completion time variance
[m]

&9,
1.15 o gy 4
6
1.24 1.26
1.24
X 10* 1.22 T,

4
1.2 12 x 10

Total flow time 1.18 1.18 Makespan

Figure 10.Non-dominated solution set obtained for 200x20 FSP (Problem ta105 of
Taillard,1993)

& First Iteration
O 50 Iterations
+ 100 Iterations

I
©
a

8 29 o
> 285 o
£
£ + +
§ 28 + 0O 4
3 <
2
g 275
S 0
27 00
2.82 %90

Total flow time 274 27 Makespan

Figure 11.Non-dominated solution set obtained for 500x20 FSP (Problem ta115 of
Taillard,1993)

7. References

Abido, M.A. (2002). Optimal power flow using particle swarm optimization. Electrical Power
and Energy Systems, Vol.24, 563-571

Bagchi, T.P. (1999). Multi-objective scheduling by Genetic Algorithms, Kluwer Academic
Publishers, Boston, Massachusetts

Baker, K.R. (1974). Introduction to Sequencing and Scheduling, John Wiley & Sons, New York

Brucker, P. (1998). Scheduling Algorithms, Springer-Verlag, Berlin

Campbell, H.G.; Dudek, R.A. & Smith, M.L. (1970). A heuristic algorithm for the n job, m
machine sequencing problem, Management Science, Vol.16, No: 10, B630-B637

Chan, F.-TS; Wong, T.C. & Chan, L.Y. (2005). A genetic algorithm based approach to
machine assignment problem, International Journal of Production Research, Vol.43,
No: 12, 2451-2472

www.intechopen.com

420 Particle Swarm Optimization

Chandrasekaran, S.; Ponnambalam, S.G.; Suresh, RK. & Vijayakumar N. (2006). An
Application of Particle Swarm Optimization Algorithm to Permutation Flowshop
Scheduling Problems to Minimize Makespan, Total Flowtime and Completion
Time Variance, Proceedings of the IEEE International Conference on Automation Science
and Engineering, 2006 (CASE '06.), pp-513-518, ISBN: 1-4244-0311-1, Shanghai,
China,

Chandrasekharan Rajendran. & Hans Ziegler. (2005). Two Ant-colony algorithms for
minimizing total flowtime in permutation flowshops, Computers & Industrial
engineering, Vol.48, 789-797

Christian Blum. & Andrea Roli. (2003). Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison. ACM Computing Surveys, Vol. 35, No. 3,
268-309

Dannenbring, D.G. (1977). An evaluation of flowshop sequencing heuristics, Management
Science, Vol.23, No: 11, 1174-1182

Dudek, R.A,; Panwalkar, S.S. & Smith, M.L. (1992). The lessons of flowshop scheduling
research, Operations Research, Vol.40, No: 1, 7-13

Eberhart, R.C. & Hu, X. (1999). Human tremor analysis using particle swarm optimization.
Proceedings of the Congress on Evolutionary Computation, pp-1927-1930, IEEE Service
Center, Washington, DC, Piscataway, NJ

Eberhart, R.C. & Kennedy J. (1995). A New Optimizer Using Particles Swarm Theory,
Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
pp-39-43, IEEE Service Center, Nagoya, Japan

Eberhart, R.C. & Shi, Y. (2001). Particle swarm optimization: developments, applications and
resources, Proceedings of IEEE Congress on Evolutionary Computation 2001, Seoul,
Korea

Faith Tasgetiren, S.; Mehmet Sevkli.; Yen-Chia Liang. & Gunes Gencyilmaz. (2004). Particle
swarm optimization algorithm for single machine total weighted tardiness
problem, IEEE Transaction on Power and Energy Systems, 1412-1419

Framinan, J.M. & Leisten, R. (2003). An efficient constructive heuristic for flowtime
minimization in permutation flowshops, Omega, Vol.31, 311-317

French, S. (1982) Sequencing and Scheduling: An introduction to the mathematics of the jobshop,
Ellis Horword Limited, Chichester, England

Gowrishankar, K.; Rajendran, C. & Srinivasan, G. (2001). Flowshop scheduling algorithms
for minimizing the completion time variance and the sum of squares of completion
time deviation from the common due date, European Journal of Operational Research,
vol.132, No: 31, 643-665

Ignall, E. & Scharge, L. (1965). Application of the branch and bound technique to some
flowshop-scheduling problems, Operations Research, Vol.13, 400-412

Ishibuchi, H.; Yoshida, T. & Murata, T. (2003). Balance between genetic search and local
search in memetic algorithms for multi-objective permutation flowshop scheduling,
IEEE Transaction on Evolutionary Computation, Vol.7 No.2, 204-223

Johnson, S.M. (1954). Optimal two-stage and three-stage production schedules with setup
times included, Naval Research Logistics Quarterly, Vol.1 61-68

Kalyanmoy Deb. (2003). Multi-objective Optimization Using Evolutionary Algorithms, John
Wiley & Sons, First Edition.

www.intechopen.com

Discrete Particle Swarm Optimization Algorithm for Flowshop Scheduling 421

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization, Proceedings of IEEE
International Conference on Neural Networks-IV, pp-1942-1948, Piscataway, NJ: IEEE
service center, Perth, Australia

Kennedy, J.; Eberhart, R. & Shi, Y. (2001). Swarm Intelligence, Morgan Kaufmann, San
Mateo,CA,USA

Liu, J. & Reeves, C.R. (2001). Constructive and composite heuristic solutions to the

P//>.C; scheduling problem, European Journal of Operational Research., Vol.132,

439-452

Lixin Tang. & Jiyin Liu. (2002). A modified genetic algorithm for the flowshop sequencing
problem to minimize mean flowtime, Journal of Intelligent Manufacturing, Vol.13, 61-
67

Loukil, T.; Teghem, J. & Tuyttens, D. (2005). Solving multi-objective production scheduling
problems using metaheuristics, European Jour. of Operational Research, Vol.161, 42-61

Merkle, D. & Middendorf, M. (2000). An ant algorithm with new pheromone evaluation rule
for total tardiness problems, Proceedings of the Evolutionary Workshops 2000, pp-287-
296, vol.1803, Lecture Notes in Computer Science, Springer

Mocecellin, J.V. & Nagano, M.S. (1998). Evaluating the performance of tabu search
procedures for flowshop sequencing, Journal of the Operational Research Society,
Vol.49, 1296-1302

Nawaz, M.; Enscore Jr, E.E. & Ham, I. (1983). A Heuristic algorithm for the m-machine, n-job
scquencing problem, Omega, Vol.11, 91-98

Ogbu, F.A. & Smith, D.K. (1990). The application of the simulated annealing algorithm to the
solution of the n/m /C flowshop problem, Computers and Operations Research,

Vol.17, No: 3, 243-253

Osman, L.H. & Laporte, G. (1996). Metaheuristics: A bibliography. Operations Research,
Vol.63, 513-623

Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total time-
a quick method of obtaining a near optimum, Opn. Research, Vol.16, No: 1, 101-107

Pasupathy, T.; Chandrasekharan Rajendran. & Suresh, R.K. (2006). A multi-objective genetic
algorithm for scheduling in flowshops to minimize makespan and total flowtime,
International Journal of Advanced Manufacturing Technology, Springer-Verlag London
Ltd, Vol.27, 804-815

Pinedo, M. (2002). Scheduling: Theory, Algorithms and Systems, Second edition,. Prentice-Hall,
Englewood Cliffs, New Jersey

Prabhaharan, G.; Shahul Hamid Khan, B.; Asokan, P. & Thiyagu M. (2005). A Particle swarm
optimization algorithm for permutation flowshop scheduling with regular and
non-regular measures, International Journal of Applied Management and Technology,
Vol.3, No: 1, 171-182

Rajendran, C., (1993). Heuristic algorithm for scheduling in a flowshop to minimize total
flowtime, International Journal of Production Economics, Vol.29, 65-73

Rameshkumar, K.; Suresh, R.K. & Mohanasundaram, K.M. (2005). Discrete particle swarm
optimization (DPSO) algorithm for permutation flowshop scheduling to minimize
makespan, Lecture Notes in Comp. Science, Springer Verlag-GMBH.0302-9743.
Vol.3612

Rinnooy Kan, A.H.G. (1976). Machine Scheduling Problems: Classification, Complexity and
Computations, Nijhoff, The Hague

max

www.intechopen.com

422 Particle Swarm Optimization

Ruben Ruiz. & Concepcion Maroto. (2005). A comprehensive review and evaluation of
permutation flowshop heuristics, European Journal of operational Research, Vol.165,
479-494

Ruben Ruiz.; Concepcion Maroto. & Javier Alcaraz. (2004). Two new robust genetic
algorithms for the flowshop scheduling problem, OMEGA, 2-16

Sensarma, P. S.; Rahmani, M. & Carvalho, A. (2002). A comprehensive method for optimal
expansion planning using particle swarm optimization, IEEE Power Engineering
Society Winter Meeting, Vol. 2, 1317-1322

Sridhar, J. & Rajendran, C. (1996). Scheduling in flowshop and cellular manufacturing
system with multiple objectives - A genetic algorithmic approach, Production
Planning and Control, Vol.74, 374-382

Stuetzle, T. (1998). An ant approach for the flowshop problem, Proceedings of the 6" European
Congress on Intelligent Techniques and Soft Computing (EUFIT ’98), pp-1560-1564,
Vol.3, Verlag Mainz, Aachen, Germany

Suresh, RK, & Mohanasundaram, K.M, (2004). Pareto archived simulated annealing for
permutation flowshop scheduling with multiple objectives, Proceedings of the IEEE
Conference on Cybermatics and Intelligent Systems, pp-1-3, Singapore

Taillard, E. (1993). Benchmarks for basic scheduling problem, European Journal of Operational
Research, Vol.64, 278-285

Tandon, V. (2000). Closing the gap between CAD/CAM and optimized CNC end milling.
Master’s thesis, Purdue School of Engineering and Technology, Indiana University
,Purdue University, Indianapolis.

Yoshida, H.; Kawata, K., Fukuyama, Y. & Nakanishi, Y. (1999). A particle swarm
optimization for reactive power and voltage control considering voltage stability.
Proceedings of the International Conference on Intelligent System Application to Power
Systems, pp-117-121, Rio de Janeiro, Brazil

Yuhui Shi. (2004). Particle Swarm Optimization, [EEE Neural Networks Society, 8-13

Yuvraj Gajpal. & Chandrasekharan Rajendran. (2006). An ant-colony optimization algorithm
for minimizing the completion time variance of jobs in flowshops, International
Journal of Production Economics, Vol. 101, No: 2, 259-272

www.intechopen.com

Particle Swarm Optimization
Edited by Aleksandar Lazinica

Particle Swarm
.ﬂptimizatinn

ISBN 978-953-7619-48-0

Hard cover, 476 pages

Publisher InTech

Published online 01, January, 2009
Published in print edition January, 2009

Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the
social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation
techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions
and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such
as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by
following the current optimum particles. This book represents the contributions of the top researchers in this
field and will serve as a valuable tool for professionals in this interdisciplinary field.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

S.G. Ponnambalam, N. Jawahar and S. Chandrasekaran (2009). Discrete Particle Swarm Optimization
Algorithm for Flowshop Scheduling, Particle Swarm Optimization, Aleksandar Lazinica (Ed.), ISBN: 978-953-
7619-48-0, InTech, Available from:
http://www.intechopen.com/books/particle_swarm_optimization/discrete_particle_swarm_optimization_algorith
m_for_flowshop_scheduling

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE BHIERFARK6SS HiBEFR R ARIRE I AE40582TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.

