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1. Introduction 

 In the context of manufacturing systems, scheduling refers to allocation of resources over 
time to perform a set of operations. Manufacturing systems scheduling has many 
applications ranging from manufacturing, computer processing, transportation, 
communication, health care, space exploration, education, distribution networks, etc. 
Scheduling is a process by which limited resources are allocated over time among parallel or 
sequential activities. Solving such a problem amounts to making discrete choices such that 
an optimal solution is found among a finite or a countably infinite number of alternatives. 
Such problems are called combinatorial optimization problems. Typically, the task is 
complex, limiting the practical utility of combinatorial, mathematical programming and 
other analytical methods in solving scheduling problems effectively. Manufacturing system 
entails the acquisition and allocation of limited resources to production activities so as to 
reduce the manufacturing cycle time and in-process inventory and to satisfy customer 
demand in specified time. Successful achievement of these objectives lies in efficient 
scheduling of the system. Scheduling plays an important role in shop floor planning. A 
schedule shows the planned time when processing of a specific job will start on a machine. 
It also indicates when a job will get completed on a machine. Scheduling is a decision-
making process of sequencing a set of operations on different machines in a manufacturing 
unit. The objective of scheduling is generally to improve the utilization of resources and 
profitability of production lines. Scheduling problem is characterized by three components 
namely:  
1. Number of machines, number of jobs and the processing time for each job using 

appropriate machine  
2. A set of constraints such as operation precedence constraint for a given job and 

operation non-overlapping constraint for a given machine  
3. A target function called objective function consisting of single or multiple criteria that 

must be optimized. 
Traditionally, scheduling researchers has shown interest in optimizing a single-objective or 
performance measure while scheduling, which is not a reality. Practical scheduling 
problems acquire consideration of several objectives as desired by the scheduler. When 
multiple criteria are considered, scheduler may wish to generate a schedule which performs 
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better with respect to all the measures under study, such solution does not exist. This 
chapter presents the application of Discrete Particle Swarm Optimisation Algorithm for 
solving flowshop scheduling problem (FSP) under single and multiple objective criteria.  

2. Flowshop Scheduling 

2.1 Description of FSP 

In discrete parts manufacturing industries, jobs with multiple operations use machines in 
the same order. In such case, machines are installed in series. Raw materials initially enter 
the first machine and when a job has finished its processing on the first machine, it goes to 
the next machine. When the next machine is not immediately available, job has to wait till 
the machine becomes available for processing. Such a manufacturing system is called a 
flowshop, where the machines are arranged in the order in which operations are to be 
performed on jobs. A flowshop is a conventional manufacturing system where machines are 
arranged in the order of performing operations on jobs. The technological order, in which 

the jobs are processed on different machines, is unidirectional. In a flowshop, a job i  with a 

set of m operations m3,21 i...,,ii,i  is to be completed in a predetermined sequence. In short, 

each operation except the first has exactly one direct predecessor and each operation except 
the last one has exactly one direct successor as shown in Figure 1. Thus each job requires a 
specific immutable sequence of operations to be carried out for it to be complete. This type 
of structure is sometimes referred as linear precedence structure (Baker, 1974). Further, once 
started, an operation on a machine cannot be interrupted. 
 

  
 

 

Figure 1. Work Flow in Flowshop 

2.2 Characteristics of FSP 

Flowshop consists of m machines and there are n different jobs to be optimally sequenced 
through these machines. The common assumptions used in modelling the flowshop 
problems are as follows:  

• All n jobs are available for processing at time zero and each job follows identical routing 
through the machines. 

• Unlimited storage exists between the machines. Each job requires m operations and 
each operation requires a different machine. 

• Every machine processes only one job at a time and every job is processed by one 
machine at a time.  

• Setup-times for the operations are sequence-independent and are included in 
processing times. 

• The machines are continuously available. 

• Individual operations cannot be pre-empted. 
Further it is assumed that: 

• Each job must be processed to completion. 

• In-process inventory is allowed when necessary. 

i1 i2 im 
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• There is only one machine of each type in the shop. 

• Machines are available throughout the scheduling period. 

• There is no randomness and the scheduling problem under study is a deterministic 
scheduling problem. In particular 

• The number of jobs is known and fixed. 

• The number of machines is known and fixed. 

• The processing times are known and fixed, and  

• All other quantities needed to define a particular problem are known and fixed. 
The general structure of typical n  job m machine FSP is shown in Figure 2. 

 
            Job  Processing order 

M1 M2 M3 ………Mm 

 
J1 Pt1 Pt2 Pt3 ………Ptm 

J2 Pt1 Pt2 Pt3 ………Ptm 

J3 Pt1 Pt2 Pt3 ………Ptm 

.. .. .. ..      .. 

.. .. .. ..      .. 
Jn Pt1 Pt2 Pt3 ………Ptm 

 

 
where Pt - processing time of job J in machine M 

Figure 2. General Structure of Flowshop  

2.3 Solution approaches for FSP 

Computational complexity of a problem is the maximum number of computational steps 
needed to obtain an optimal solution. For example if there are n jobs and m available 
machines, the available number of schedule to be evaluated to get an optimal solution is 
(n!)m. In a permutation flow based manufacturing system, the number of available schedules 
is n!. Based on the complexity of the problem, all problems can be classified into two classes, 

called P and NP  in the literature. Class P consists of problems for which the execution 

time of the solution algorithms grows polynomially with the size of the problem. Thus, a 

problem of size m  would be solvable in time proportional to km , when k is an exponent. 

The time taken to solve a problem belonging to the NP class grows exponentially, thus this 

time would grow in proportion to mt , where t  is some constant. In practice, algorithms for 

which the execution time grows polynomially are preferred. However, a widely held 

conjecture of modern mathematics is that there are problems in NP class for which 

algorithms with polynomial time complexity will never be found (French, 1982). These 

problems are classified as hardNP −  problems. Unfortunately, most of the practical 

scheduling problems belong to the hardNP − class (Rinnooy Kan, 1976). Many scheduling 

problems are polynomially solvable, or NP-hard in that it is impossible to find an optimal 
solution here without the use of an essentially enumerative algorithm. FSP is a widely 
researched combinatorial optimization problem, for which the computational effort 
increases exponentially with problem size (Jiyin Liu & Colin Reeves, 2001; Brucker, 1998; 
Sridhar & Rajendran, 1996; French, 1982). In FSP, the computational complexity increases 
with increase in problem size due to increase in number of jobs and/or number of machines. 
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To find exact solution for such combinatorial problems, a branch and bound or dynamic 
programming algorithm is often used when the problem size is small. Exact solution 
methods are impractical for solving FSP with large number of jobs and/or machines. For the 
large-sized problems, application of heuristic procedures provides simple and quick method 
of finding best solutions for the FSP instead of finding optimal solutions. A heuristic is a 
technique which seeks (and hopefully finds) good solutions at a reasonable computational 
cost. A heuristic is approximate in the sense that it provides a good solution for relatively 
little effort, but it does not guarantee optimally. A heuristic can be a rule of thumb that is 
used to guide one’s action. Heuristics for the FSP can be a constructive heuristics or 
improvement heuristics. Various constructive heuristics methods have been proposed by 
Johnson, 1954; Palmer, 1965; Campbell et al., 1970; Dannenbring 1977 and Nawaz et al. 1983. 
Literature shows that constructive heuristic methods give very good results for NP-hard 
combinatorial optimization problems. This builds a feasible schedule from scratch and the 
improvement heuristics try to improve a previously generated schedule by applying some 
form of specific improvement methods. An application of heuristics provides simple and 
quick method of finding best solutions for the FSPs instead of finding optimal solutions 
(Ruiz & Maroto, 2005; Dudek et al. 1992). Johnson’s algorithm (1954) is the earliest known 
heuristic for the FSP, which provides an optimal solution for two-machine problem to 

minimize makespan. Palmer (1965) developed a very simple heuristic in which for every job a 
‘‘slope index’’ is calculated and then the jobs are scheduled by non-increasing order of this 
index. Ignall & Schrage (1965) applied the branch and bound technique to the flowshop sequencing 

problem. Campbell et al. (1970) developed a heuristic algorithm known as CDS algorithm 

and it builds 1m −  schedules by clustering the m original machines into two virtual 
machines and solving the generated two machine problem by repeatedly using Johnson’s 
rule. Dannenbring’s (1977) Rapid Access heuristic is a mixture of the previous ideas of 
Johnson’s algorithm and Palmer’s slope index. Nawaz et al.’s (1983) NEH heuristic is based 
on the idea that jobs with high processing times on all the machines should be scheduled as 
early in the sequence as possible. NEH heuristics seems to be the performing better 
compared to others. Heuristic algorithms are conspicuously preferable in practical 
applications. Among the most studied heuristics are those based on applying some sort of 
greediness or applying priority based procedures including, e.g., insertion and dispatching 
rules. The main drawback of these approaches, their inability to continue the search upon 
becoming trapped in a local optimum, leads to consideration of techniques for guiding 
known heuristics to overcome local optimality (Jose Framinan et al. 2003). And also the 
heuristics has the problems like  

1. Lack of comprehensiveness 
2. Little robustness of conclusions  
3. Weak/partial experimental design  

For these reasons, one can investigate the application of metaheuristic search methods for 
solving optimization problems. It is a set of algorithmic concepts that can be used to define 
heuristic methods applicable to wide set of varied problems. The use of metaheuristics has 
significantly produced good quality solutions to hard combinatorial problems in a 
reasonable time. It is defined as an iterative generation process which guides a subordinate 
heuristic by combining intelligently different concepts for exploring and exploiting the 
search space, learning strategies are used to structure information in order to find efficiently 
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near-optimal solutions (Osman & Laporte, 1996). The fundamental properties which 
characterize metaheuristics are as follows (Christian Blum & Andrea Roli, 2003):  

• The goal is to efficiently explore the search space in order to find (near-) optimal 
solutions. 

• Techniques which constitute metaheuristic algorithms range from simple local search 
procedures to complex learning processes. 

• Metaheuristic algorithms are approximate and usually non-deterministic. 

• They may incorporate mechanisms to avoid getting trapped in confined areas of the 
search space. 

• The basic concepts of metaheuristics permit an abstract level description. 

• Metaheuristics are not problem-specific. 

• Metaheuristics may make use of domain-specific knowledge in the form of heuristics 
that are controlled by the upper level strategy. 

• Today’s more advanced metaheuristics use search experience (embodied in some form 
of memory) to guide the search. 

Metaheuristics or Improvement heuristics are extensively employed by researchers to solve 
scheduling problems (Chandrasekaran et al. 2006; Suresh & Mohanasundaram, 2004; Hisao 
Ishibuchi et al. 2003; Lixin Tang & Jiyin Liu, 2002; Eberhart & Kennedy, 1995). Improvement 
methods such as Genetic Algorithm (Chan et al. 2005; Ruiz et al. 2004; Sridhar & Rajendran, 
1996), Simulated Annealing algorithm (Ogbu & Smith, 1990), Tabu Search algorithm 
(Moccellin & Nagamo, 1998) and Particle Swarm Optimization algorithm (Rameshkumar et 
al. 2005; Prabhaharan et al. 2005; Faith Tasgetiren et al. 2004) have been widely used by 
researchers to solve FSPs. Metaheuristic algorithms such as Simulated Annealing (SA) and 
Tabu Search (TS) methods are single point local search procedures where, a single solution 
is improved continuously by an improvement procedure. Algorithms such as Genetic 
Algorithm (GA), Ant Colony Optimization (ACO) algorithm and Particle Swarm 
Optimization (PSO) algorithm belongs to population based search algorithms. These are 
designed to maintain a set of solution transiting from a generation to the next. The family of 
metaheuristics includes, but is not limited to, GA, SA, ACO, TS, PSO, evolutionary methods, 
and their hybrids.  

2.4 Performance measures considered 

Measures of schedule performance are usually functions of the set of completion times in a 
schedule. Performance measures can be classified as regular and non-regular. A regular 
measure is one in which the penalty function is non-decreasing in terms of job completion 
times. Some examples of regular performance measures are makespan, mean flowtime, total 
flowtime, and number of tardy jobs. Performance measures, which are not regular, are 
termed non-regular. That is, such measures are not an increasing function with respect to 
job completion times. Some examples of non-regular measures are earliness, tardiness, and 
completion time variance. In this chapter, the performance measures namely minimization 
of makespan, total flowtime and completion time variance is considered for solving 

flowshop scheduling problems. Makespan )C( max has been considered by many scheduling 

researchers (Ignall & Scharge, 1965; Campbell et al. 1970; Nawaz et al.1983; Framinan et al. 
2002; Ruiz & Maroto, 2005). Makespan is defined as the time required for processing all the 
jobs or the maximum time required for completing a given set of jobs. Minimization of 
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makespan ensures better utilization of the machines and leads to a high throughput               
(Framinan et al. 2002; Ruiz & Maroto, 2005). Makespan is computed using equation (1).  

 =maxC { }n,........,2,1i,Cmax i =   (1) 

The time spend by a job in the system has been defined as its flow time. Total flowtime is 
defined as the sum of completion time of every job or total time taken by all the jobs. Total 

flowtime )F( ∑ of the schedule is computed using equation (2). Minimizing total flowtime 

results in minimum work-in-process inventory (Chandrasekharan Rajendran & Hans 
Ziegler, 2005). 

 ∑
=

∑ =
n

1i
iCF   (2) 

Completion time variance is defined as the variance about the mean flowtime and is 

computed using equation (3). Minimizing completion time variance )( TV  serves to 

minimize variations in resource consumption and utilization (Gowrishankar et al. 2001; 
Gajpal & Rajendran, 2006; Viswanath Kumar Ganesan et al. 2006).  

 ∑
=

−=
n

1i

2
iT )FC(

n

1
V   (3) 

where 
n

F
F T=  is the mean flowtime. 

3. Particle Swarm Optimization Algorithm 

3.1 Features of PSO 

Particle Swarm Optimization (PSO) algorithm is an evolutionary computation technique 
developed by Eberhart & Kennedy in 1995 inspired by social behavior of bird flocking or 
fish schooling. PSO is a stochastic, population-based approach for solving problems 
(Kennedy & Eberhart, 1995). It is a kind of swarm intelligence that is based on social-
psychological principles and provides insights into social behavior, as well as contributing 
to engineering applications. PSO algorithm has been successfully used to solve many 
difficult combinatorial optimization problems. PSO algorithm is problem-independent, 
which means little specific knowledge relevant to a given problem is required. All we have 
to know is the fitness evaluation of each solution. This advantage makes PSO more robust 
than many search algorithms. In the last couple of years the particle swarm optimization 
algorithm has reached the level of maturity necessary to be interesting from an engineering 
point of view. It is a potent alternative optimizer for complex problems and possesses many 
attractive features such as:  

• Ease of implementation: The PSO is implemented with just a few lines of code, using 
only basic mathematical operations. 

• Flexibility: Often no major adjustments have to be made when adapting the PSO to a 
new problem. 

• Robustness: The solutions of the PSO are almost independent of the initialization of the 
swarm. Additionally, very few parameters have to be tuned to obtain quality solutions. 
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• Possibility to combine discrete and continuous variables. Although some authors 
present this as a special feature of the PSO (Sensarma et al., 2002), others point out that 
there are potential dangers associated with the relaxation process necessary for 
handling the discrete variables (Abido, 2002). Simple round-off calculations may lead to 
significant errors. 

• Possibility to easily tune the balance between local and global exploration. 

• Parallelism: The PSO is inherently well suited for parallel computing. The swarm 
population can be divided between many processors to reduce computation time. 

3.2 Applications of PSO 

In recent years, PSO has been successfully applied in many areas. Currently, PSO has been 
implemented in a wide range of research areas such as functional optimization, pattern 
recognition, neural network training, fuzzy system control etc. and obtained significant 
success. PSO is widely applied and focused by researchers due to its profound intelligence 
background and simple algorithm structure. Many proposals indicate that PSO is relatively 
more capable for global exploration and converges more quickly than many other heuristic 
algorithms. It solves a variety of optimization problems in a faster and cheaper way than the 
evolutionary algorithms in the early iterations. One of the reasons that PSO is attractive is 
that there are very few parameters to adjust. One version, with very slight variation (or none 
at all) works well in a wide variety of applications. PSO has been used for approaches that 
can be used across a wide rage of applications, as well as for specific applications focused on 
a specific requirement. PSO has been applied to the analysis of human tremor. The diagnosis 
of human tremor, including Parkinson’s disease and essential tremor, is a very challenging 
area. PSO has been used to evolve a neural network that distinguishes between normal 
subjects and those with tremor. Inputs to the network are normalized movement amplitudes 
obtained from an actigraph system. The method is fast and accurate (Eberhart & Hu, 1999). 
While development of computer numerically controlled machine tools has significantly 
improved productivity, there operation is far from optimized. None of the methods 
previously developed is sufficiently general to be applied in numerous situations with high 
accuracy. A new and successful approach involves using artificial neural networks for 
process simulation and PSO for multi-dimensional optimization. The application was 
implanted using computer-aided design and computer-aided manufacturing (CAD/CAM) 
and other standard engineering development tools as the platform (Tandon, 2000). Another 
application is the use of particle swarm optimization for reactive power and voltage control 
by a Japanese electric utility (Yoshida et al., 1999). PSO has also been used in conjunction 
with a back propagation algorithm to train a neural network as a state-of-charge estimator 
for a battery pack for electric vehicle use. Determination of the battery pack state of charge is 
an important issue in the development of electric and hybrid / electric vehicle technology. 
The state of charge is basically the fuel gauge of an electric vehicle. A strategy was 
developed to train the neural network based on a combination of particle swarm 
optimization and the back propagation algorithm. Finally, one of the most exciting 
applications of PSO is that by a major American corporation to ingredient mix optimization. 
In this work, “ingredient mix” refers to the mixture of ingredients that are used to grow 
production strains of microorganisms that naturally secrete of manufacture something of 
interest. Here, PSO was used in parallel with traditional industrial optimization methods. 
PSO provided an optimized ingredient mix that provided over twice the fitness as the mix 
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found using traditional methods, at a very different location in ingredient space. PSO was 
shown to be robust: the occurrence of an ingredient becoming contaminated hampered the 
search for a few iterations but in the end did not result in poor final results. PSO, by its 
nature, searched a much larger portion of the problem space than the traditional method. 
Generally speaking, particle swarm optimization, like the other evolutionary computation 
algorithms, can be applied to solve most optimization problems and problems that can be 
converted to optimization problems. Among the application areas with the most potential 
are system design, multi-objective optimization, classification, pattern recognition, 
biological system modelling, scheduling (planning), signal processing, games, robotic 
applications, decision making, simulation and identification. Examples include fuzzy 
controller design, job shop scheduling, real time robot path planning, image segmentation, 
EEG signal simulation, speaker verification, time-frequency analysis, modelling of the 
spread of antibiotic resistance, burn diagnosing, gesture recognition and automatic target 
detection, to name a few (Eberhart & Shi, 2001). 

3.3 Working of PSO 

PSO is initialized with a swarm of random feasible solutions and searches for optima by 
updating velocities and positions. PSO algorithm is initialized with a set of several random 
particles called a swarm. A set of moving particles (the swarm) is initially thrown inside the 
multi-dimensional search space. Each particle is a potential solution, which has the ability to 
remember its previous best position and current position, and it survives from generation to 
generation. Each particle has the following features: 

• It has a position and a velocity  

• It knows its neighbours, best previous position and objective function value. 

• It remembers its best previous position. 
At each time step, the behavior of a given particle is a compromise between three possible 
choices 

• To follow its own way  

• To go towards its best previous position  

• To go towards the best neighbour’s best previous position, or forwards the best 
neighbour. 

The swarm is typically modelled by particles in multi-dimensional space that have a 
position and a velocity. These particles fly through hyperspace and have two essential 
reasoning capabilities: their memory of their own best position and knowledge of their 
neighborhood's best, "best" simply meaning the position with the smallest objective value. 
Members of a swarm communicate good positions to each other and adjust their own 
position and velocity based on these good positions. PSO shares many similarities with 
evolutionary computation techniques such as GA, SA, TS and ACO algorithms. The PSO 
system is initialized with a swarm of random solutions and searches for optima by updating 
generations. The advantages of PSO are that PSO is easy to implement and there are few 
parameters to adjust. PSO has been successfully applied in many areas: function 
optimization, artificial neural network training, fuzzy system control, and other areas where 
GA can be applied. Most of evolutionary techniques have the following procedure: 
1.  Random generation of an initial population 
2.  Reckoning of a fitness value for each subject. It will directly depend on the distance to 

the optimum.  
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3.  Reproduction of the population based on fitness values.  
4.  If requirements are met, then stop. Otherwise go back to step 2. 
Evolutionary Algorithms use a population of potential solutions (points) of the search space. 
These solutions (initially randomly generated) are evolved using different specific operators 
which are inspired from biology. Through cooperation and competition among the potential 
solutions, these techniques often can find near-optimal solutions quickly when applied to 
complex optimization problems. There are some similarities between PSO and Evolutionary 
Algorithms: 
1. Both techniques use a population (which is called swarm in the PSO case) of solutions 

from the search space which are initially random generated; 
2. Solutions belonging to the same population interact with each other during the search 

process; 
3. Solutions are evolved using techniques inspired from the real world. 
PSO shares many common points with GA. Both algorithms start with a group of a randomly 
generated population; both have fitness values to evaluate the population. Both update the 
population and search for the optimum with random techniques. Both systems do not 
guarantee success. However, PSO does not have genetic operators like crossover and 
mutation. Particles update themselves with the internal velocity. The information sharing 
mechanism in PSO is significantly different. In GA, chromosomes share information with 
each other. So the whole population moves like one group towards an optimal area. In PSO, 
only global or local best particle gives out the information to others. It is a one-way 
information sharing mechanism. Compared with GA, all the particles tend to converge to the 
best solution quickly even in the local version in most cases/ PSO optimization algorithm 
uses a set of particles called a swarm, similar to chromosomes in a binary-coded Genetic 
Algorithm (GA). PSO and ACO are optimization algorithms based on the behavior of swarms 
(birds, fishes) and ants respectfully. However, the particles are multidimensional points in 
real space during the optimization. The PSO optimization run starts with a user-specified 
swarm size and objective function used to evaluate objection function values, called fitness in 
GA terminology. The particles are initialized randomly within the variable bounds and they 
search for the optimum (maximum or minimum) in the search space with some 
communication between particles. For a maximization (or minimization) problem, the 
particles will move towards the particle with the highest (or least) objective function value 
using a position update equation, that is stochastic. This is how randomness in introduced to 
PSO algorithm. This position update method is similar to the use of crossover and mutation 
operations used to generate new individuals in a new generation in the GA. However, the 
PSO differs in that, updates of particle position usually involve the best particles (global or in 
the neighborhood) of each particle. The position updating tends to always exploit the best 
solution found so far. While this may lead to premature convergence, when all particles 
positions become equal to that of the best particle (i.e., no diversity), there are schemes 
designed to prevent such premature convergence. In the PSO literature, several 
neighborhood schemes have been developed for the particle updating (Merkle and 
Middendorf, 2000). This chapter aims to develop a metaheuristic algorithm called PSO 
algorithm which is suitable for solving FSPs with the objective of minimising three 
performance measures namely makespan, total flowtime and completion time variance. 
Firstly, a single objective PSO is proposed and the above performance measures are 
considered individually. Performance of the proposed single objective PSO is tested by 
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solving a large set of benchmark FSPs available in the literature having number of jobs 
varying from 5 to 500 and number of machines from 5 to 20.  

3.4 Structure of PSO Algorithm 

The pseudo-code of the simple PSO algorithm and its general framework are given in 
Figures 3 and 4 respectively. 
The basic elements of PSO algorithm are summarized below: 

Particle: t
iX denotes the ith particle in the swarm at iteration t and is represented by n 

number of dimensions as [ ]t
in

t
2i

t
1i

t
i x,..,x,xX = , where t

ijx  is the position value of the ith 

particle with respect to the jth dimension ( n,...,2,1j = ).  

Population: tpop  is the set of NP  particles in the swarm at iteration t, i.e., 

[ ]t
NP

t
2

t
1

t X,...,X,Xpop =  . 

Sequence: We introduce a new variable t
iπ , which is a permutation of jobs implied by the 

particle t
iX . It can be described as [ ]t

in
t
2i

t
1i

t
i ,..,, ππππ = , where t

ijπ  is the assignment of job j of 

the particle i in the permutation at iteration t. 

 
Figure 3. Pseudocode of the PSO Algorithm 

Particle velocity: t
iV  is the velocity of particle i at iteration t. It can be defined as 

[ ]t
in

t
2i

t
1i

t
i v,...,v,vV = , where t

ijv  is the velocity of particle i at iteration t with respect to the jth 

dimension. 

Local best: t
iP  represents the best position of the particle i with the best fitness until 

iteration t, so the best position associated with the best fitness value of the particle i obtained 

so far is called the local best. For each particle in the swarm, t
iP  can be determined and 

updated at each iteration t. In a minimization problem with the objective function ( )t
if π  

where t
iπ  is the corresponding sequence of particle t

iX , the local best t
iP  of the ith particle is 

obtained such that ( ) ( )1t
i

t
i ff −≤ ππ  where t

iπ  is the corresponding permutation of local best t

i
P  

Initialize swarm 
Initialize velocity 
Initialize position 
Initialize parameters  

Evaluate particles 
Find the local best  
Find the global best   

Do  
{  
              Update velocity 
             Update position 
               Evaluate 
              Update local best 

Update global best  
}   ( until termination)
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and 1t
i

−π  is the corresponding sequence of local best 1t
iP − . To simplify, we denote the fitness 

function of the local best as ( )t
i

pb
i ff π= . For each particle, the local best is defined as 

[ ]t
in

t
2i

t
1i

t
i p,...,p,pP =  where t

ijp is the position value of the ith local best with respect to the jth 

dimension ( n,...,2,1j = ). 
 

 

 

 

` 

 

 

 

 

 

 

Figure 4. The Framework of PSO Algorithm 

4. Discrete PSO Algorithm for Single-Objective FSP 

4.1 Pseudocode of the proposed discrete PSO algorithm 

Particle Swarm Optimization algorithm starts with a population of randomly generated initial 
solutions called particles (swarm). It is to be noted that the particle structure is taken as a 
string, which consists of job numbers in certain order. The order of jobs in the string represents 
a sequence. After the swarm is initialized, each potential solution is assigned a velocity 

randomly. The length of the velocity of each particle v  is generated randomly between 0 and 

n (Rameshkumar et al. 2005; Chandrasekaran et al. 2006) and the corresponding lists of 

transpositions ( ) kqq v,1q;j,i =  are generated randomly for each particle. The above 

formulation permits exchange of jobs )j,i(......)j,i(),j,i( vv2211 in the given order. Each 

particle keeps track of its improvement and the best objective function value achieved by the 

individual particles so far is stored as local best solution ( )t
k

e P , and the overall best objective 

function achieved by all the particles together so far is stored as the global best solution ).G( t
b  

The particle velocity and position are updated continuously in all iterations. The iterative 
improvement process is continued afterwards to further improve the solution quality. The 
Pseudocode of the proposed discrete PSO algorithm is shown in Figure 5. 

Output the Results 

Generate N particles at Random 

Evaluate the sequences 

 

Apply Velocity and Move the particle 

Update particle Index (PCurrent, PBest, GBest) 

Is the Stopping 
Criteria Satisfied?

No

Yes 
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Figure 5. Pseudocode of the Proposed Discrete PSO Algorithm 

The particle velocity and position are continuously updated using equation (4) and (5).  

 )PG()(randUC)PP()(randUCvUCv 1t
kk33

1t
k

1t
k

e
22

t
k11

1t
k

++++ −+−+=     (4) 

 1t
k

t
k

1t
k vPP ++ +=   (5) 

where 321 CandC,C is called acceleration constants. The acceleration constants 

321 CandC,C  in equation (4) guide every particle toward local best and the global best 

solution during the search process. Low acceleration value results in walking far from the 
target, namely local best and the global best. High value results in premature convergence of 
the search process. 

4.2 Procedural steps of the Discrete PSO Algorithm  

The step by step procedure for implementing the proposed discrete PSO algorithm is as 
follows. 

Step1: Initialize a swarm iP  with random positions and velocities in the problem space .X  

Step2: For each particle, evaluate the desired optimization fitness function 
Step3: Compare the fitness function with its previous best. If current value is better than 

previous best, then set previous best equal to current value and iP  equal to the 

current location iX . 

Step4: Identify the particle in the neighborhood with the best success so far, and assign its 

index to the variable G . 

Step5: Apply local search algorithm to all the particles at the end of each iteration and 
evaluate for the objective function. 

Step6: Change the velocity and position of the particle according to equation (4) and 
equation (5). 

Step7: Loop to step (2) until a criterion is met (usually number of iterations). 

Initialize swarm P   ;0t =  

Initialize velocity t
kv and position t

kP   

 Initialize parameters   
Evaluate particles 

Find the local best t
k

e P and global best t
bG  

Do 
{  

    ( )N,1k for =  

   Update Velocity 1t
kv + ; 

   Update Position 1t
kP + ; 

   Evaluate all particles; 

         Update 1t
k

e P +  and 1tG + , ( )N,1k = ; 

         1tt +→ ; 

 }  ( )maxttwhile <   
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4.3 Numerical Illustrations 

An example illustrating the process of updating the velocity and the position of a sequence 

is explained as follows: 

Velocity update: The procedure for updating the velocity of all the particles in each iteration 

is as follows: For example, let us assume 

The sequence t
kP = { }1,4,3,2 ; ,2C,1C 21 == 2C3 = ; 3.0U,4.0U,2.0U 321 === ; 2Vk = , 

)3,2(),4,1(v = ; t
k

e P  =  (1,4,3,2)  and t
bG =  (3,1,4,2) .   

Velocity of the particle k at time step 1t +  namely 1t
kV + is obtained using equation (4)   

1t
kV + = 1x 0.2 [(1,4),(2,3)] ⊕ 2 x 0.4 [(1,4,3,2) - (2,3,4,1)] ⊕ 2 x 0.3 [(3,1,4,2) - (2,3,4,1)] 

where [(1,4,3,2) - (2,3,4,1)] represents a velocity such that applying the resulting 

velocity to the current particle (2,3,4,1) yields a position (1,4,3,2). 

Thus,   1t
kV +  = 0.2 [(1,4), (2,3)] ⊕  0.8 [(2,3), (1,4)] ⊕ 0.6 [(1,2), (1, 4)] 

   = ((1, 4),(2, 3),(1, 2)) 

Position update: Position of the particle k  at time step 1t +  namely 1t
kP + is obtained using 

equation (5) by applying 1t
kV + over t

kP as follows. 
1t

kP +  =(2,3,4,1) + ((1,4), (2,3),(1,2));  

= (1,3,4,2) + ((2,3),(1,2)); =(1,4,3,2) + (1,2);  

= (4,1,3,2) 

4.4 Performance Comparison 

An extensive performance analysis using proposed discrete PSO algorithm is carried out by 
means of evaluating the performance measures by solving the benchmark FSPs of Taillard 
(1993). Extensive experiments are conducted to fix the parameters like number of particles, 
number of iterations, selection of learning coefficients and initial swarm generation. The 
evaluation of proposed discrete PSO algorithm is coded in Linux C and run on an Intel 
Pentium III 900MHz PC with 128 MB memory. 
Number of iterations: Number of iterations or termination criterion is a condition that the 
search process will be terminated. It might be a maximum number of iteration or maximum 
CPU times are normally to terminate the search process (Liu & Reeves, 2001; Gowrishankar 
et al. 2001). In this chapter, for the single-objective optimization problems, an evaluation of 
1000 x n x m number of sequences or particles is taken as the termination criterion.  
Number of particles: Experiments have been conducted to identify the optimal swarm size 
by solving a set of 30 different instances of Taillard (1993) for makespan objective with 20 
jobs and machines varying from 5, 10 and 20 using discrete PSO algorithm. In 
experimentation, the performance of the algorithm is better with swarm size 80 and the 
same has been used throughout our evaluation. 
Learning coefficients: The roll of learning coefficients or acceleration constants, namely 

21 C,C  and 3C  guide every particle towards the local best and the global best solutions 

during the search process. Low acceleration value results in walking far from the target, 
namely local best and the global best. High value results in premature convergence of the 
search process. Experiments have been conducted using different combinations of learning 

coefficients. To determine the best combinations of 21 C,C  and 3C values by solving a set of 

30 FSPs for makespan objective with 20 jobs and machines varying from 5, 10 and 20 using 
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the proposed PSO algorithm. The values 2C,1C 21 ==  and 2C3 = shows better 

performance and the same, has been used throughout our study.  
Velocity coefficients: The velocity update is carried out after every iteration to improve the 

search process. The velocity coefficients, namely 321 UandU,U guides the search to find 

the optimal solution quickly. As per the experiments, the values for 321 UandU,U  are 

generated randomly between 0 and 1. 
Initial Swarm Generation: For the generation of initial swarm one particle is generated from 
the results obtained by certain algorithms for the desired optimization fitness function and 
remaining particles of the swarm is constructed in a way that a permutation is produced 
randomly. The particle generated from certain algorithms is added with randomly generated 
particles at the beginning of the search. This insertion of the particle in initial swarm is to find 
better sequences in each iteration of the search. And also it improves the performance of 
discrete PSO algorithm in terms of finding near-optimal solutions. The algorithms selected for 
generating the particle for different objective functions are listed below. For makespan 
objective, one particle is generated using NEH heuristic of Nawaz et al. (1983) and is added to 
the swarm. For total flowtime objective, one particle is generated based on the heuristic 
developed by Rajendran. (1993) and is added to the swarm. For completion time variance 
objective, a particle is generated based on the algorithm developed by Gajpal & Rajendran 
(2006), and is added to the swarm. These algorithms have better start with the respective 
objectives. Performance of the proposed discrete PSO with respect to makespan objective is 
carried out in comparison with the benchmark solutions given by Taillard (1993) and with the 
results published in the literature. The quality measure namely, “Average Relative Percent 

Deviation” )RPD(  is considered for the evaluation. During comparison, the corresponding 

better values reported in the literature are taken. The RPD  is computed using equation (6). 

 100]C/CG[RPD ** ×−=   (6) 

where, G represents the global best solution obtained by the proposed algorithm for a given 

problem and *C represents the upper bound value reported in the literature for the 

corresponding objective function. Some sample results of problems ta001-ta010 of Taillard 
(1993) is presented in Table 1.   

Instances Problem 
Results  

Reported 
Results  

Obtained   
RPD 

ta001 1278 1278 0.0000 

ta002 1359 1360 0.0736 

ta003 1081 1088 0.6475 

ta004 1293 1293 0.0000 

ta005 1235 1235 0.0000 

ta006 1195 1195 0.0000 

ta007 1239 1239 0.0000 

ta008 1206 1206 0.0000 

ta009 1230 1237 0.5691 

ta010 1108 1108 0.0000 

20 x 5 

RPD  0.1290 

Table 1. Sample Results for Makespan   
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In order to evaluate the performance of the proposed discrete PSO with respect to the total 
flowtime objective, the results are compared with the results of the popular performing 
heuristics developed by Liu & Reeves (2001), M-MMAS Algorithm and PACO Algorithm 
(Rajendran & Ziegler, 2004). Some sample results of problems ta001-ta010 for total flowtime 
criteria is presented in Table 2.  

Instances Problem 
Results  

Reported 
Results  

Obtained   
RPD 

ta001 14056 3 14033 -0.1636 

ta002 15151 2 15151 0.0000 

ta003 13403 3 13313 -0.6715 

ta004 15486 2 15459 -0.1744 

ta005 13529 3 13529 0.0000 

ta006 13123 3 13123 0.0000 

ta007 13559 2 13548 -0.0811 

ta008 13968 1 13948 -0.1432 

ta009 14317 2 14315 -0.0140 

ta010 12968 2 12943 -0.1928 

20 x 5 

RPD  -0.1441 

Note: Superscript (1) refers to Heuristic Algorithm (Liu & Reeves, 2001) (2) M-MMAS Algorithm 
(Rajendran & Ziegler, 2004) (3) PACO Algorithm (Rajendran & Ziegler, 2004)   

Table 2. Sample Results for Total Flowtime 

 

Instances Problem 
Results  

Reported 
Results  

Obtained   
RPD 

ta001 73040.55 3 72060.23 -1.3422 

ta002 90885.27 2 89238.17 -1.8123 

ta003 53894.49 2 53851.95 -0.0789 

ta004 89822.05 4 87104.42 -3.0256 

ta005 72350.55 2 72020.43 -0.4563 

ta006 71665.73 2 70817.64 -1.1834 

ta007 69088.45 2 68367.69 -1.0432 

ta008 70214.31 2 69793.85 -0.5988 

ta009 73329.22 2 72284.98 -1.4240 

ta010 52580.03 1 52015.34 -1.0740 

20 x 5 

RPD  -1.2039 

Note: Superscript (1) refers to PACO Algorithm (Rajendran & Ziegler, 2004) (2) MMAS Ant Colony 
Algorithm (Stuetzle, 1998) (3) NACO Algorithm with position-job insertion local search (Gajpal & 
Rajendran, 2006) (4) NACO Algorithm with job-index based local search (Gajpal & Rajendran, 2006)  

Table 3. Sample Results for Completion Time Variance 

The performance of the proposed discrete PSO algorithm with respect to completion time 
variance criterion, the results are compared with the results of ant colony algorithm with 
random-job insertion local search by Gajpal & Rajendran (2006), M-MMAS Ant Colony 
Algorithm by Stuetzle(1998), PACO Algorithm by Rajendran & Ziegler(2004), and three 
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NACO Algorithm with position-job insertion and job-index based local searches by Rajendran 
& Ziegler (2004). To our knowledge, the results of completion time variance objective using 
PSO algorithm are not available in literature, the performance of the proposed algorithm is 
compared with other metaheuristic results. Some sample results of problems ta001-ta010 of 
Taillard (1993) for completion time variance objective are presented in Table 3.   

The results show that the proposed single-objective discrete PSO algorithm performs better. 

The negative sign in RPD  values shows that the proposed discrete PSO algorithm generates 

better results than the results reported in the literature considered. The summary of RPD  
values obtained for all the FSP instances of Taillard (1993) are presented in Table 4. 

 Instances 
Number of 
problems 

Makespan Total Flowtime 
Completion Time 

Variance 

20 x 5 10 0.1290238 -0.1440537 -1.2038674 

20 x10 10 0.5334462 -0.0164544 -1.7613968 

20 x 20 10 0.5329960 -0.0260092 -0.8586390 

50 x  5 10 0.0890855 -0.2925054 -0.9330275 

50 x 10 10 1.7541958 -0.0108922 -0.2059756 

50 x 20 10 2.9814187 0.2434647 1.7126618 

100 x 5 10 0.1713382 -0.7238382 1.2988817 

100 x 10 10 0.6882989 -0.1191928 0.9198400 

100 x 20 10 2.8784086 0.1476830 3.4646301 

200 x 10 10 0.5498368 1.8246721 0.0000000 

200 x 20 10 2.7011408 1.4120018 0.0000000 

500 x 20 10 1.8172343 1.4205378 0.0000000 

Table 4. RPD Values Obtained for the Various FSP Instances 

The proposed discrete PSO algorithm generates good results with reasonable CPU  time. 

CPU time taken by the proposed discrete PSO algorithm for various FSPs are presented in 

Table 5.  

Instances 
Number of 
Problems 

Makespan 
Total 

Flowtime 
Completion 

Time Variance 

20x5 10 0m25.164s 0m5.201s 0m6.642s 

20x10 10 1m36.844s 0m12.113s 0m33.619s 

20x20 10 6m22.854s 0m35.139s 2m16.764s 

50x5 10 13m44.973s 0m39.888s 1m10.433s 

50x10 10 55m38.305s 1m45.854s 6m19.487s 

50x20 10 110m32.087s 10m33.215s 32m41.970s 

100x5 10 19m42.310s 4m17.995s 10m39.676s 

100x10 10 26m3.295s 9m22.616s 45m1.041s 

100x20 10 62m14.918s 33m57.255s 84m4.257s 

200x10 10 143m25.161s 41m33.599s 50m27.703s 

200x20 10 166m27.657s 79m22.342s 129m58.384s 

500x20 10 543m32.695s 792m17.371s 410m50.485s 

Table 5. CPU time taken for Various FSP Instances   
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5. Discrete PSO Algorithm for Multi-Objective FSP 

 5.1 Concept and terminology 

The real-world scheduling problems are multi-objective in nature. In such cases, several 
objectives must be simultaneously considered when evaluating the quality of the proposed 
solution.  In multi objective decision problems one desires to simultaneously optimize more 
than one performance objectives such as makespan, tardiness, mean flowtime of jobs, etc. 
multi-objective optimization usually results in a set of non-dominated solutions instead of a 
single solution. The goal of multi-objective scheduling is to find a set of compromising 
schedules satisfying different objectives under consideration. For a given finite set of 
schedules generated by using a suitable algorithm for a multi-objective scheduling problem, 

various objective functions })x(f,....),x(f),x(f{)x(f k21=  can be evaluated. These schedules 

are to be compared and a set of schedules called non-dominated solutions are to be identified. 
For those solutions, no improvement in any objective function is possible without scarifying 
at least one of the other objective functions. Some researchers have developed multi-
objective metaheuristics for solving flowshop scheduling problems (Pasupathy et al. 2006; 
Prabhaharan et al. 2005; Loukil et al. 2005; Suresh & Mohanasundaram, 2004; Hisao 
Ishibuchi et al. 2003; Ishibuchi & Murata, 1998; Sridhar & Rajendran, 1996). A survey of 
multi-objective scheduling problems is given by T’kindt & Billaut (2001). A multi-objective 
PSO algorithm has been proposed for minimizing weighted sum of makespan and 
maximum earliness (Prabhaharan et al. 2005). A Pareto archived simulated annealing 
algorithm for multi-objective scheduling has been proposed (Suresh & Mohanasundaram, 
2004). Hisao Ishibuchi et al. (2003) proposed a modified multi-objective genetic local search 
algorithm (MMOGLS) for multi-objective FSP. They showed that the performance of the 
evolutionary multi-objective optimization algorithm can be improved by hybridization with 
local search. They apply multi-objective GA for PFSP and the results are compared with 
results published in the literature. Pasupathy et al. (2005) proposed a pareto-ranking based 
multi-objective GA called Pareto genetic algorithm with local search (PGA-ACS) algorithm 
for multi-objective FSP with an objective of minimizing the makespan and total flowtime. 
Loukil et al. (2005) proposed multi-objective simulated annealing algorithm to tackle the 
multi-objective production scheduling problems. 

Pareto dominance: Among a set of schedules P , a schedule Px1 ∈  is said to dominate the 

other schedule Px2 ∈ , denoted as ( )21 xx φ , if both the following conditions are true. 

(i) The schedule Px1
∈  is no worse than Px2

∈  in all objectives. 

(ii) The schedule Px1 ∈  is strictly better than Px2 ∈  in at least one objective. 

When both the conditions are satisfied, 2x is called as a dominated schedule and 1x a non-

dominated schedule. If any of the above condition is violated, the schedule 1x does not 

dominate the schedule 2x . Among a set of schedules P , the non-dominated set 'P  are those 

that are not dominated by any member of the set (Deb, 2003). 
Non-dominated front: The set of all non-dominated schedules. 

Pareto optimal set: When the set P is the entire search space X , the resulting non-
dominated set is called the Pareto optimal set. 
The primary objective is to find a set of non-dominated fronts for the FSPs with the 
consideration of performance measures.  
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5.2 Proposed Multi-objective Discrete PSO Algorithm 

The discrete PSO algorithm proposed for single objective FSP has been suitably modified to 
generate non-dominated solution set considering three performance measures 
simultaneously. Before presenting the proposed algorithm, the non-dominated sorting 
procedure, Pareto search procedure and the parameters considered are discussed below.  
Non- Domination Sorting: Non-domination measures are used to find non-dominated set of 
solutions. The following procedure is used to generate non-dominated particle or solution 

set from the population of particles. Consider a swarm consisting of N  solutions (particles). 

Step 0: Begin with 1ij;1i +== , and repeat steps 1 and 2. 

Step 1: Compare solutions ix  and jx  for domination using the two conditions mentioned. 

Step 2: If jx  is dominated by ix , mark jx as ‘dominated,’ increment j , and go to step 1. 

Otherwise mark ix  as dominated, increment i , set 1ij +=  and go to step 1.  

All solutions that are not marked ‘dominated’ forms a non-dominated solution set and these 

are stored separately in a memory called archive.  

 
Figure 6. Iterative search loop of the multi-objective discrete PSO algorithm 

Pareto Search: In case of a single objective scheduling optimization, an optimal solution forms 

the Global best )G( t
b . Under multi-objective scheduling, with multiple objectives, t

bG  consist 

of a set of non-dominated solutions. Once the swarm is initialized, )ot(Gb =  is obtained after 

non-dominated sorting of the particles. During the subsequent iterations, position and velocity 

update of the particles are carried out using local best and global best. It is to be noted that one 

solution is randomly chosen from the archive as Global best set. During every iteration, non-

dominated solution set is updated. This non-dominated solution set is added with the Archive 

and the combined set is sorted for non-dominance. Dominated solutions within the combined 

set are removed and the remaining non-dominated solutions forms )1t(Gb = . This procedure 

is repeated to guide the non-dominated search process towards the Pareto region. Initially, a 

set of particles are generated randomly and evaluated. Then the non-dominated sorting of 

particles is done. Within the swarm, the non-dominated solution set i.e. t
bG  is identified and 

they are stored in an archive. Then the positions and velocities of the particles are updated 

iteratively. These current sets of non-dominated solutions are combined with the archive 

Initialize the parameters 
Generate the swarm and velocity 
t = 0: // iteration counter 
Evaluate all the particles 
Perform non-dominated sorting to identify t

bG  
Open Archive to store t

bG  
 
Do  { 

Update position;  
1tt +=  

Evaluate 
Do non-dominated sorting to identify t

bG  
Archive update 
Update velocity 

}        while )tt( max< :  ;100tmax =  
Output t

bG  
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solutions. Non-dominated sorting of archive is done to identify the archive survival members. 

This process is called Archive update. During this, all dominated members of the combined set 

are removed. This procedure is repeated to guide the non-dominated search process towards 

generating a solution front close to the Pareto region. After the termination criterion is met, the 

solution set stored in the archive forms the result. The iterative improvement process of multi-

objective PSO algorithm is presented in Figure 6. 

5.3 Performance of Multi-objective Discrete PSO Algorithm   

In this section, the performance measures namely minimization of makespan, total flowtime 
and completion time variance are considered simultaneously. It is to be noted that PSO 
algorithm has been very rarely studied by researchers for solving FSPs with multi-objective 
requirements. 
Parameter Selection: Using the proposed algorithm, experiments are conducted to redesign 
the algorithm with appropriate parameter settings. Parameters were identified by trial and 
error approach for the better performance. The swarm size is taken as 80. The values of 

acceleration constants are fixed by trial and error as 2C;1C 21 ==  and 2C3 = . The values of 

velocity coefficients 21 U,U and 3U are generated randomly between 0 and 1. Termination 

criterion is taken as 100 iterations. The benchmark instances of Taillard (1993) form a set of 120 
problems of various sizes, having 20, 50, 100, 200 and 500 jobs and 5, 10 or 20 machines have 
been taken and solved. When the iterative search process is continued beyond 100 iterations, 
solution quality is expected to improve further and the non-dominated front will converge 
towards the Pareto front. Some samples of non-dominated solution sets obtained during 1st, 
50th and 100th iterations of selected benchmark FSPs are presented in Table 6. to Table 10.  

1st Iteration 50th Iteration 100th Iteration 

maxC  ∑F  TV  maxC  ∑F  TV  maxC  ∑F  TV  

2372 37335 143185.03 2418 37282 163238.72 2380 37749 121770.54 

2385 37379 134831.95 2450 37645 139131.23 2395 37465 130522.04 

2410 36900 148013.59 2451 38181 137003.64 2458 37187 210477.03 

2412 37674 129799.71 2495 36838 186985.58 2465 37341 187537.33 

2412 36970 138733.95 2518 39668 127576.64 2488 36988 148466.05 

2414 36786 157977.52 2544 36566 258462.42 2493 36787 244247.03 

2425 36842 155318.20 2550 36352 180610.66 2518 36639 213526.66 

2432 36071 225477.25 2633 37206 175815.11 2545 36177 189031.61 

2437 36855 150071.23       

2448 37604 125025.85       

2451 36764 158552.28       

2451 36600 172676.80       

2464 37521 134748.27       

2468 37875 124452.44       

2480 39012 119837.64       

2491 36170 154730.75       

2523 38802 123177.59       

Table 6. Non-dominated fronts obtained for 20 x 20 FSP (Problem ta025 of Taillard,1993) 
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1st Iteration 50th Iteration 100th Iteration 

maxC  ∑F  TV  maxC  ∑F  TV  maxC  ∑F  TV  

3840 127915 674615.63 4168 138549 801359.25 4192 143728 688058.06 

3923 132364 655699.19 4170 139913 794893.25 4218 142073 835741.13 

3979 130656 669600.50 4181 140250 769993.81 4226 136757 870648.81 

3979 132435 633633.38 4188 138913 756248.50 4241 140962 788543.19 

3982 132026 666358.94 4243 137007 882535.81 4245 138443 845496.63 

4018 136354 604771.06 4254 141017 750998.31 4266 137938 828836.88 

4023 132426 646723.94 4284 136183 929310.25 4298 137356 866164.31 

4034 135781 631409.19 4290 137714 833303.44 4324 143038 776172.63 

4058 131370 652795.69 4295 135927 845500.88 4329 143586 760850.94 

4081 137607 586079.44 4319 142649 731565.19 4334 141675 780154.75 

4084 136148 601373.06 4320 140119 747898.00 4343 136398 868004.75 

Table 7. Non-dominated fronts obtained for 50 x 20 FSP (Problem ta055 of Taillard,1993) 

 

1st Iteration 50th Iteration 100th Iteration 

maxC  ∑F  TV  maxC ∑F  TV  maxC ∑F  TV  

6719 414626 2332780.00 7079 442243 2714971.00 6977 429237 2643600.00 

6736 407661 2339133.25 7122 431015 2619110.50 7187 429079 2992237.75 

6754 407217 2426269.50 7125 430238 2888681.25 7222 423655 3181877.50 

6759 414920 2322475.00 7279 427670 3036344.25 7266 427705 3032460.25 

6772 421227 2319961.50 7307 426737 3014873.00 7287 426588 3061585.25 

6776 420444 2215965.00       

6780 406735 2308902.00       

6785 417764 2299484.50       

6804 417373 2165440.25       

6934 402802 2477583.00       

Table 8. Non-dominated fronts obtained for 100 x 20 FSP (Problem ta085 of Taillard,1993) 

 

1st Iteration 50th Iteration 100th Iteration 

maxC  ∑F  TV  maxC ∑F  TV  maxC ∑F  TV  

11883 1341992 8681969.00 12169 1370395 8968974.00 12213 1382492 9226709.00 

11922 1378165 8301979.00    12246 1418388 8839896.00 

11935 1361242 8654574.00    12304 1390924 9191086.00 

11938 1365058 8581394.00    12361 1380781 9530417.00 

11964 1363602 8492216.00    12445 1379004 9589141.00 

11995 1355612 8551758.00       

12020 1371423 8237680.50       

12051 1369441 8470111.00       

12115 1354810 8405068.00       

Table 9. Non-dominated fronts obtained for 200 x 20 FSP (Problem ta105 of Taillard,1993) 
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1st Iteration 50th Iteration 100th Iteration 

maxC  ∑F  TV  maxC  ∑F  TV  maxC  ∑F  TV  

27361 7380460 53524660.00 27802 7498389 54440864.00 27612 7421436 53180528.00 

27417 7405289 51892856.00 27811 7402468 53268448.00 27765 7458248 53042776.00 

27448 7419382 51504108.00 27999 7543786 53059836.00 27870 7440681 53140668.00 

27465 7394286 52016468.00 28091 7529455 52754652.00 27891 7374759 53306856.00 

27534 7392887 51930096.00       

27593 7458730 51066888.00       

27603 7373445 51681608.00       

27638 7439401 51390116.00       

27680 7445450 51262332.00       

27700 7418177 51122680.00       

27729 7492150 51039416.00       

Table 10. Non-dominated fronts obtained for 500 x 20 FSP (Problem ta115 of Taillard,1993) 

Normalized values of the performance measures are plotted for better visualization. Some 
samples of non-dominated front obtained during 1st, 50th and 100th iterations of selected 
benchmark FSPs are presented in Fig. 7. to Fig. 11. 

6. Conclusion 

Literature survey indicates that very few authors have studied the applications of multi-
objective scheduling in flowshop scheduling using particle swarm optimization algorithm is 
scarce. This Chapter presents a discrete PSO algorithm to solve FSPs. This work has been 
conducted in two phases. In the first phase, a discrete PSO is proposed to solve the single-
objective FSPs. In the second phase, a multi-objective discrete PSO algorithm is proposed to 
solve the FSPs with three objectives. The performance of the proposed single-objective 
discrete PSO is tested by solving a large set of benchmark FSPs. The quality measure namely 

“Average Relative Percent Deviation” ( RPD ) is used to compare the solution quality 
obtained with the results available in the literature. It shows that the proposed discrete PSO 
algorithm performs better in terms of quality of results. Using the proposed algorithm, 
experiments are conducted to redesign the algorithm with appropriate parameter settings. 

The RPD  for each set of instances are also shown in an efficient way. The parameters 
selected for solving the problems are holds good. The proposed multi-objective discrete PSO 
algorithm performs better in terms of yielding more number of non-dominated solutions 
close to Pareto front during the search. It is seen that, when the number of iterations is more, 
the non-dominated solution set generated is close to the Pareto front.  
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Figure 7. Non-dominated solution set obtained for 20 x 20 FSP (Problem ta025 of 
Taillard,1993) 
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Figure 8. Non-dominated solution set obtained for 50 x 20 FSP (Problem ta055 of 
Taillard,1993) 
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Figure 9. Non-dominated solution set obtained for 100x20 FSP (Problem ta085 of 
Taillard,1993) 
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Figure 10.Non-dominated solution set obtained for 200x20 FSP (Problem ta105 of 
Taillard,1993) 
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Figure 11.Non-dominated solution set obtained for 500x20 FSP (Problem ta115 of 
Taillard,1993) 
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