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1. Introduction      

Multiprocessor task scheduling is a generalized form of classical machine scheduling where 
a task is processed by more than one processor. It is a challenging problem encountered in 
wide range of applications and it is vastly studied in the scheduling literature (see for 
instance (Chan & Lee, 1999 and Drozdowski, 1996) for a comprehensive introduction on this 
topic). However, Drozdowski (1996) shows that multiprocessor task scheduling is difficult 
to solve even in its simplest form. Hence, many heuristic algorithms are presented in 
literature to tackle multiprocessor task scheduling problem. Jin et al. (2008) present a 
performance study of such algorithms. However, most of these studies primarily concerned 
with a single stage setting of the processor environment. There are many practical problems 
where multiprocessor environment is a flow-shop that is it is made of multiple stages and 
tasks have to go through one stage to another. 
Flow-shop scheduling problem is also vastly studied in scheduling context though most of 
these studies concerned with single processor at each stage (see for instance Linn & Zhang, 
1999, Dauzère-Pérès & Paulli, 1997). With the advances made in technology, in many 
practical applications, we encounter parallel processors at each stage instead of single 
processors such as parallel computing, power system simulations, operating system design 
for parallel computers, traffic control in restricted areas, manufacturing and many others 
(see for instance (Krawczyk & Kubale, 1985, Lee & Cai, 1999, Ercan & Fung, 2000, Caraffa et. 
al.,2001)). This particular problem is defined as hybrid flow-show with multiprocessor tasks 
in scheduling terminology and minimizing the schedule length (makespan) is the typical 
scheduling problem addressed. However, Brucker & Kramer (1995) show that 
multiprocessor flow-shop problem to minimize makespan is also NP-hard. Gupta (1988) 
showed that hybrid flow-shop even with two stages is NP-hard. Furthermore, the 
complexity of the problem increases with the increasing number of stages. 
Multiprocessor task scheduling in a hybrid flow-shop environment has recently gained the 
attention of the research community. To the best of our knowledge, one of the earliest 
papers that deal with this problem in the scheduling literature is by Oğuz and Ercan, 1997. 
However, due to the complexity of the problem, in the early studies (such as (Lee & Cai, 
1999, Oğuz et. al., 2003)) researchers targeted two layer flow-shops with multiprocessors. 
Simple list based heuristics as well as meta-heuristics were introduced for the solution 
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(Oğuz et al.,2003, Jdrzęjowicz & Jdrzęjowicz,2003, Oğuz et al.,2004). Apparently, a broader 
form of the problem will have arbitrary number of stages in the flow-shop environment. 
This is also studied recently and typically metaheuristic algorithms applied to minimize the 
makespan such as population learning algorithm (Jdrzęjowicz & Jdrzęjowicz, 2003), tabu 
search (Oğuz et al.,2004), genetic algorithm (Oğuz & Ercan,2005) and ant colony system 
(Ying & Lin,2006). Minimizing the makespan is not the only scheduling problem tackled; 
recently Shiau et al. (2008) focused on minimizing the weighted completion time in 
proportional flow shops.    
These metaheuristic algorithms produce impressive results though they are sophisticated 
and require laborious programming effort. However, of late particle swarm optimization 
(PSO) is gaining popularity within the research community due to its simplicity. The 
algorithm is applied to various scheduling problems with notable performance. For 
instance, Sivanandam et al. (2007) applied PSO to typical task allocation problem in 
multiprocessor scheduling. Chiang et al. (2006) and Tu et al. (2006) demonstrate application 
of PSO to well known job shop scheduling problem.    
PSO, introduced by Kennedy & Eberhart (1995), is another evolutionary algorithm which 
mimics the behaviour of flying birds and their communication mechanism to solve 
optimization problems. It is based on a constructive cooperation between particles instead of 
survival of the fittest approach used in other evolutionary methods. PSO has many 
advantages therefore it is worth to study its performance for the scheduling problem 
presented here. The algorithm is simple, fast and very easy to code. It is not computationally 
intensive in terms of memory requirements and time. Furthermore, it has a few parameters 
to tune.     
This chapter will present the hybrid flow-shop with multiprocessor tasks scheduling 
problem and particle swarm optimization algorithm proposed for the solution in details. It 
will also introduce other well known heuristics which are reported in literature for the 
solution of this problem. Finally, a performance comparison of these algorithms will be 
given. 

2. Problem definition 

The problem considered in this paper is formulated as follows: There is a set J of n 
independent and simultaneously available jobs where each job is made of Multi-Processor 
Tasks (MPT) to be processed in a multi-stage flow-shop environment, where stage j consists 
of mj identical parallel processors (j=1,2,...,k). Each MPTi ∈ J should be processed on pi,j  
identical processors simultaneously at stage j without interruption for a period of ti,j 
(i=1,2,...,n and j=1,2,...,k). Hence, each MPTi ∈ J is characterized by its processing time, ti,j, 

and its processor requirement, pi,j. The scheduling problem is basically finding a sequence of 
jobs that can be processed on the system in the shortest possible time. The following 
assumptions are made when modeling the problem: 

• All the processors are continuously available from time 0 onwards. 

• Each processor can handle no more than one task at a time. 

• The processing time and the number of processors required at each stage are known in 
advance. 

• Set-up times and inter-processor communication time are all included in the processing 
time and it is independent of the job sequence.  
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3. Algorithms  

3.1 The basic PSO algorithm  

PSO is initialized with a population of random solutions which is similar in all the 
evolutionary algorithms. Each individual solution flies in the problem space with a velocity 
which is adjusted depending on the experiences of the individual and the population. As 
mentioned earlier, PSO and its hybrids are gaining popularity in solving scheduling 
problems. A few of these works tackle the flow shop problem (Liu et al.,2005) though 
application to hybrid flow-shops with multiprocessor tasks is relatively new (Ercan & Fung, 
2007, Tseng & Liao, 2008).  
In this study, we first employed the global model of the PSO (Ercan & Fung, 2007). In the 
basic PSO algorithm, particle velocity and position are calculated as follows: 

 Vid=W Vid + C1R1(Pid-Xid)+C2R2(Pgd-Xid) (1) 

 Xid=Xid+Vid (2) 

In the above equations, Vid  is the velocity of particle i and it represents the distance traveled 
from the current position. W is inertia weight. Xid represents particle position. Pid is the local 
best solution (also called as “pbest”) and Pgd is global best solution (also called as 
“qutgbest”). C1 and C2 are acceleration constants which drive particles towards local and 
global best positions. R1 and R2 are two random numbers within the range of [0, 1]. This is 
the basic form of the PSO algorithm which follows the following steps:  

Algorithm 1: The basic PSO         

Initialize swarm with random positions and velocities;  
begin 
repeat 
    For each particle evaluate the fitness i.e. makespan of the schedule;  
    if current fitness of particle is better than Pid then set Pid to current value; 
    if Pid is better than global best then set Pgd to current particle fitness value; 
    Change the velocity and position of the particle; 
until termination = True 
end. 

The initial swarm and particle velocity are generated randomly. A key issue is to establish a 
suitable way to encode a shedule (or solution) to PSO particle. We employed the method 
shown by Xia et al.(2006). Each particle consists of a sequence of job numbers representing 
the n number of jobs on a machine with k number of stages where each stage has  mj   
identical processors (j=1,2,...,k). The fitness of a particle is then measured with the maximum 
completion time of all jobs. In our earlier work (Oğuz & Ercan,2005), a list scheduling 
algorithm is developed to map a given job sequence to the machine environment and to 
compute the maximum completion time (makespan). A particle with the  lowest completion 
time is a good solution.  
Figure 1 shows an example to scheduling done by the list scheduling algorithm. In this 
example, number of jobs is  n= 5 and a machine is made of two stages k=2 where each stage 
contains four identical processors. Table 1 depicts the list of jobs and their processing times 
and processor requirements at each stage for this example.   
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Job # Stage  1 (j=1) Stage 2 (j=2) 
i pi,1   ti,1 pi,2   ti,2 

1 1 1 2 2 

2 3 3 4 2 

3 3 3 3 2 

4 2 1 2 1 

5 1 1 1 1 

Table 1. Example jobs and their processing time and processor requirements at each stage 

For the schedule shown in Figure 1, it is assumed that a job sequence is given as S1 
={2,3,1,4,5}. At stage 1, jobs are iteratively allocated to processors from the list starting from 
time 0 onwards. As job 2 is the first in the list, it is scheduled at time 0. It is important to note 
that although there are enough available processors to schedule job 1 at time 0 this will 
violate the precedence relationship established in the list. Therefore, job 1 is scheduled to 
time instance 3 together with job 3 and this does not violate the precedence relationship 
given in S1 . Once all the jobs are scheduled at first stage, a new list is produced for the 
succeeding stage based on the completion of jobs at previous stage and the precedence 
relationships given in S1. In the new list for stage 2, S2 ={2,1,3,4,5} , job 1 is scheduled before 
job 3 since it is available earlier than job 3. At time instance 7, jobs 3, 4 and 5 are all available 
to be processed. Job 3 is scheduled first since its completion time is earlier at stage 1. 
Although, there is enough processor to schedule job 5 at time 8 this will again violate the 
order given in list S1 , hence it is scheduled together with job 4.  In this particular example, 
jobs 4 and 5 will be the last to be mapped to stage 2 and the over all completion time of tasks 
will be 10 units.    
The parameters of PSO are set based on our empirical study as well as referring to the 
experiences of other researchers. The acceleration constants C1  and C2 are set to 2.0 and 
initial population of swarm is set to 100.  Inertia weight, W, determines the search behavior 
of the algorithm. Large values for W  facilitate searching new locations whereas small values 
provide a finer search in the current area. A balance can be established between global and 
local exploration by decreasing the inertia weight during the execution of the algorithm. 
This way PSO tends to have more global search ability at the beginning and more local 
search ability towards the end of the execution. In our PSO algorithm, an exponential 
function is used to set the inertia weight and it is defined as: 

 max)(
x

x

endstartend eWWWW

α
−

−+=  (3) 

where, Wstart  is the starting, Wend is the ending inertia values. Wstart  are Wend are  set as 1.5 
and 0.3 respectively. In addition, x shows the current iteration number and xmax  shows the 
maximum iteration number which is set to 10000.  An integer constant α  is used to 

manipulate the gradient of the exponentially decreasing W  value and it is set to 4. 
In this application, Xid  and Vid are used to generate and modify solutions therefore they are 
rounded off to the nearest integer and limited to a maximum value of n which is the 
maximum number of jobs. That is position coordinates are translated into job sequence in 
our algorithm and a move in search space is obtained by modifying the job sequence. 
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Figure 1. The schedule of job sequence [2, 3, 1, 4, 5] after being allocated to processors of the 
multilayer system using the list scheduling algorithm. Idle periods of the processors are 
labeled as idle 

3.2 Hybrid PSO algorithms 

Although, PSO is very robust and has a well global exploration capability, it has the 
tendency of being trapped in local minima and slow convergence. In order to improve its 
performance, many researchers experimented with hybrid PSO algorithms. Poli et al. (2007) 
give a review on the varations and the hybrids of particle swarm optimisation. Similarly, in 
scheduling problems, performance of PSO can be improved further by employing hybrid 
techniques. For instance, Xia & Wu (2006) applied PSO-simulated annealing (SA) hybrid to 
job shop scheduling problem and test its performance with benchmark problems. Authors 
conclude that PSO-SA hybrid delivered equal solution quality as compared to other 
metaheuristic algorithms though PSO-SA offered easier modeling, simplicity and ease of 
implementation. These findings motivated us to apply PSO and its hybrids to this particular 
scheduling problem and study its performance.     
The basic idea of the hybrid algorithms presented here is simply based on runnign PSO 
algorithm first and then improving the result by employing a simulated annealing (SA) or 
tabu search (TS) heuristics. SA and TS introduce a probability to avoid becoming trapped in 
a local minimum. In addition, by introducing a neighborhood formation and tuning the 
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parameters, it is also possible to enhance the search process. The initial findings of this study 
are briefly presented in (Ercan,2008). The following pseudo codes show the hybrid 
algorithms: 

Algorithm 2: Hybrid PSO with SA         

Initialize swarm with random positions and velocities;  
    begin 
    initialize PSO and SA; 
       while (termination !=true) 
       do{ 
        generate swarm; 
        compute and find best Pgd;   
        }   
    set particle that gives best Pgd as initial solution to SA; 
        while (Tcurrent>Temp_end) 
         do{ 
         generate neighborhood;      
         evaluate and update best solution and temperature;  
         }     
    end. 

 

Algorithm 3: Hybrid PSO with TS         

Initialize swarm with random positions and velocities;  
    begin 
    initialize PSO and TS;     
        while (termination !=true) 
        do{ 
        generate swarm;    
        compute and find best Pgd; 
        }     
    set particle that gives best Pgd as initial solution to TS;  
        while (termination!=true) 
         do{ 
         generate sub set of neighborhoods;  
         evaluate and update the best solution;    
         update the tabu list;     
         } 
     end. 

The initial temperature for PSO-SA hybrid is estimated after 50 randomly permuted 
neighborhood solutions of the initial solution. A ratio of average increase in the cost to 
acceptance ratio is used as initial temperature. Temperature is decreased using a simple 
cooling strategy Tcurrent = λTcurrent -1 . The best value for lambda is experimentally found and 
set as 0.998. The end temperature is set to 0.01.  
A neighbor of the current solution is obtained in various ways.  

• Interchange neighborhood: Two randomly chosen jobs from the job list are 
exchanged.  
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• Simple switch neighborhood: It is a special case of interchange neighborhood 
where a randomly chosen job is exchanged with its predecessor. 

• Shift neighborhood: A randomly selected job is removed from one position in the 
priority list and put it into another randomly chosen position.  

It is experimentally found that interchange method performs the best amongst all three. The 
interchange strategy is also found to be the most effective one for generating the sub-
neighborhoods for TS.  
In the tabu list, a fixed number of last visited solutions are kept. Two methods for updating 
the tabu list are experimented; elimination of the farthest solution stored in the list, and 
removing the worst performing solution from the list. In PSO-TS hybrid removing the worst 
performing solution from the list method is used as it gave a slightly better result.  

4. GA algorithm 

Genetic algorithms, introduced by Holland (1975), have been widely applied to many 
scheduling problems in literature (see for instance job-shop environment (Della et al.,1995) 
and (Dorndorf & Pesch,1995), flow-shop environment (Murata et al., 1996)). Genetic 
algorithms are also employed in hybrid flow-shops with multiprocessor environment (Oğuz 
& Ercan, 2005). In this work, authors proposed a new crossover operator, NXO, to be used in 
the genetic algorithm and compare its performance with well-known PMX crossover. They 
employed two selection criteria in NXO to minimize the idle time of the processors. Firstly, 
NXO basically aims to keep the best characteristics of the parents in terms of the 
neighbouring jobs. That is if two jobs are adjacent to each other in both parents with good 
fitness values, then NXO tries to keep this structure in the offspring. If there is no such 
structure, then next criteria is employed in which NXO tries to choose the next job that will 
fit well in terms of the processor allocations. The results show that the genetic algorithm 
performs better in terms of the percentage deviation of the solution from the lower bound 
value when new crossover operator is used along with the insertion mutation. Some of the 
results from this study are included in this paper for comparison.  

5. Other heuristic methods 

The ant colony system (Dorigo, 1997) is another popular algorithm which is widely used in 
optimisation problems. Recently, Ying & Lin (2006) applied ant colony system (ACS) to 
hybrid flow-shops with multiprocessors tasks. Authors determine the jobs-permutation at 
the first stage, by ACS approach. Other stages are scheduled using an ordered list which is 
obtained by referring to completion times of jobs at the previous stage. Authors also apply 
the same procedure to the inverse problem to obtain the backward schedules. After that 
they employ a local search approach to improve the best schedule obtained in current 
iteration. Their computational results show that ACS has better performance compared to 
TS or GA though their algorithm is not any simpler than that of TS or GA.   
Recently, Tseng & Liao (2008) tackled the problem by using particle swarm optimization. 
Their algorithm differs in terms of encoding scheme to construct a particle, the velocity 
equation and local search mechanism when compared to the basic PSO and the hybrid PSO 
algorithms presented here. Based on their published experimental results, PSO algorithm 
developed by Tseng & Liao (2008) performs well in this scheduling problem. Lately, Ying 
(2008) applied iterated greedy (IG) heuristic in search of a simpler and more efficient 
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solution. The IG heuristic also shows a notable performance as it’s tailored to this particular 
problem. 

6. Experimental results 

The performance of all the meta-heuristics described above is tested using intensive 
computational experiments. Similarly, performance of the basic PSO and the hybrid PSO 
algorithms, in minimizing the overall completion time of all jobs, is also tested using the 
same computational experiments. The effects of various parameters such as number of jobs 
and processor configurations on the performance of the algorithm are also investigated. The 
results are presented in terms of Average Percentage Deviation (APD) of the solution from 
the lower bound which is expressed as:  

 100max
×

−
=

LB

LBC
APD  (3) 

Here, Cmax indicates the completion time of the jobs and LB indicates the lower bound 
calculated for the problem instance. The lower bounds used in this performance study were 
developed by Oğuz et al. (2004) and it is given with the following formula: 

  

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

+×+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑ ∑∑
∈ +=

∈

−

=
∈∈

Jj

l

il

jl
Jj

jiji

i

i

l

jl
JjMi

ttp
m

tLB
1

,,,

1

1

, min
1

minmax
 (4) 

In the above formula, M and J represent the set of stages and set of jobs consecutively. We 
used the benchmark data available at Oğuz’s personal web-site 
(http://home.ku.edu.tr/~coguz/). Data set contains instances for two types of processor 
configurations:  

(i) Random processor: In this problem set, the number of processors in each 
stage is randomly selected from a set of {1,..., 5}  

(ii) Fixed processor: In this case identical number of processors assigned at 
each stage which is fixed to 5 processors.  

For both configurations, a set of 10 problem instances is randomly produced for various 
number of jobs (n=5, 10, 20, 50, 100) and various number of stages (k=2, 5, 8). For each n and 
k value, the average APD is taken over 10 problem instances.  
Table 2 and 3 presents the APD results obtained for the basic PSO and the hybrid PSO 
algorithms. Furthermore, we compare the results with genetic algorithm developed by Oğuz 
and Ercan (2005), tabu search by Oğuz et al. (2004), ant colony system developed by Ying 
and Lin (2006), iterated greedy algorithm (IG) by Ying (2008) and PSO developed by Tseng 
& Liao (2008). The performance of GA (Oğuz and Ercan,2005) is closely related to the control 
parameters and the cross over and mutation techniques used. Therefore, in Tables 2 and 3, 
we include the best results obtained from four different versions of GA reported. The 
performance comparison given in below tables is fair enough as most of the authors were 
employing the same problem set. Furthermore, all the algorithms use the same LB. However 
there are two exceptions. For the GA, authors use an improved version of the LB than the 
one given in equation 4. In addition, the PSO developed by Tseng & Liao (2008) is tested 
with different set of problems and with the same LB as in GA. However, these problems 
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also have the same characteristic in terms of number of stage, generation methods for 
processor and processing time requirements, etc. 
From the presented results in Table 2 and 3, it can be observed that TS delivers reasonably 
good results only in two stage case; whereas GA demonstrates a competitive performance 
for small to medium size problems. For large number of jobs (such as n=50, 100) and large 
number of stages (k=8), GA did not outperform ACS, IG or PSO. When we compare ACS 
with TS and GA, we can observe that it outperforms TS and GA in most of the cases. For 
instance, it outperforms GA in 8 out of 12 problems in random processor case (Table 2). 
Among those, the performance improvement was more than %50 in six cases. On the other 
hand, IG gives a better result when compared to ACS in all most all the cases. The IG 
heuristic shows notable performance improvement for large problems (n=50 and n=100). 
For example, in n=100 and k=8 case, IG result is %71 better as compared to GA, %95 
compared to TS and %7 compared to ACS.  
The basic PSO algorithm presented here approximates to GA and ACS results though it did not 
show a significant performance improvement. PSO outperformed GA 4 in 12 problems for 
random processors and 1 in 12 problems for fixed processors. The best performance 
improvement was 54%. On the other hand, PSO-SA hybrid outperformed GA 7 and ACS 3 in 12 
problems.  In most of the cases, PSO-SA and PSO-TS outperformed the basic PSO algorithm. 
Amongst the two hybrids experimented here, PSO-SA gave the best results. The best result 
obtained with PSO-SA was in 50-jobs, 5-stages case, where the improvement was about 59% 
when compared to GA but this was still not better than ACS or IG. However, PSO developed by 
Tseng & Liao (2008) gives much more competitive results. Although thier results are for 
different set of problems, it can be seen that their algorithm performance improves when the 
problem size increases. Authors compared their algorithm with GA and ACS using the same set 
of data and reported that their PSO algorithm supersedes them, in particular for large problems. 
From the results, it can also be observed that when the number of processors are fixed, that 
is mj =5, the scheduling problem becomes more difficult to solve and APD results are 
relatively higher. This is evident in the given results of different metaheuristic algorithms as 
well as the basic PSO and the hybrid PSO algorithms presented here. In the fixed processor 
case, PSO-SA, which is the best performing algorithm among the three PSO algorithms, 
outperformed GA in 3 out of 12 problems and the best improvement achieved was %34. The 
performance of ACS is better for large problems though IG is dominant in most of the 
problems. For the fixed problem case, PSO algorithm developed by (Tseng & Liao, 2008) did 
not show an exceptional performance when compared to GA or ACS for smaller problems 
though for large problems (that is n=50 and 100) their PSO algorithm outperforms all. 
The execution time of the algorithms is another indicator of the performance though it may not 
be a fair comparison as different processors and compilers used for each reported algorithm in 
literature. For instance, the basic PSO and the hybrid PSO algorithms presented here are 
implemented using Java language and run on a PC with 2GHz Intel Pentium processor (with 
1024 MB memory). GA (Oğuz & Ercan, 2005) implemented with C++ and run on a PC with 
2GHz Pentium 4 processor (with 256 MB memory), IG (Ying, 2008) with visual C#.net and PC 
with 1.5GHz CPU and ACS (Ying & Lin, 2006) with Visual C++ and PC with 1.5 GHz Pentium 
4 CPU. However, for the sake of completeness we execute GA, the basic PSO and the hybrid 
PSO on the same computing platform using one easy (k=2, n=10) and one difficult problem 
(k=8, n=100) for the same termination criterion of 10000 iterations for all the algorithms. 
Results are reported in Table 4, which illustrates the speed performance of PSO. It can be seen 
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that PSO is approximately 48% to 35% faster than reported GA CPU timings. The fast 
execution time of PSO is also reported by Tseng and Liao (2008). However, in our case hybrid 
algorithms were as costly as GA due to computations in SA and TS steps.  

k n TS 
(Oğuz 
et al. 
2004) 

GA 
(Oğuz 

& 
Ercan, 
2005) 

ACS 
(Ying 
& Lin, 
2006) 

IG 
(Ying, 
2008) 

Basic 
PSO 

PSO-
SA 

PSO-
TS 

PSO* 
(Tseng 

& 
Liao, 
2008) 

 10 3.0 1.60 1.60 1.49 2.7 1.7 2.1 2.8* 
2 20 2.88 0.80 1.92 1.87 2.88 1.12 1.92 5.40 
 50 2.23 0.69 2.37 2.21 2.38 2.4 2.4 2.30 
 100 9.07 0.35 0.91 0.89 1.82 0.82 1.1 1.62 
          
 10 29.42 11.89 9.51 8.73 10.33 9.78 10.4 10.45 
5 20 24.40 5.54 3.07 2.97 8.6 3.19 4.53 6.04 
 50 10.51 5.11 1.51 1.49 3.31 2.06 2.98 1.44 
 100 11.81 3.06 1.05 1.03 2.11 1.05 1.77 2.80 
          
 10 46.53 16.14 16.50 13.91 18.23 16.14 17.5 19.01 
8 20 42.47 7.98 6.77 5.83 12.03 6.69 7.03 5.76 
 50 21.04 6.03 2.59 2.47 5.98 3.0 4.19 2.91 
 100 21.50 4.12 1.33 1.23 8.78 2.11 5.22 1.53 

Table 2. APD of the algorithms for 10 random instances. Random processors case (mj ~[1,5]) 
(*) Different problem set 

k n TS 
(Oğuz 
et al. 
2004) 

GA 
(Oğuz 

& 
Ercan, 
2005) 

ACS 
(Ying & 

Lin, 
2006) 

IG 
(Ying, 
2008) 

Basic 
PSO 

PSO-
SA 

PSO-
TS 

PSO* 
(Tseng 
& Liao, 
2008) 

 10 10.82 6.13 12.62 8.85 13.8 10.11 12.8 12.75* 
2 20 7.25 7.10 10.73 6.93 10.75 9.59 10.73 6.05 
 50 5.80 3.34 8.17 5.66 10.32 7.02 8.82 5.69 
 100 5.19 2.87 5.66 5.04 7.43 3.21 6.43 6.56 
          
 10 45.14 11.32 26.09 23.49 29.6 11.32 22.2 19.58 
5 20 35.13 10.78 15.11 12.64 19.4 10.77 16.5 12.33 
 50 28.64 14.91 13.11 11.29 14.17 13.24 13.86 12.47 
 100 26.49 11.02 12.45 10.53 12.45 12.45 12.45 11.49 
          
 10 77.21 25.98 25.14 22.17 30.81 25.83 25.83 33.92 
8 20 62.99 24.13 25.18 22.79 26.74 24.34 25.02 24.98 
 50 54.25 21.87 22.23 20.71 27.01 23.07 25.11 19.41 
 100 36.05 19.46 13.90 12.85 20.39 14.43 17.9 15.93 

Table 3. APD of the algorithms for 10 random instances. Fixed processor case (mj =5) 
(*) Different problem set 
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k n GA 
 

PSO PSO-SA PSO-TS 

2 10 12.14 6.3 13.5 12.94 
8 100 2109.9 1388.67 4029.1 3816.3 

Table 4. Average CPU time (in seconds) of GA, TS and PSO. Processors setting is mj=5 
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Figure 2. Convergence of TS, GA and PSO algorithms for a machine vision system 

Lastly, we run the basic PSO and the hybrid PSO algorithms together with genetic algorithm 
and tabu search algorithm for the data obtained from a machine-vision system. The system 
is a multiprocessor architecture designed mainly for machine vision applications. The 
system comprise of two stages where each stage holds four identical DSP processors from 
Analog Devices. Data gathered from this system are for 8, 10, 12 and 18 jobs. The number of 
job is determined by the number of objects to be detected in a given image. The execution 
time and the processor requirements of parallel algorithms for each job are recorded in 
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order to use them as test problems in our scheduling algorithms. By utilizing this data, 
which can be obtained from the author, the convergence characteristic of the algorithms is 
analyzed. As it can be seen from Figure 2, all the algorithms converge very rapidly. 
However, PSO algorithms converge faster than TS and GA. In addition, PSO-SA finds a 
slightly better solution for 12 job problem. All the algorithms find a reasonably good 
solution within 1000 iterations. Hence, for practical application of the scheduling algorithms 
a small value for termination criteria can be selected. 

7. Conclusion 

In this chapter, a scheduling problem, defined as hybrid flow-shops with multiprocessor 
tasks, is presented together with various meta-heuristic algorithms reported for the solution 
in literature. As the solution to this scheduling problem has merits in practise, endeavour to 
find a good solution is worthy. The basic PSO and the hybrid PSO algorithms are employed 
to solve this scheduling problem, as PSO proven to be a simple and effective algorithm 
applied in various engineering problems. In this particular scheduling problem, a job is 
made up of interrelated multiprocessor tasks and each multiprocessor task is modelled with 
its processing requirement and processing time. The objective was to find a schedule in 
which completion time of all the tasks will be minimal. We observe that basic PSO has a 
competitive performance as compared to GA and ACS algorithms and superior 
performance when compared to TS. Considering the simplicity of the basic PSO algorithm, 
the performance achieved is in fact impressive. When experimented with the hybrids of 
PSO, it is observed that PSO-SA combination gave the best results. Hybrid methods 
improved the performance of PSO significantly though this is achieved at the expense of 
increased complexity. When compared to other published results on this problem, it can be 
concluded that IG algorithm (Ying, 2008) and PSO given by (Tseng & Liao, 2008) are the best 
performing algorithms on this problem so far. In terms of effort to develop an algorithm, 
execution time of algorithm and simplicity to tune it, PSO tops all the other metaheuristics.  
As in many practical scheduling problems, it is likely to have precedence constraints among 
the jobs hence in future study hybrid flow-shops with precedence constraints will be 
investigated. In addition, PSO may be applied to other scheduling problems and its 
performance can be exploited in other engineering problems. 
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