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Abstract

Evolving networks by definition are networks that change as a function of time. They are a
natural extension of network science since almost all real-world networks evolve over
time, either by adding or by removing nodes or links over time: elementary actor-level
network measures like network centrality change as a function of time, popularity and
influence of individuals grow or fade depending on processes, and events occur in net-
works during time intervals. Other problems such as network-level statistics computation,
link prediction, community detection, and visualization gain additional research impor-
tance when applied to dynamic online social networks (OSNs). Due to their temporal
dimension, rapid growth of users, velocity of changes in networks, and amount of data
that these OSNs generate, effective and efficient methods and techniques for small static
networks are now required to scale and deal with the temporal dimension in case of
streaming settings. This chapter reviews the state of the art in selected aspects of evolving
social networks presenting open research challenges related to OSNs. The challenges
suggest that significant further research is required in evolving social networks, i.e.,
existent methods, techniques, and algorithms must be rethought and designed toward
incremental and dynamic versions that allow the efficient analysis of evolving networks.

Keywords: evolving networks, social network analysis

1. Introduction

One of the consequences of today’s information society is the rise of the digital network society

[1]. Organizations and individuals are increasingly connected through a wide range of online
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and offline networks at different relational levels: social, professional, interaction, information

flow, etc. The analysis and modeling of networks and also networked dynamical systems have

been the subject of considerable interdisciplinary interest covering a wide range of areas from

physics, mathematics, computer science, biology, economics and sociology, in the so-called

“new” science of networks [2]. According to [3], media organizations, media content and

audiences are no exception: news articles have hyperlinks to link other content; news organi-

zations disseminate news via online social network (OSN) platforms like Twitter and

Facebook; and users comment, share and react directly below online news. At the level of

news events, recent observation proves that some events and news emerge and spread first

using those media channels rather than other traditional media like the online news sites, blogs

or even television and radio breaking news [4, 5]. Natural disasters, celebrity news, products

announcements or mainstream event coverage show that people increasingly make use of

those tools to be informed, discuss and exchange information [6]. Concerning the novelty and

timely dissemination of news events, empirical studies show that the online social networking

services like Twitter are often the first mediums to break critical natural events such as

earthquakes often in a matter of seconds after they occur [4, 5]. Herewith, social networks’

temporal dimension of information is of crucial importance and follows a time decay pattern,

that is, posted messages in social media are exchanged, forwarded or commented in early

stages and decrease in importance as time passes. The importance of information contained in

those messages has their importance peak right after being posted or in the following hours or

days [7]. Besides, the timing of many human activities, ranging from communication to

entertainment and work patterns is characterized by bursts of rapidly occurring events sepa-

rated by long periods of inactivity, following non-Poisson statistics [8]. The nature of the time

decay pattern communication, bursts or peaks, and inactivity periods, enforces the importance

of dynamic network analysis methods and techniques in a network analysis context as the best

approaches to model these problems.

1.1. Solving problems with evolving networks

Typical tasks of social network analysis involve the identification of the most influential,

prestigious or central actors, using statistical measures; the identification of hubs and author-

ities, using link analysis algorithms; the discovery of communities, using community detection

techniques; the visualization the interactions between actors; or spreading of information.

These tasks are instrumental in the process of extracting knowledge from networks and

consequently in the process of problem-solving with network data. Specifically, in the areas of

journalism and investigation the following topics have been discussed actively in the last

years: Criminological research. In 2001, according to [9], social network analysis has the gen-

uine potential to uncover the complexities of criminal networks. Ref. [10] introduced the

intersection of terrorism studies and what was called the “networked criminology”. In 2011,

[9] concluded that the applications of social network analysis in criminology were still insuffi-

cient when compared to other research areas like sociology and public health [11]. Neverthe-

less, since then, social network analysis has become one of the major tools for criminal analysis

with [12] identifying the three main areas of analysis and applications of social networks in

criminological research. Other topics include the influence of personal networks on crime and,
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more generally, on delinquent behavior [13, 11]; the analysis of neighborhood networks and their

influence on crime [12]; and exploration and modeling of the organization of crime, that is, street

gangs, terrorist groups and organized crime groups [12]. Concrete examples of criminological

research using social network analysis are the Enron company dataset [14]; the Panama Papers

analysis in connection with the economic network analysis of Portuguese companies; individ-

uals with connections to offshore companies [15]; and the analysis of terrorist networks

[16, 17]. Gill and Malamud [18] presented a broad overview, characterization and visualization

of the interaction relationships between natural hazards using social network analysis. In add-

ition to the previous contributions, essential and recent work regarding social network analysis

and terrorism were published by Malm et al. [19], while Berlusconi [20] devoted an entire book

to social network analysis and crime prevention. Research on journalism: Fu [21] presented

an essay with the purpose of promoting social network analysis in the study of journalism.

Starting with a communication network taxonomy [22, 23], their focus was on network rela-

tions in the study of journalism. The proposed framework presents the four types of commu-

nication relations that characterize different networked journalism phenomena [23]: Affinity

relations describes the socially constructed relationships between two actors, such as alliances

and friendships, with the valence of the relation being either positive or negative; flow relations

refers to the exchange and transmission of data, resources and information; representational

relations focuses on the symbolic affiliation between two entities; and semantic networks

describes the associations, or semantic relations, among concepts, words or people’s cognitive

interpretations toward some shared objects in the network, aiming to build a knowledge base.

Another relevant journalism research example is Ref. [24] that examines the temporal dynam-

ics of reciprocity in the setting of legislative co-sponsorship in the 113th US Congress

(2013–2015).

1.2. Related work

In the past years, several overviews of social network analysis can be found in the literature.

Ref. [25] provide a general and succinct overview of the essentials of social network analysis,

for static networks, with emphasis on simple statistical measures, link analysis, properties of

real-world networks and community detection. Tabassum et al. [26] in an updated overview of

social network analysis, based on Oliveira’s and Gama’s [25] work, included a full section

devoted to evolving networks. Devoted explicitly to evolutionary network analysis, the

Aggarwal and Subbian [27] survey provides an overview of the vast literature on graph

evolution analysis. Although the scope of Aggarwal and Subbian [27] work was graph analysis

in general, that is, it did not address specifically the social network analysis problem, many of

the mentioned applications and particular contexts of applicability of the methods are social

networks. The literature analyzed by Aggarwal and Subbian [27] covered both snapshot-based

and streaming methods and algorithms, and critical applications of evolutionary network

analysis on different domains such as the world wide web, telecommunication and communi-

cation networks, recommendation networks and social network events, among others, were

given. Spiliopoulou [28] said that the advances on evolution is social networks into a common

framework to model a network across the time axis and identified the four dimensions associ-

ated with knowledge discovery in social networks: dealing with time, objective of study,
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definition of community, and evolution as an objective versus assumption. Spiliopoulou [28]

enumerated the several challenges of the social network streams although this problem is

generally conceived as a stream problem. An exciting application of temporal network theory

and temporal networks to functional brain connectivity was presented by Thompson et al.

[29]; in his work, the theory and methods that introduce the reader on how to add the temporal

dimension to network analysis and precisely how many of well-known methods can be

transposed from static networks to temporal networks were presented. Thompson et al. [29]

included a complete list of network measures adapted or proposed for temporal networks.

2. Representation of social networks

A social network is a social structure consisting of a finite set of social actors, such as individ-

uals or organizations, connected by interpersonal relationships. These relationships, also

known as ties, can be of personal or professional nature and can range from casual friends,

acquaintances or co-workers to the close family bonds. Besides the relations, social networks

often represent flow of information, interactions and similarities, among the set of social actors.

Social network analysis is the investigation of the relationship between actors. In network

terminology, vertices—also known as nodes—refer to actors or subjects. Edges, also known as

links or ties, describe the relationship between actors. Usually, this social structure, or network

structure, is represented by graphs which are mathematical structures used to model pair-wise

relations between objects. A graph in this context is made up of vertices, nodes or points which

are connected by edges, arcs or lines. Therefore, a social network is a graph G composed of two

fundamental components: a nonempty set of vertices V and a set of edges E. Formally it can be

defined as G ¼ V;Eð Þ. Vertices represent objects, states, positions, placeholders and are

represented by a set of unique vertices. No two vertices represent the same object or state

where V can be represented by v1; v2; v3;…; vnf g. For each graph edge e∈E, there is associated

a pair of graph vertices u, v. Mathematically this can be formulated as ∀e∈Ee ! u; vð Þ where

u, v∈V. Edges can be directed or undirected and can be weighted (or labeled) or unweighted.

An undirected edge e ¼ vi; vj
� �

, with vi, vj ∈V, indicates that the relationship or connection is

bi-directional, that is, can go from vi to vj and vice versa. A directed edge e ¼ vi; vj
� �

specifies a

one-directional relationship or connection, that is, can only go from vi to vj; this means that

vi; vj
� �

6¼ vj; vi
� �

. The total number of vertices n of graph G, mathematically ∣V∣ ¼ n, is called

the graph order. The total number of edges ∣E∣ ¼ m is known as the size of the graph G. The

maximum number of edges in a undirected graph is mmax ¼
n n�1ð Þ

2 , while for the directed ones,

it is mmax ¼ n n� 1ð Þ. The representation of graphs is done via two distinct types of graph-

theoretic data structures: list structures and matrix structures. List structures, such as incidence

lists and adjacency lists, reduce the required storage space for sparse graphs. Matrix structures

such as incidence matrices, adjacency matrices, sociomatrices, Laplacian matrices and distance

matrices are appropriated to represent the full matrices with dimension n� n, where n is the

total number of vertices of the graph. Figure 1 shows several types of graphs that can be used

to model different kinds of social networks. The classification of graphs is done according to
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the direction of their links and according to the values assigned to each link. Graphs whose

edges, or arcs, connect unordered pairs of vertices or, in other words, each edge of the graph

that connects simultaneously two vertices in both directions are called undirected graphs or

undirected networks. On the other hand, graphs whose all edges, or arcs, have an orientation

assigned are called directed graphs or directed networks. Formally, a directed graph D is an

ordered pair V;Að Þ consisting of a nonempty set, V, of vertices, and a set A of arcs. These arcs

are disjoint from V. If e12 is an arc and v1 and v2 are vertices such that e12 ¼ v1; v2ð Þ then e12 is

said to join v1 and v2, v1 being called the initial vertex and v2 called the terminal vertex.

Depending on the presence of values assigned to the edges or arcs, the distinction between

unweighted or weighted graphs or networks is made. Unweighted graphs or networks are

binary by definition. This means that it is only represented by the presence or non-presence of

an edge or arc between two vertices. Unless it is explicitly said, we always assume that graphs

are unweighted. In weighted graphs, each edge has associated a weight w∈R
þ
0 providing

more information about the relation between the two vertices (i.e., the strength of the relation).

If e12 is an arc between the two vertices v1 and v2, w12 defines the strength of the connection.

For undirected and unweighted graphs, adjacency matrices are binary as a consequence of

being unweighted and symmetric as a consequence of being undirected. The edge between

vertices v1 and v2 is the same, eij ¼ eji, with wij ¼ wji ¼ 1. The absence of edges between vertices

vk and vl is represented by wkl ¼ wlk ¼ 0. For directed and weighted graphs, the matrices are

nonsymmetric and values from the interval are thus: 0;max wð Þ½ �.

3. From static to evolving networks

Previously, the network types and their representations in a static context were described. In

real life, however, many networks are dynamic. As time passes by, new nodes are added to the

network, existing ones are removed and edges come and go too. Static networks lack one of the

most critical dimensions, that is, the temporal dimension of a network. So by definition static

networks are assumed not to change or evolve over time, ignoring the temporal dimension. In

this section, we cope with the representation of evolving networks. Evolving networks arise in a

wide variety of application domains such as the web, social networks and communication

Figure 1. (a) Types of edge graphs and their representation according to an adjacency matrix (b) or an adjacency list (c).
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networks. In recent years the interest in the area of dynamic social networks leads to new

research and the need of analysis of evolving networks. The evolution analysis in graphs has

applications in a number of scenarios like trend analysis in social networks and dynamic link

prediction—to mention two typical examples. Figure 2 shows the example of a contact evolv-

ing network with instantaneous interactions between vertices. When the interaction between

network peers has a time duration, we are in the presence of interval evolving networks as

shown in Figure 3(b). Assuming that the time T during which a network is observed is finite

we can consider the start point as tstart ¼ 0 and the end time as tend ¼ T. A dynamic network

graph GD
0,T V;E0,Tð Þ on a time interval 0, T½½ consists of a set of vertices or nodes V and a set of

temporal edges E0,T . The evolving network is a set of graphs across the time axis within

discrete time points t1, t2,…, tn�1, tn. At time point tn a graph instance G Vn;Enð Þ is observed

also denoted as Gn where En is the set of temporal edges; u; vð Þtn ∈E0,T at time point tn with

edges between vertices u and v on time interval as tn ¼ tnbegin ; tnend

h i

such that tnbegin ≤T and

tnend ≥ tnbegin ≥ 0. Examples of network changes that may occur between two time points tn�1 and

tn are the addition of new edges, that is, En ⊃En�1, and the appearance of additional nodes,

that is, Vn ⊃Vn�1.

3.1. Models of temporal representation

Several models for representing evolving networks are available in the literature. Kim and

Anderson [30] introduced the concept of a time-ordered graph, and Thompson et al. [29] with a

similar conceptual representation chose the time graphlet to represent time-varying graphs.

Figure 2. Example of contact evolving network: (a) shows a labeled aggregate network where the labels denote the times

of contact, and (b) shows a time-line plot, where each of the lines corresponds to one vertex and time runs from left to

right.

Figure 3. Example of interval evolving network: (a) shows the labeled aggregate network where the labels denote the

time interval of the relation, and (b) shows a time-line plot, where each of the lines corresponds to one vertex and gray

zones the time duration between two edges.
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Casteigts et al. [31] presented the time-varying graph formalism (TVG) with the concept of a

journey to catch the temporal information on graphs. Santoro et al. [32] used this formalism to

describe several network measures. Although there are differences in the representation and

nomenclature, these models are conceptually equal. Figure 4 presents the concept of a time-

ordered graph for an example network for the time interval 0; 3½ �. Figure 4(a) shows all the

time intervals aggregated into a single graph G1,3. The discretization of the network by

converting the temporal information into a sequence of n snapshots is presented in Figure 4(b).

In this example the evolving network is represented as a series of static networks G1, G2,…, Gn.

The time-ordered graph G ¼ V; Eð Þ of Figure 4(c) assumes that at each time step, a message can

be delivered along a single edge. It is an asymmetric directed graph with a vertex vt for each

v∈V and for each t∈ 0; 1;…; nf g for each edge u; vð Þ∈Gt; it has a directed edge from ut�1 to v

and vice versa. Although it was not represented in the figure, the time-ordered graph also has

edges from vt�1 to vt for all v∈V for all t∈ 1;…; nf g. The time-ordered graph G ¼ V; Eð Þ

constructed from n static networks of a dynamic network GD
i, j ¼ V;Ei, j

� �

is a powerful tool to

define network metrics and capture their temporal characteristics. In the example of Figure 4

(c), the temporal shortest path from node u ¼ A to node v ¼ B is shown. The temporal shortest

path from A to B in the interval 0; 3½ � is A0 ! A1 ! D2 ! B3. The time-ordered graph of Kim

and Anderson [30] will be the model used during the course of the rest of the document.

3.2. Timescale of evolving networks

Regarding the evolution of the networks, not all networks evolve equally. Some networks

evolve faster than others or have edges that are being added at different rates. Two distinct

timescale examples of networks are email networks, where edges are added at the timescale of

seconds, and bibliographic networks, where edges are added at the scale of weeks or months.

Different time-evolving scenarios require different types of analysis [27]. Slowly evolving

networks: When networks evolve slowly over time, snapshot analysis can be used very effec-

tively. In this case, dynamic networks are discretized in time by converting temporal informa-

tion into a sequence of n static snapshots. All the analysis can be done in each snapshot of the

network at different times t1, t2, …, tn using static analysis methods. Usually, in slowly

evolving networks, a discretization of the time axis into intervals of equal length occurs. For a

time discretization in years, days or seconds, a time window size w for each snapshot are set to

T=n with n being the number of snapshots. Another solution consists of record buckets of

equal size for numerical discretization—a window size w, in this case, is set to a given number

Figure 4. Comparison of aggregated representation (a) and time series representation (b). The corresponding time ordered

(c) graph G is presented for the interval 0; 3½ �.
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of network updates. In both cases the dynamic network can be represented as a series of static

graphs G1, G2,…, Gn with 0 ≤n ≤ tn. A time point tn is the moment where the network suffers a

set of changes in the network represented by the addition or removal of sets of edges ( þe1;f

þe2;�e3;�e4;…; þ=�ð Þeng) and/or appearance or disappearance of vertices ( þv1;þv2;�v3;f

�v4;…; þ=�ð Þvng). Signs þ and� represent the additions or removals, respectively. Streaming

networks: When networks are built by a never-ending flow of transient interactions, such as

email or telecommunications networks, they should be modeled and represented as graph

streams. Graph streams typically require real-time analytical methods. The scenario of graph

streams is more challenging because of the computational requirements and the inability to

hold complete graphs on memory or disc. Velocity is also an issue because common methods

require dealing with graph updates at very high edge rates. Time point ti is the moment in

which a single change in the network occurs. Guha et al. [33] defined this to be the stream

model of computation with a stream being a sequence of records x1, x2,…, xn arriving in

increasing order of the index i, where xi may be a new vertex vi or a new edge ei.

3.3. Landmark versus sliding windows

When the temporal dimension is added to the analysis of networks, different methodologies

regarding the strategy to cope with data that is being analyzed vary. Figure 5 shows three

types of graph data windowing strategies. Landmark windows by Gehrke et al. [34] encom-

pass all the data from a specific point in time up to the current moment. In the landmark

window, the model is initialized in a fixed time point, the so-called landmark that marks the

beginning of the window. In successive snapshots, the data window grows to consider all the

data seen so far after the landmark. Sliding windows are better suitable when we are not

interested in computing statistics over all events of the past but only over the recent past [35].

Datar et al. [36] incorporate a forgetting mechanism by keeping only the latest information

inside the window and disregarding all the data falling outside the window. Usually, the

sliding windows are of fixed size. The time-based length sets the window length as a fixed

time span. Sliding windows can be overlapping and non-overlapping depending on whether

two consecutive windows share some data between them or not. From the several window

models presented in the literature [37, 38], two basic types of sliding windows are commonly

defined: sequence-based models, where the size of the window is determined regarding the

number of observations, and timestamp-based models where the size of the window is defined

concerning duration. A timestamp window of size t consists of all elements whose timestamp

is within a time interval t of the current period.

Figure 5. Types of data windows: Landmark window (a) non-overlapping sliding window (b) and overlapping sliding

window (c).
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3.4. Types of evolving network analysis

Depending on the timescale of the network and the chosen strategy to cope with network data,

distinct evolving network analysis methods are available. These methods are divided into one

of the following categories [27]. Maintenance methods: In these methods it is desirable to

maintain the results of the data mining process continuously over time. Examples of mainte-

nance methods are classification and clustering. Analytical evolution methods: In this case it is

desirable to directly quantify and understand the changes that have occurred in the underlying

network. Such models are focused on modeling change. Bridge methods: From a methodolog-

ical point of view, and in the context of a few key problems, an overlapping of maintenance

and analytical evolution methods occurs. These bridge methods, such as community detection,

fall into both categories.

4. Elementary network measures

In this section, elementary network measures and popular metric used in the analysis of social

networks are presented.

4.1. Actor-level statistical measures

Actor-level or node-level statistical measures determine the importance of an actor or

node within the network. These measures reveal the individuals in which the most impor-

tant relationships are concentrated and give an idea about their social power within their

peers.

4.1.1. Degree or valency

D vð Þ ¼
Xn

u¼1

au,v, 0 < Dv < n (1)

D vð Þ ¼ ∣Nv∣, 0 < D vð Þ < n (2)

The degree of valency of a node v is usually denoted as D vð Þ and measures the involvement of

the node in the network. It is computed as the number of edges incident on a given node or as

the number of neighbors of node v. The neighborhood Nv is defined as the set of nodes directly

connected to v. The degree is an effective measure to access the importance and influence of an

actor in a network despite some of its drawbacks like not taking into consideration the global

structure of the network. In static networks, the degree can be computed via the adjacency

matrix by (1) or using the neighborhood of a node (2). Depending on the type of the networks

different degree calculation methods should be made for directed and undirected networks

and weighted and unweighted networks.
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Dþ
i, j vð Þ ¼

Xj

t¼i

Xn

u¼1

au,v (3)

D�
i, j vð Þ ¼

Xj

t¼i

Xn

u¼1

av,u (4)

Dw
i, j vð Þ ¼

Xj

t¼i

Xn

u¼1

awu,v (5)

For dynamic networks, and generalizing to a directed and unweighted network, the temporal

degree Di, j vð Þ is the total number of inbound edges and outbound edges from a node v∈V on

a time interval i; j½ � where 0 ≤ i < j ≤n. If we disregard the self-edges from vt�1 to vt for all

t∈ iþ 1;…; jf g, Di, j vð Þ is equal to
Pj

t¼i 2:Dt vð Þ where Dt vð Þ is the degree of v in Gt (i.e., the

dynamic graph at time t). For directed networks, there are two variants of degree centrality:

considering in degree, denoted by Dþ
i, j vð Þ, (3) is the number of incoming edges to node v or

edges that end at v and considering out degree, denoted by D�
i, j vð Þ, (4) is the number of outgoing

edges from node v or edges that start at v. For weighted networks, strength is the equivalent to

degree but is computed as the sum of the weights of the edges adjacent to a given node (5).

4.1.2. Betweenness

B vð Þ ¼
X

s, d∈V Gð Þ ν

σsd νð Þ

σsd
(6)

Bi, j vð Þ ¼
X

i ≤ t<j

X

s 6¼ u 6¼ d∈V

σt, j s; dð Þ > 0

σt, j s; d; vð Þ

σt, j s; dð Þ
(7)

Node betweenness B vð Þ measures the extent to which a node lies between the other nodes in

the network. For static networks, (6) is used, where σsd denotes the number of shortest paths

between vertices s and d (usually σsd ¼ 1) and σsd νð Þ expresses the number of shortest paths

passing through node ν. Nodes with high betweenness occupy critical roles in the network

structure once their position allows them to work as an interface between different regions of

the network. The temporal betweenness Bi, j vð Þ (7) for a node v∈V on a time interval i; j½ �

where 0 ≤ i < j ≤n is the sum of the proportion between all the temporal shortest paths passing

by the vertex v and the total number of temporal shortest paths passing over all pairs of nodes

in each time interval t; j½ � : i < t ≤ jf g. The temporal betweenness for node v is given by (7).

Examples of betweenness algorithms are the Brandes algorithm [39], the incremental algo-

rithm proposed by Nasre et al. [40] and the algorithm proposed by Kas et al. [41] for evolving

graphs.
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4.1.3. Closeness

C vð Þ ¼
1� nP

u∈V vd u; vð Þ
(8)

Ci, j vð Þ ¼
X

i ≤ t<j

X

u∈V v

1

Δt, j u; vð Þ
(9)

Closeness measures the overall position of an actor in the network giving an idea of how long

it will take, on average, to reach other nodes from a given starting node. It is represented by the

average length of the shortest path between the node and all other nodes in the graph. Thus

more central a node is, the closer it is to all other nodes. In general, it is only computed for

nodes within the largest component of the network as shown in (8). The temporal closeness is

defined by considering m intervals t; j½ � : i < t ≤ jf g where m ¼ j� i by varying the start time t

of each time interval from i to j� 1 instead of one time interval i; j½ � with the starting time as i.

Formally the temporal closeness for a node v is given by (9) where Δt, j u; vð Þ is the temporal

shortest path distance from u to v on a time interval t; j½ �. If there is no temporal path from v to

u on a time interval t; j½ �, Δt, j u; vð Þ is defined as ∞. Since the time-ordered graph G is a directed

graph, Δt, j u; vð Þ is different from Δt, j v; uð Þ. Regarding the update of closeness centrality in

evolving graphs, it was worked on by Kas et al. [42] and Sariyuce et al. [43]. Kas et al. [42]

developed incremental closeness centrality algorithms for dynamic networks. An extension of

the Ramalingam and Reps [44] algorithm computes the closeness values incrementally, using

all-pairs shortest paths for streaming, dynamically changing social networks.

4.1.4. Eigenvector centrality

xv ¼
1

λ

X

t∈M vð Þ

xt ¼
1

λ

X

t∈G

av, txt (10)

Ax ¼ λx (11)

For a given graph G ¼ V;Eð Þ with ∣V∣ vertices, let A ¼ av, tð Þ be the adjacency matrix of an

unweighted network, that is, av, t ¼ 1 if vertex v is linked to vertex t, and av, t ¼ 0 otherwise. The

relative centrality score of vertex v can be defined by (10), where M vð Þ is a set of the neighbors

of v and λ is a constant. This definition can be rewritten in vector notation as the eigenvector

equation using small arrangements is shown in (11). The classical eigenvector centrality had

improvements or variants developed to approach the evolving graphs’ problem. Examples are

Google’s PageRank [45] and Katz centrality [46] as the possible variants of this measure as

proposed by Society [47]. The concrete implementation of PageRank variants to evolving

networks was developed by several researchers, for example, by Bahmani et al. [48], Desikan

et al. [49] and Kim and Choi [50]. These improvements over the original PageRank measure

show significantly faster results when compared with the original PageRank that, for being an
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iterative process, did not scale well to large-scale graphs. This algorithm will be discussed in

detail in Section 5.1 .

4.1.5. Laplacian centrality

EL Gð Þ ¼
Xn

i¼1

λ
2
i (12)

EL Gð Þ ¼
Xn

i¼1

x2i þ 2
X

i<j

w2
i, j (13)

The Laplacian centrality permits to consider intermediate environmental information around a

vertex or node to compute its centrality measure. The centrality of some vertex v is then

characterized as a function of the number of 2-walks that vertex v takes part in the network.

To estimate the centrality of a vertex, we need to reflect not only the first-order connections but

also the importance of their neighbors. These results and related calculations describe the so-

called Laplacian energy of the network. Therefore this strategy is known as the Laplacian

centrality. The Laplacian energy EL Gð Þ for a weighted network G ¼ V;E;Wð Þ with n vertices

and λ1,λ2,…,λn eigenvalues of its Laplacian matrix is defined by (12). Considering that

x1, x2,…, xn are the vertex sum weights calculated by xi ¼
Pn

j¼1 wi, j where wi, j is the weight of

the edge from vertex i to j, the Laplacian energy EL Gð Þ can be computed by (13). The motiva-

tion for the incremental Laplacian centrality is supported by the fact that it is known to be a

local measure [17, 51].

4.1.5.1. Locality of the Laplacian centrality

The Laplacian centrality metric is not a global measure, that is, it is a function of the local

degree plus the degrees of the neighbors (with different weights for each). Qi et al. [17, 51]

show that local degree and the 1-order neighbors’ degree are all that are needed to calculate

the metric for unweighted networks (Figure 6).

4.1.5.2. Dynamic Laplace centrality

Regarding the original Laplace centrality algorithm proposed by Qi et al. [51], despite being a

static algorithm, it can be used to calculate centralities in changing networks. This is true by

Figure 6. Calculated node centralities with edge {(4, 6)} added. Dark gray nodes affected by addition of edges. Light gray

nodes centralities need to be calculated due to their neighborhood with affected nodes.
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considering full calculations of the centralities for each network snapshot. In Sarmento et al.

[52] proposal, Qi et al. [51] principles were adapted and resulted in two incremental algo-

rithms. The incremental Laplace algorithm by Sarmento et al. [52] presents better computa-

tional efficiency, by performing careful Laplace centrality calculations only for the nodes

affected by the addition and removal of edges in each one of the snapshots. Thus, it reuses

information of the previous snapshot to perform the Laplace centrality calculations on the

current snapshot, for unweighted networks only.

4.2. Network-level statistical measures

Before describing network-level statistical measures, it is important to describe three funda-

mental concepts that are common to static and dynamic networks. Path represents a sequence

of nodes in which consecutive pairs of non-repeating nodes are linked by an edge. When

adding the temporal dimension of dynamic networks, the concept of path slightly changes,

because non-repeating nodes are now considered only within the same snapshot or time step

in what is called a temporal path. Temporal paths can have repeating nodes in different time

steps, for example, A0 ! B0 ! C1 ! B1 ! A2. Geodesic distance, or the shortest path,

between nodes u and v is denoted as δ u; vð Þ and defines the length of the shortest path, or

minimal path, between nodes u and v in a static graph. For a given time-ordered graph G, a

temporal path from node u to node v on time interval i; j½ � where i ≤ i < j ≤ n is defined as any

path, p ¼< ui,…, vi >where i < k ≤ j, having the path length ∣p∣ ¼ mini<l ≤ jδ ui; vlð Þ. δ u; vð Þ is the

shortest path distance, in a static graph, from u to v. The temporal shortest path from node u to

node v is defined as the temporal path connecting u to vwhich has minimum temporal length.

In Figure 4, an example of a temporal shortest path in a time-ordered graph was shown.

Eccentricity is the greatest geodesic distance between a given vertex v and any other in the

graph, that is, εv ¼ mini∈V Gð Þ\vd v; ið Þ.

4.2.1. Edge bursts

Bij ¼
σ τij
� �

� σ μij

� �

σ τij
� �

þ σ μij

� � (14)

A hallmark of a bursty edge is the presence of multiple edges with short interconnect times,

followed by longer and varying interconnect times [29]. One of the methods available

to quantify bursts is the burstiness coefficient B. Presented by Goh and Barabasi [53], it can

be formulated for discrete graphs [54] where bursts are computed by edges using (14),

with τij being a vector of the intercontact times between nodes i and j though time, σ τð Þ is

the standard deviation and σ μ
� �

is the mean. For temporal connectivity being consi-

dered as bursty, that is, B > 0, it occurs when the standard deviation σ τð Þ is greater than the

mean σ μ
� �

.
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4.2.2. Fluctuability

F ¼

P

i

P

j U Ai, j

� �

P

i

P

j

P

t A
t
i, j

(15)

F
N
i ¼

P

j U Ai, j

� �

P

j

P

t A
t
i, j

(16)

As discussed before, centrality measures provide information about the degree of temporal

connectivity while bursts describe the distribution of the temporal patterns of connectivity at

the node level. Also, fluctuability can be used to retrieve information about the global state of a

temporal network, in this case, the quantification of the temporal variability of connectivity [29].

The fluctuability F, as shown in (15), is the ratio of the number of edges present in A over the

sum of At, with U being a function of the binary output: U Ai, j

� �

is set to 1 if at least one of the

edges occurs between nodes i and j across time t ¼ 1, 2,…, T and 0 if not. T is the number of time

points. The maximum value of F is 1 and occurs only when every edge is unique and occurs

only once. The definition of fluctuabilityF
N
i at the node level, whenU Ai, j

� �

> 0, is defined using

(16); when U Ai, j

� �

¼ 0, FN
i is equal to 0 (Figure 7).

4.2.3. Volatility

V ¼
1

T � 1

X

T�1

t¼1

D At
;Atþ1

� �

(17)

V
L
i, j ¼

1

T � 1

X

T�1

t¼1

D At
i, j;A

tþ1
i, j

� �

(18)

The volatility V is a global measure of temporal order that represents how much, on an

average, the connectivity between consecutive temporal time-ordered graphs changes [29].

This measure indicates how volatile the temporal network is over time and is computed by

(17), where D is a distance function and T is the total number of time points. The distance

function quantifies the difference between the temporal time-ordered graph Gt and the

Figure 7. Variation of Fluctuability and volatility measures over three different evolving contact networks.
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temporal time-ordered graph Gtþ1. One example of a distance function for volatility can be

the Hamming distance. Volatility can be defined at the local level, for example, a per-edge

volatility can be computed using (18). An estimate of the volatility centrality of node i can be

computed by taking the mean VL
i, j over j (Figure 7).

4.2.4. Reachability latency

Rr ¼
1

TN

X

t

X

i

dti,k (19)

R1 ¼
1

TN

X

t

X

i

max
j

dti, j (20)

Reachability measures, like reachability ratio and reachability time, focus on estimating the time

taken to reach the nodes in a temporal network [55]. While the reachability ratio is the

percentage of edges that have a temporal path connecting them, the reachability time is

defined as the average length of all temporal paths. When applying these reachability

measures to most real-world networks, if we consider a sufficient time interval, any vertex

or node of the networks can reach all the others within that time span. With this assumption

in mind, Thompson et al. [29] defined the reachability latency, which quantifies the average

time it takes for a temporal network to reach an a-priori-defined reachability ratio as defined

in (19), where dti is an ordered vector of length N of the shortest temporal paths for node i at

time point t. Value k represents the rN½ �th element in the vector. In case r ¼ 1, that is, all

nodes are reachable, the former formula can be simplified to (20), which is also known as the

temporal diameter of the network [56].

4.2.5. Temporal efficiency

E ¼
1

T N2 �N
� �

X

i, j, t

1

dti, j
, i 6¼ j (21)

For static networks, efficiency is computed as the inverse of the average shortest path for all

nodes [29]. Temporal efficiency, at first, is calculated at each time point as the inverse of the

average shortest path length of all nodes; subsequently, these values are averaged across time

points to obtain an estimate of global temporal efficiency as shown in (21).

4.2.6. Diameter and radius

The diameter D is given by the maximum eccentricity of a set of vertices D ¼ max εv : v∈Vf g

and, analogously, the radius R is defined as the minimum eccentricity of the set of vertices

R ¼ min εv : v∈Vf g.
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4.2.7. Average geodesic distance

L Gð Þ ¼
1

1
2 n n� 1ð Þ

X

u ≥ v

δ u; vð Þ (22)

L Gð Þ ¼
1

n n� 1ð Þ

X

u ≥ v

d u; vð Þ (23)

The average geodesic distance L gives an idea on how far apart nodes will be, on average. For

static networks, all combinations of vertex pairs in a network are computed as in (22), where

δ u; vð Þ is the geodesic distance between nodes u and v and 1
2 n n� 1ð Þ is the number of possible

edges in a network of n nodes. Tang et al. [57, 58] defined the characteristic temporal path length

as the natural extension of the average geodesic distance to time-varying graphs. It is defined

as the average temporal distance over all pairs of nodes in the graph as shown in (23), with the

temporal distance du,v between u and v as the temporal length of the temporal shortest path

from u to v.

4.2.8. Average degree

D Gð Þ ¼
1

n

1

t

Xt

i¼0

Xn

u¼1

Xn

v¼1

at u; v½ � (24)

The average degree is the mean of the edges of all vertices in a network for all time steps t, with

at being the adjacency matrix at time t, as shown in (24).

4.2.9. Reciprocity

r ¼
#mutual

#mutualþ #asymmetric
(25)

For static networks, reciprocity r is a specific quantity of directed networks that measures the

tendency of pairs of nodes to form mutual connections between each other. The value of

reciprocity represents the probability that two nodes in a directed network point to each other.

For each of the n n� 1ð Þð Þ=2 dyads in the network are assigned to one of the three types:

mutual, that is, node i has a tie to node j and node j has a tie to i; asymmetric, that is, either i

has a tie to j or j has a tie to i but not both; or null, that is, neither the i to j tie nor the j to i tie is

present [59]. Given this, reciprocity can be computed using (25), where #mutual denotes the

number of mutual dyads and #asymmetric the number of asymmetric dyads. In an undirected

network, reciprocity is always maximum (r ¼ 1) because all pairs of nodes are symmetric, that

is, dyads are of the type mutual. Brandenberger [24] analyzed the temporal dynamics of

reciprocity in congressional collaborations using relational event models.
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4.2.10. Density

r Gð Þ ¼
m Gð Þ

mmax Gð Þ
(26)

Density r explain the general level of connectedness of a network. It is computed by measur-

ing the proportion of edges in the network relative to the maximum possible number of

edges as seen in (26), where m Gð Þ is the total number of edges of network G and mmax Gð Þ the

number of possible edges of network G, which is n n�1ð Þ
2 for undirected networks and n n� 1ð Þ

for directed ones.

4.2.11. Global clustering coefficient

Cui et al. [60] propose two definitions of the temporal clustering coefficient of a temporal

network. The definitions are temporal-delayed clustering coefficient and the temporal-

weighted clustering coefficient.

5. Link analysis

In network theory, link analysis is a data analysis technique used to evaluate relationships

(connections) between nodes. Link analysis has been used for the investigation of fraud

detection, terrorist networks, computer security analysis, search engine optimization (SEO),

market research and medical research, among others. To find the most valuable, authoritative

or influential node or the list of nodes in networks, link analysis algorithm were devised to

solve this problem in the past. By exploring the relationship between links and the content of

web pages, the PageRank algorithm [45] is one of the seminal methods employed to the build

of modern and efficient search engines and the information retrieval system in the web.

5.1. Incremental PageRank algorithm

There have been several attempts to improve the original PageRank algorithm [45]. The

purpose of several of these improvements was to adapt this algorithm for streaming data. In

the original algorithm, each page rank is dependent of the ranks of the pages pointing to it. The

PageRank value of a page p is mathematically written as:

PR pð Þ ¼ d
n= þ 1� dð Þ

X

q, p∈G

PR qð Þ=OutDegree qð Þ (27)

where n is the number of vertices/pages in the graph and OutDegree qð Þ is the number of

hyperlinks on the node/page q. Eq. (27) illustrates an example of computing PageRank of a

page P from the pages (Figure 8(a)) P1, P2 and P3 pointing to it using (28):
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PR pð Þ ¼ d
N= þ 1� dð Þ

PR P1ð Þ

OutDeg P1ð Þ
þ

PR P2ð Þ

OutDeg P2ð Þ
þ

PR P3ð Þ

OutDeg P3ð Þ

� �

(28)

Desikan et al. [49] provided a solution for the update of nodes’ PageRank values in

evolving graphs in an incremental fashion. The algorithm explores the fact that the web

evolves incrementally and with small changes between updates. Figure 8(b) shows the

two partitions created; one of them, partition P, is unchanged since the last computation,

and it has only outgoing edges to the other partition. The other partition, partition Q, is

the rest of the graph, which has changed since the last time the metric was computed.

The principal idea is to find a partition P in a way that there are no incoming links in the

graph from the other partition Q (includes all changed nodes). Then the computation of

the PageRank of partition Q can be done separately, scaled and merged with the rest of

the graph to get the updated PageRank values of the vertices in this partition. The

PageRank of partition Q is computed, taking the border vertices that belong to partition

P and have edges pointing to the vertices in partition Q. The PageRank values of parti-

tion P are obtained by simple scaling, due to the addition of new nodes. Let the graph of

Figure 8(b) at the new time be G V;Eð Þ: Vb is the vertex on the border of the left partition

(only outgoing edges to the right partition); Vul, vertex on the left partition remains

unchanged; Vur, vertex on the right partition remains unchanged but whose PageRank is

affected by vertices in the changed component; Vcr is the vertex on the right partition

which has changed, or there has been a new addition. Desikan et al. [61] proposed a

divide and conquer approach for efficient PageRank computation based on these

assumptions. Other page rank analysis algorithms, in which it is desirable to estimate

the page rank on a dynamic evolving graph stream, are available in [62, 63]. Sarma et al.

[62] developed a method that can estimate the page rank distribution, the mixing time

and the conductance of the graph. Bahmani et al. [63] developed a method for real-time

estimation of the personalized page rank in graph streams. Zhang et al. [64] proposed a

method for an approximate personalized PageRank on dynamic graphs. The update of

PageRank node values in dynamic graph streams has been extensively used to leverage

the efficiency of large-scale link analysis, inclusively with applications that have known

issues with scalability like, for example, text streams [65].

Figure 8. PageRank and graph partitioning used in Desikan et al. [49] incremental page rank.
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5.2. Link prediction

To understand the association between two specific nodes, researchers commonly study the

dynamics of evolving graphs. In link prediction, the problem we wish to solve is the prediction

of the likelihood of a future association between two nodes, knowing that there is no association

yet between the nodes, that is, no edge between the nodes. Link prediction is used in bioinfor-

matics, where potential protein connections are inferred from known connections, and during the

research of terrorist/criminal networks, where potential criminal connections are inferred from

current knowledge of the relationships between criminals. Link prediction is a complex problem.

For a social networkG V;Eð Þ, there are n2 �m possible edges to infer from our current graph. This

is true if we randomly select a non-existing edge. If G is sparse, then m ≋ n. Thus, in limit

situations, with a high amount of nodes, we have a n2 edges to choose from, and the probability

of inferring correctly at random is 1=n2. Commonly, social networks derived from real-world

phenomena are sparse, so inferring random edges is expected to have low accuracy. As networks

evolve, it is expected that nodes are added to the network, and the number of possible links grows

quadratically while it is expected that new edges grow in a linear fashion with added new nodes.

Thus, it is a problem that gets worse in evolving networks as time goes forward.

5.2.1. Common neighbors

Newman has verified a significant correlation between the number of common neighbors of u

and v at time t, and there is the probability that u and vwill connect or collaborate at sometime

after t [66]. The common-neighbors predictor concept is based on the assumption that two—

not yet connected—nodes with common neighbors will get connected sometime in the future.

This introduction between unconnected nodes means the effect of “closing the triangle”.

5.2.2. Jaccard coefficient

The Jaccard coefficient is a common metric in measuring the similarity between different samples.

It is used throughout validation tasks in information retrieval research. It measures the probability

that both u and v have a feature f , for a randomly selected feature f that either u or v has.

JC ¼
∣Nu ∩Nv∣

∣Nu∪Nv∣
(29)

where Nu is the list of neighbors of u, and Nv is the list of neighbors of v. Thus, in (29), the

numerator is the number of common neighbors, and the divisor is the number of unique u and

v neighbors.

5.2.3. Adamic/Adar

This measure—also called frequency-weighted common neighbors—refines the simple

counting of common features in JC by weighting rarer features more heavily [67]. The

Adamic/Adar predictor is based on the intuitiveness of considering unusual features more

critical in predicting future outcomes. In this example u and v would have to be introduced by
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a common friend z, person zwill have to choose to introduce the pair (u,v) from Nz pairs of his

connections.

PA ¼

X

zεNu ∩Nv

1

log∣Nz∣
(30)

5.2.4. Preferential attachment

Another concept, this time with lower complexity, is the preferential attachment [68]. This

metric is only in need of node degree information. The intuitiveness is that those nodes with a

higher degree have more probability to connect to each other than with a neighbor with a

lower degree.

PA ¼ ∣Nu∣∗∣Nv∣ (31)

5.2.5. Katz

The Katz concept [46] is based on the assumption that the closer connected nodes are with a

higher number of paths in the network, and these nodes will have more probability of

connecting in the future. The concept is also called “exponentially damped path counts”.

Katzscore ¼
X∞

L¼1

βL∣PathLu,v∣ (32)

where βL is exponentially damped by length ∣PathLu,v∣ of the Path, with L being the number of

hops between u and v.

5.2.6. Recent developments

Ibrahim and Chen [69] present a method for link prediction in dynamic networks by integrat-

ing temporal information, community structure and node centrality in the network providing

greater weights for frequently occurring links. Wahid-Ul-Ashraf et al. [70] described the paral-

lelism between Newton’s law of universal gravitation and the link prediction tasks. To apply

this law, the authors attributed nodes with the notion of mass and distance. Node centrality

could be considered as mass, and the authors inclusively tested this concept with degree

centrality. The distance between nodes was considered obtainable through several possible

methods, that is, by retrieving the shortest path, path count or inverse similarity, by using

previously stated measures like Adamic/Adar, Katz score or others. Choudhury and Uddin

[71] considered the evolutionary aspects of community network structure. They build dynamic

similarity metrics or dynamic features to measure similarity/proximity between actor pairs.

6. Community detection

As a consequence of both global and local heterogeneity of edge distribution in a graph,

specific regions of a graph evidence the high concentration of edges within particular regions,
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called communities, whereas interregions have low concentrations of edges. In the context of

networks, these occurrences of groups of nodes in a network that are more densely connected

internally than with the rest of the network are called community structures. Also known as

modules or clusters, communities can, therefore, be straightforwardly defined as similar groups

of nodes. A complete definition using the concept of density can be the following: communities

can be understood as densely connected groups of vertices in the network, with sparser

connections between them.

6.1. Finding communities in static networks

Fortunato [72] has a comprehensive survey about methods and techniques regarding finding

communities. Hierarchical clustering methods can be of two types: agglomerative algorithms,

in which clusters are iteratively merged if their similarity is sufficiently high, and divisive

algorithms, in which clusters are iteratively split by removing edges connecting vertices with

low similarity. Divisive algorithms: One of the most known divisive algorithms is the one

proposed by Girvan and Newman [73]. The philosophy of divisive algorithms is the idea that a

simple way to identify communities in a graph is to detect the edges that connect vertices of

different communities and remove them so that the clusters get disconnected from each other.

Agglomerative algorithms: Examples of agglomerative algorithms are the ones that assume

that high values of modularity indicate good partitions. So the partition corresponds to max-

imum value of modularity on a graph. Therefore a modularity measure Q is used to evaluate

the quality of the community structure of a graph. Modularity serves as the objective function

during the process of calculating the communities [74]. Modularity Q with higher values

means better community structures. Therefore, to obtain a global higher modularity, the

objective is to find community assignments for each one of the nodes of the network such that

Q is also maximized. A greedy algorithm based on modularity optimization has been intro-

duced by Blondel et al. [75] where initially all vertices of the graph are put in different

communities (Figure 9(b)). The first step consists of a sequential sweep over all vertices, for

each of the neighbors picks the community that yields the largest increase of modularity

Figure 9. Example of an agglomerative community detection algorithm. In this case the original Louvain [75] with all

algorithm steps.
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(Figure 9(c)). At the end of the sweep, one obtains first-level partition. In the second step,

communities are replaced by super vertices, and the weight of the edge between the super

vertices is the sum of the weights of the edges between the represented communities at the

lower level (Figure 9(d)). The two steps of the algorithm are then repeated, yielding new

hierarchical levels and supergraphs (Figure 9(f)).

6.2. Finding communities in dynamic networks

When discussing methods for finding communities in dynamic networks, the division of

methods for slowly evolving networks and streaming networks is consensual [27]. In the

following section, an algorithm for both scenarios will be presented and analyzed.

6.2.1. Slowly evolving networks

When moving from static community detection to dynamic community detection, often,

static techniques are used to detect communities in evolving network. The Louvain algo-

rithm by Blondel et al. [75] is no exception, and it is still one of the fastest ways to perform

community detection on evolving networks by considering individual static snapshots.

Frequently employed in dynamic network community detection scenarios by performing

individual runs of the algorithm in snapshots of the network, this approach is computa-

tionally inefficient and does not allow the tracking of communities in a fine-grained way

between static snapshots. The community detection work referenced in the Fortunato [72]

survey was later complemented by an incremental community detection algorithm based

on modularity and was proposed by Shang et al. [76]. The algorithm applies the principles

of events in the life of communities (growth, contraction, merging, splitting, birth and

death) as defined by Palla et al. [77] and, in each one of the iterations, calculates the

modularity gain of affected communities. This allows to detect and track communities over

time in incremental networks. This algorithm only considers the addition of new edges and

relies on the original two-step approach used in community detection for static communi-

ties. The QCA [78], presented as a fast and adaptive algorithm, provides efficient identifi-

cation of the community structure of dynamic social networks by allowing the addition and

removal of nodes and edges dynamically. The algorithm starts with the initial communities

calculated via the Louvain method, and then it applies the adaptive node community

changes by considering each node as an autonomous agent demonstrating flocking behav-

ior toward their preferable neighboring groups [79]. The AFOCS [80] community detection

algorithm for dynamic networks shares the same principles of QCA being only modified in

order to allow the possibility of detection of overlapping communities. A detailed compar-

ison between QCA and AFOCS was presented by Nguyen et al. [80]. Label propagation

techniques and specifically speaker-listener label propagation (SLPA) were used in commu-

nity detection over large networks. LabelRank [81] and GANXiSw [81, 82] used the SLPA

technique to perform static network community detection while LabelRankT [83] was

designed to handle dynamic networks. Being designed for overlapping community detec-

tion, all of the previous algorithms also work in a non-overlapping mode, with satisfactory

performance for low overlapping density networks [84].
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Cordeiro et al. [85] presented a modularity-based dynamic community detection algorithm.

The algorithm is a modification of the original Louvain method where dynamically added and

removed nodes and edges only affect their related communities. In each iteration, the algo-

rithm remains unchanged in all the communities that were not affected by modifications to the

network. By reusing community structure obtained by previous iterations, the local modular-

ity optimization step operates in smaller networks where only affected communities are disba-

nded to their origin. The stability of communities is also an improvement over the original

algorithm (Figure 10). Given that only parts of the network change during iterations, the non-

determinism of the algorithm will have a reduced effect on the community assignment. Most

node-community assignments remain unchanged between snapshots, providing better com-

munity stability than its counterparts.

6.2.2. Streaming networks

For the cases when a large number of edges, representing interactions, arrive continuously, in

some cases at high or very high rates, and are superposed over much larger networks, stream-

ing graph algorithms should be preferred to perform community detection. In streaming

scenarios, the ability to perform the deletion of edges in community detection algorithms is

important. In short, as discussed in Section 3.3, this will dictate if the method of analysis is to

be performed over the sliding window of edges, and therefore edges are deleted from the tail

end of the sliding window, or over a landmark window, in case there is no possibility to delete

or forget old edges. Several methods were proposed for dynamic community discovery in

graph streams. Wang et al. [86] motivated by the variability of the underlying social behavior

of individuals over different graph regions modeled the problem according to the so-termed

local heterogeneity, where a local weighted-edge-based pattern (LWEP) summary is efficiently

maintained and used afterward to cluster the graph stream and perform dynamic community

detection in weighted graph streams. Taking an almost linear time, Raghavan et al. [87]

investigated a simple label propagation algorithm that uses the network structure alone as its

guide and requires neither optimization of a predefined objective function nor prior informa-

tion about the communities. By analyzing the problem of real-time community detection in

large networks and having by baseline the algorithm proposed by Raghavan et al. [87] with

Figure 10. Example of Cordeiro et al. [85] dynamic Louvain for the addition of a cross-community edge (1–4). Top figures

show the lower-level network. At the bottom, are shown, the corresponding upper-level network with aggregated

communities.
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linear time O mð Þ on a network with m edge-label propagation, or “epidemic” community

detection, Leung et al. [88] proposed a method with near-linear time community detection in

graphs. Leung et al. identified the characteristics and drawbacks of the base [87] algorithm and

extended it by incorporating different heuristics to facilitate reliable and multifunctional real-

time community detection. Yun et al. [89] proposed two efficient streaming memory-limited

clustering algorithms for community detection based on spectral methods. Yun and Proutière

[90] proposed community detection via random and adaptive sampling. Sariyuce et al. [91]

proposed SONIC, a find-and-merge type of overlapping community detection algorithm that

can efficiently handle streaming updates. Recently, Hollocou et al. [92] proposed SCoDA, a

linear streaming algorithm, for community detection in very large networks.

7. Visualization of evolving networks

The visualization of networks is known to be challenging, and this task gains additional

complexity when moving from static to evolving networks. In this section an overview of

the methods and techniques is presented, currently used for the visualization of evolving

networks.

7.1. Challenges of evolving networks’ visualization

The dynamics of social networks remain a challenge regarding visualization [93]. Many

researchers argue that traditional graph visualization methods have issues when applied to

evolving networks. Additionally, the application of conventional node-link methods to large-

scale networks provides low-quality cluttered insights. The overlap of nodes in these condi-

tions is not appropriated when trying to extract information from the network. Zaidi et al. [94]

and Aggarwal and Subbian [27] presented an overview of the different techniques and

methods that exist for the analysis and visualization of dynamic networks. It included the

discussion of the basic definitions, formal notations and a set of the most important and recent

work regarding analysis and the visualization of dynamic networks. While static graph visu-

alizations are often divided into node-link and matrix representations, Beck et al. [95, 96]

presented a hierarchical taxonomy of dynamic graph visualization techniques. This survey

about the state of the art in visualizing dynamic graphs identified the representation of time as

the major distinguishing feature for dynamic graph visualizations. Two major visualization

categories were found: in one category, graphs are represented as animated diagrams or in a

second one, visualizations are a set of static charts based on a timeline. Similar conceptual

dynamic network visualization categories were devised by Moody et al. [97], and the authors

divide dynamic network visualizations also called as network movies into static flip books,

where the node position remains constant but edges cumulate over time and dynamic movies,

where nodes move as a function of changes in relations. The graph animation is often used to

lower the cognitive effort required to follow the transition from one visualization to the next,

according to Brandes and Corman [98]. To facilitate the simultaneous analysis of state and

change, a layered three-dimensional network visualization was proposed by Brandes and
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Corman [98] in which the evolution of the network is unrolled, and each step is represented as

a layer. A complex network with a larger number of links may prevent users from recognizing

salient structural patterns. To overcome this common problem with visualization, two widely

known link reduction algorithms, namely minimum spanning trees (MSTs) and pathfinder

networks (PFNETs), were analyzed and compared by Chen and Morris [99]. Bender-deMoll

and McFarland [100] propose a framework for visualizing social networks and their dynamics

and presented a tool that enables debate and reflection on the quality of visualizations used in

empirical research. With the focus on the evolution of communities over time, Falkowski et al.

[101] proposed two approaches to analyze the evolution of two different types of online

communities on the level of subgroups. This analysis was conducted by observing changes in

the interaction behavior of the members of the communities. Chen [102] devised a generic

approach for detecting and visualizing emerging trends and transient patterns in scientific

literature. Other recent work of interest is presented by Beck et al. [103, 104] and the visualiza-

tion of evolving graphs with multiple visual metaphors of Burch [105]. The combination of

dynamic network visualization with graph sampling techniques is often used [106].

8. Conclusion and future trends

This chapter provided an overview of the methods and techniques for modeling, analyzing,

measuring and visualizing evolving social network analysis. In the past, static techniques were

adapted to dynamic networks with relative success, but nowadays, with the advent of social

media, scale and velocity of most of those static techniques reveal weaknesses that only can be

addressed by methods and techniques designed for dealing with evolving data. After

presenting two areas of direct applicability of evolving network analysis such as criminologi-

cal research and research on journalism, the ways on how dynamic networks can be

represented and modeled according to their timescale, windowing strategies and methods of

analysis were discussed. These theoretical aspects were then used to present elementary

network measures, link analysis methods, community detection methods and visualization

techniques. It is clear that in recent years this area of research will continue to have significant

development in the future, several problems are still unsolved and many of them can be

significantly improved. The areas of applicability of evolving networks and social network

analysis are also broader, with many of the abovementioned techniques moving from well-

succeeded areas like world wide web, communication, telecommunication and mobile net-

works, to newer areas like social network recommendations, news and blog analysis and social

network event detection. Specifically in the area of social network event detection, the detec-

tion of unusual patterns, anomalies or changes in trends in the social streams can lead to

valuable information, which can be used timely in many real-word scenarios [107]. Cordeiro

[108] addressed the monitoring and tracking of the dynamics of social network communities

with the objective to unveil real-world events, whereas Cordeiro [109] was devoted to the

problem of mining the twitter stream to unravel events, interactions and communities in real

time. Future trends of social network analysis will continue to be driven by future trends and

characteristics of the network data, such as the size of data, which is incredibly getting large,
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and changes in space and time. On one side, there is the urge for scalable and efficient social

network analysis methods, and on the other side, there is the need for methods to study the

dynamics and evolution of social networks, able to deal with future velocity and timescale

dimensions of the network data. Stray [110] focused network analysis as a tool to bridge the

“research to reporting” gap in journalism, starting with two use cases (Seattle Art World [111]

and Hot Wheels [112]) and the recent state-of-the-art network analysis and visualizations

applied to the Panama Papers case [113] where graph databases and entity recognition were

used to build interactive network maps from structured data and raw documents. Therefore, it

is expected that the study of evolving networks will continue to be a significant strand of

research in the context of social network analysis in the near future.
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