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Abstract

Calcium (Ca2+) functions as a universal messenger in eukaryotes and regulates many 
intracellular processes such as cell division and gene expression. However, the physi-
ological role of Ca2+ in prokaryotic cells remains unclear. Indirect evidence suggests that 
Ca2+ is involved in a wide variety of bacterial cellular processes including membrane 
transport mechanisms (channels, primary and secondary transporters), chemotaxis, cell 
division and cell differentiation processes such as sporulation and heterocyst formation. 
In addition, Ca2+ signaling has been implicated in various stages of bacterial infections 
and host-pathogen interactions. The most significant discovery is that similar to eukary-
otic cells, bacteria always maintain very low cytosolic free Ca2+, even in the presence of 
millimolar extracellular Ca2+. Furthermore, Ca2+ transients are produced in response to 
stimuli by several agents. Transport systems, which may be involved in Ca2+ homeosta-
sis are present in bacteria but none of these have been examined critically. Ca2+-binding 
proteins have also been identified, including proteins with EF motifs but their role as 
intracellular Ca2+ targets is elusive. Genomic studies indicate that changes in intracellular 
Ca2+ up and downregulate hundreds of genes and proteins suggesting a physiological 
role. This chapter presents an overview of the role of Ca2+ in prokaryotes summarizing 
recent developments.

Keywords: Ca2+ signaling in bacteria, calcium binding proteins, Ca2+ homeostasis in 
bacteria, prokaryotic Ca2+ transporters

1. Introduction

Intracellular free Ca2+ serves as a universal messenger in all eukaryotic cells [1–4]. Cells 

respond to environmental stimuli by transient changes in intracellular free Ca2+ concentra-

tion ([Ca2+]
i
), which are utilized by cells to transmit information. Physiological responses also 

depend on the speed, magnitude and spatiotemporal patterns of the Ca2+ signal [5]. Basal 
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levels of free cytosolic calcium are regulated by Ca2+-binding proteins, primary and secondary 

transporters and cytosolic Ca2+ stores preventing calcium phosphate toxicity [1, 3].

Although the role of Ca2+ in prokaryotes is still unclear, there is increased evidence favoring 

a role for ([Ca2+]
i
) in signal transduction in bacteria. Indirect evidence shows that Ca2+ affects 

several bacterial physiological processes including: chemotaxis, cell differentiation such 
as spore development and heterocyst formation, membrane transport (channels, primary 

and secondary transporters), virulence and host pathogen interactions [4, 6–10]. Similar to 

eukaryotes, bacteria maintain cytosolic free Ca2+ within the nM range even in the presence of 

mM extracellular Ca2+ [11–15]. Ca2+-stimulus-response has been documented during environ-

mental stress, toxicants [16–18] carbohydrate metabolites [19, 20], iron acquisition, quinolone 

signaling and type III secretion, which are secretory systems comprised of proteins found in 

pathogenic Gram negative bacteria that are used to infect eukaryotic cells [21, 22]), suggesting 

that Ca2+ signals are relevant to microbial physiology. Primary and secondary transporters 

including channels (Ca2+, K+, Na+) have been identified in various genera of bacteria. Data 
show that the level of similarity with eukaryotic counterparts is striking. For example sodium 

channels show high degree of conservation but their structure is simpler [23]. The ATPase 

found in B. subtilis is analogous to the typical eukaryotic type IIA family of P-type ion-motive 

ATPases [24]. However, direct evidence that these transporters regulate the concentration of 

cytosolic free Ca2+ is limited. There is evidence of calcium binding proteins (CaBP) in sev-

eral genera of bacteria, including proteins with EF-hand domains [25, 26], and other calcium 

motifs such as β-rolls motif, Greek key motif, repeats in toxin and Big Ca2+ domain [27–30] but 

their functional role needs to be investigated. Proteomic and transcriptomic studies in E. coli,  

Figure 1. Possible roles of calcium in bacteria.
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P. aeruginosa and B. subtilis showed that hundreds of genes and proteins are up/downregu-

lated by changes in ([Ca2+]
i
) but the physiological role needs to be elucidated [20, 21, 23, 31, 32]. 

Figure 1 illustrates the potential roles of Ca2+ in prokaryotes.

Despite the progress made in recent years, the role of Ca2+ in prokaryotes remains intriguing 

and unclear. Disappointingly many studies have not been followed up and the understanding 
of the role of Ca2+ in prokaryotes lags behind. Questions that need to be answered are: why 

bacteria maintain a very low cytosolic free Ca2+? Do bacteria utilize the high Ca2+ gradient to 

trigger cell events? What are the molecular mechanisms for Ca2+ regulation in bacteria? Does 
intracellular Ca2+ play a role in provoking and regulating cell events? This chapter reviews the 

work done in this field and will present recent developments.

2. Ca2+ homeostasis in bacteria

Initial measurements of [Ca2+]
i
 in bacteria were a challenge because of the unique physi-

cal characteristics of bacterial cells (tiny size, cell walls and membrane), the difficulty in 

manipulating live cells and the toxicity of reagents [13, 33]. Other concerns included those 

associated with Ca2+ research such as contamination and lack of selectivity of Ca2+ chela-

tors [34–36]. With the introduction of molecular technology, the photoprotein aequorin 

gene was expressed in bacterial cells to measure cytosolic free Ca2+ in live cells. In this 

way, several investigators were able to continuously monitor cytosolic free-Ca2+ in several 

genera of bacteria [12–14]. A crucial discovery was that all bacteria tested maintained 

very low levels of cytosolic free Ca2+, even in the presence of 1–10 mM extracellular Ca2+ 

(Figure 2). Cytosolic free Ca2+ in bacterial cells ranges from 100 to 300 nM, very similar 

values to those observed in eukaryotic cells [11, 13, 14]. These findings suggest that micro-

bial cells must have transport systems (influx and efflux), proteins or other structures that 

may serve as intracellular free Ca2+ targets that may play a role in the maintenance of Ca2+ 

homeostasis.

The role of channels, ATPases and exchangers in Ca2+ homeostasis has not been investigated 

critically and none of these have been experimentally proven to transport Ca2+ specifically. 
The contribution of bacterial CaBP to Ca2+ homeostasis remains undetermined [26, 37]. 

However, recent work shows that the disruption of particular ATPases (PA2435, PA3920), the 

exchanger (PA2092) and a putative EF-hand protein, is evidence that these transporters are 
necessary to maintain low intracellular Ca2+ levels in P. aeruginosa [15, 38]. A proteomic analy-

sis in B. subtilis showed that several cytosolic proteins appear to bind Ca2+, as determined 

by Ca2+ autoradiography [32]. Some of these proteins, identified by liquid chromatography/
mass spectrometry include: a potential cation transport ATPase, fructose biposhate aldolase, 

DnaK 70 and adenylate kinase. These proteins were induced when cells were treated with 
extracellular divalent cation chelator ethylene glycol tetraacetic acid (EGTA) and reduced 
when treated with high extracellular Ca2+. None of these proteins however had Ca2+ binding 

domains [32]. Notably genes encoding fructose biposhate aldolase, DnaK 70 and adenylate 
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kinase were found to be modulated by Ca2+ in E. coli [20]. These findings suggest that perhaps 
other proteins and anionic protein groups yet to be characterized may be involved in buffer-

ing intracellular free Ca2+.

Bacterial cells lack organelles such as endoplasmic reticulum and mitochondria, which func-

tion as Ca2+ sinks in eukaryotes. However, some bacteria contain membrane-bound vesicles 

(acidocalcisomes) and polyphosphate granules that accumulate and store Ca2+ [39–42]. 

Other structures that bind Ca2+ in significant amounts are DNA and the complex poly-(R)-3 
hydroxybutyrate (PHB)-polyphosphate (PP) [43–45]. Moreover, the periplasmic space, 

which is a region between the inner cytoplasmic membrane and the bacterial outer mem-

brane and that has been found in both Gram negative and Gram positive bacteria [46–48], 

is another structure that has been reported that may play a role in storing and buffering 
Ca2+ [49]. Intracellular free Ca2+ measurements within the periplasmic space in live E. coli 

cells revealed that this structure can store 3–6-fold Ca2+ with respect to the external medium 

[49]. Chang and co-workers [50] also demonstrated high concentrations of Ca2+ associated 

with the cellular envelope in E. coli cells as determined by X-ray mapping and electron loss 

spectroscopy.

Altogether, the aforementioned data suggest that bacterial cells may have different mecha-

nisms to maintain cytosolic Ca2+ homeostasis. Further work should be performed to elucidate 

how and why bacterial cells maintain low levels of intracellular free Ca2+.

Figure 2. Cytosolic free Ca2+ in Bacillus subtilis cells. B. subtilis Cells were transformed with a plasmid containing the 

gene for the photoprotein aequorin. Light emission was recorded in a luminometer after challenging the cells with 

different CaCl
2
 concentrations: 0.5, 1, 5, and 15 mM. J Anal Bioanal Tech reproduced with permission.
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3. Influx and efflux transport systems in bacteria

3.1. Influx

The existence of cation (Na+ and K+) and anion (Cl−) channels, ATPases and exchangers 

have been documented in several genera of bacteria [4, 51]. Despite high resolution struc-

ture of some bacterial channels the physiological function reminds unknown [7]. Several 

bacteria have mechanosensitive ion channels that have large conductances (nanosiemens 

range) thus it would be expected to allow Ca2+ into cells. However, gene knockouts of major 

mechanosensitive channels in E. coli (MscL and MscS) still showed large Ca2+ influx [2, 52] 

and the Ca2+-dependent K+ channels of the archaea Methanobacterium thermoautotrophicum 

and Thermoplasma volcanium are activated at millimolar Ca2+ concentrations questioning the 

physiological relevance since Ca2+ signals occur within micromolar range. On the other hand, 

deletion of the SynCaK, a Ca2+-dependent K+ channel in cyanobacteria resulted in increased 

resistance to heavy metals suggesting a physiological role for Ca2+-mediated channels [53].

So far the best evidence of a Ca2+ influx channel in bacteria is the nonproteinaceous complex 
polyhydroxybutyrate-polyphosphate (PHB-PP). The channel is highly selective for Ca2+ at a 

physiological pH [54]. This preference has been attributed to a high density negative charge 
along the polyphosphate backbone. The complexes are abundant in stationary phase and cor-

relate with high rise in cytosolic Ca2+. These complexes have many characteristics of protein 

Ca2+ channels: voltage-activated, conduct Ca2+, Sr2+ and Ba2+ and are blocked in a concentra-

tion-dependent manner by La3+, Co2+ and Cd2+ [44, 45, 55]. However, the genes encoding the 

synthesis of PHB complex remain to be properly identified and characterized. A figure of the 
putative channel is shown in Figure 3.

More recently, Bruni et al. [52] employing a sensor that simultaneously reports voltage and 

Ca2+ showed that Ca2+ influx is induced by voltage depolarization in E. coli. These exciting 

findings support the idea that bacteria may sense their environment through voltage-induced 
Ca2+ fluxes, similar to eukaryotic cells.

3.2. Efflux

In most bacteria, Ca2+ is apparently exported by Ca2+ exchangers, Ca2+/H+ or Ca2+/Na+ antiport-

ers. These are low-affinity Ca2+ transport systems that use the energy stored in the electro-

chemical gradient of ions. Ca2+ exchangers differ in ion specificity and have been identified in a 
number of bacterial genera [11, 56]. In E. coli, the proteins ChaA, YrbG and PitB were reported 

as potential Ca2+/H+ [57, 58], Ca2+/Na+ antiporters [59] and Ca2+/PO
4
3+ symporter respectively. 

Knockout of corresponding genes showed no effect on either Ca2+ influx or efflux [19, 20] 

raising questions about the role of these proteins. Potential redundancy is not ruled out. More 

recently, the multidrug transporter LmrP from Bacillus lactis has a predicted EF-hand motif 
with a Kd = 7.2 μM and two acidic residues (Asp-235 and Glu-327) binding Ca2+. LmrP was 

shown to selectively bind Ca2+ and Ba2+ and mediates selective Ca2+ efflux via electrogenic 
exchange [60]. A predicted transporter PA2092 from P. aeruginosa might be involved in Ca2+ 

efflux since intracellular Ca2+ accumulates after disruption of the corresponding mutant [15].
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P and F-type Ca2+ ATPases have been described in bacteria. ATPases that were purified and 
shown to translocate or have Ca2+-dependent phosphorylation include:

the P-type ATPase from Synechocystis sp. showed vanadate sensitivity, which appears to be 

homologous to eukaryotic SERCA [61, 62], the F-type ATPase from Flavobacterium odoratum 

also vanadate-sensitive, phosphorylated only in the presence of Ca2+ [63] and the Listeria 

monocytogenes ATPase, which has low Ca2+ affinity, and it is induced at alkaline pH [64]. The 

in vivo function of these proteins remains to be characterized. Other ATPases that have been 

identified by bioinformatics include: CaxP from Streptococcus pneumoniae [65], YloB from B. 

subtilis [24], PacL from Synechococcus sp. [66] and PA2435 and PA3920 from P. aeruginosa [15].

Work by Naseem et al. [20] demonstrated that ATP is essential for Ca2+ efflux, and there is a 
possibility that ATP may regulate Ca2+ efflux through an ATPase. It was shown that the gene 
atpD, which encodes a component of an F-type ATPase is required for a normal Ca2+ efflux 
function. Although no specific transporter was shown here, the result is important, indicating 
that ATP is surely necessary for transport of Ca2+ by a still unknown ATPase.

Bacterial transporters have not been studied systematically and knowledge about these pro-

teins is limited. It appears that prokaryotes have multiple transporters with some redundancy. 

Figure 3. Coordination geometry of Ca2+ in the PHB-PP helix. (A) Calcium forms ionic bonds with four phosphoryl 

oxygens of poly-P and ion-dipole bonds with four ester carbonyl oxygens of poly-hydroxybutyrate (PHB) to form a neutral 

complex with distorted cubic geometry. (B) Computer model horizontal cross section showing the poly-P helix with the 

poly (HE) helix with Ca2+ surrounded by the oxygen moieties of both polymers. The seven Ca2+ displayed are from two 

turns of the poly-P helix. Light blue, hydrogen; dark blue, carbon; red, oxygen; green, phosphorous; aqua, Ca2+. (C) View 

down the poly(HB) cylinder. Ca2+ (closed circles) bound to carbonyl ester oxygens (open circles) in a pattern that links each 
turn of the helix alternatively to the proximal turns above and below. Reusch and Sadoff [45]. Courtesy of Reusch RN.
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Besides protecting from toxic effects the question arises is Ca2+ transport in bacteria linked to 

signaling? What is the contribution of these transport systems in Ca2+ homeostasis?

4. Bacterial Ca2+ binding proteins (CaBP)

If a change in cytosolic free Ca2+ is to have any effect on bacterial physiology, bacterial cells 
must have intracellular Ca2+ targets in addition to influx and efflux mechanisms. Identification 
of such intracellular Ca2+ targets remains elusive. Nevertheless, a number of prokaryotic CaBP 

have been discovered by a combination of approaches: molecular technology and bioinfor-

matics. According to Zhou et al. [26], sequence analyses of prokaryotic genomes showed the 

presence of 397 putative EF-hand proteins. However, most of these proteins with a few excep-

tions (Calerythrin from Saccharopolyspora erythrea, Calsymin from Rhizobium etli, the Brucella 

abortus Asp24, Streptomyces coelicolor CabA, CabD and Ccbp from Anabaena sp.) are hypotheti-

cal proteins [37, 67, 68]. Few proteins have been studied biochemically and none of these have 

been characterized functionally.

Five classes of EF-hand motifs have been reported in bacteria. The typical helix-loop helix 
EF-hand structure seen in Calerythrin and Calsymin, the extracellular Ca2+-binding region 

(Excalibur), which has a shorter loop containing 10 residue motif DxDxDGxxCE found in vari-
ous bacteria, the longer 15 residue Ca2+-binding loop seen in the E. coli lytic transglycosylase B, 

and the fourth and fifth classes lacking the first or second helix as described in the C. thermocellum  

dockerin and the Sphingomona ssp. alginate-binding protein, respectively [25, 26]. Table 1 

presents the five classes of bacterial EF-hand and EF-hand-like motifs proteins with known 
structures. The presence of the Ca2+ binding motifs must be tested for functional necessity or 

for viability of the organism.

Other Ca2+ motifs found in various bacteria include the Ca2+-binding β-roll motif, which 
includes proteins containing a region referred as repeats-in-toxin (RTX) [27, 69, 70] and a family 

of proteins with a signature sequence Proline P-Glutamate E Polymorphic GC-rich Repetitive 
Sequence (PE_PGRS) [71, 72], the Greek key motif present in the βγ-crystallin superfamily 
containing Ca2+-binding proteins in Eubacteria and Archaea [29, 73–76] and finally the Big 
domain motif comprising proteins with an immunoglobulin-like domains [30, 77]. Most of 

these proteins however, are extracellular proteins and some require Ca2+ within the μM to 

mM range to bind compared to eukaryotic cells that have high Ca2+ binding affinity within 
lower μM to nM range. Nevertheless, reports have shown that cytosolic free Ca2+ in E. coli 

can increase to tens of micromolar without any loss of viability, suggesting that bacterial Ca2+ 

targets may have lower affinity for Ca2+.

Prokaryotic CaBP encompass a diverse group of proteins that exhibit great structural variety. 

Binding of Ca2+ may provoke folding to a functional state or may lead to protein stabilization. 

Structural characteristics of these proteins suggest they may act as buffers, may play a struc-

tural role and/or may function as sensors/signal transducers. Much more research is needed 

to characterize biochemically and genetically bacterial Ca2+-binding proteins offering exciting 
possibilities and a challenge for the future.
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5. Ca2+ signaling

The hypothesis that Ca2+ acts as a messenger in bacterial cells is based on the obser-

vation that environmental signals induce changes in the level of cytosolic free Ca2+. 

Microorganisms must quickly adapt to changes in the environment in order to survive. 

Therefore, bacteria must have evolved sophisticated regulatory networks to constantly 

monitor signals that are critical for their continued existence. How bacterial cells sense 

the external signal has not been determined yet but experimental observations suggest 

that may occur through different mechanisms including: cytosolic-free Ca2+ transients, 

membrane sensors, two component systems and its regulatory proteins, and Ca2+ sensors 

transducing the signal.

Over the years, evidence of a Ca2+-mediated stimulus response in bacteria has been docu-

mented. Since 1977, Ordal reported that cytosolic Ca2+ controlled the rotation of the flagella in 

Organism Protein name Accession 

number

a.a. 

number

EF-hand/

EF-hand-

like motif

Potential role 
of Ca2+

Refs.

Saccharopolyspora erythrea Calerythrin P06495 177 Helix-loop-

helix

Buffer [4, 24]

Rhizobium etli Calsymin Q9F6V9 293 Helix-loop-

helix

Transducer [4, 36]

Thermotoga maritime 4-α-Glucano-
transferase

P80099 441 Helix-loop-

helix

Unknown [4, 24]

Escherichia coli B Slt35 P41052 361 Helix-loop-

helix

Structural [4, 24]

Bacillus anthracis Protective 

antigen

P13423 764 Helix-loop-

helix

Structural [4, 23]

Clostridium thermocellum Dockerin A3DCJ4 350 Helix-loop-

helix

Structural [4, 23]

Salmonella typhimurium Periplasmic 

galactose binding 

protein

P23905 332 Helix-loop-

strand

Structural [4, 23]

Sphingomonas sp Periplasmic 

alginate binding 

protein

Q9KWT6 526 Helix-loop-

loop

Regulatory [4, 23]

Pseudomonas aeruginosa Alkaline protease Q03023 479 Strand-

loop-strand

Unknown [4, 24]

Halothermothrix α-Amylase A Q8GPL8 515 Strand-

loop-helix

Structural [4]

Protein accession numbers in UniProtKB database. Reproduced with permission from Elsevier. Dominguez et al. [4].

Table 1. Examples of bacterial proteins containing EF-hand and EF-hand-like motifs with known structure.
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B. subtilis cells. Later work corroborated that cytosolic Ca2+ transients affect bacterial motility 
in E. coli, possibly through the phosphorylation of the Che proteins [78–80]. The involvement 

of Ca2+ as a signal transducer in a variety of environmental conditions, where cytosolic free 

Ca2+ is elevated as a result of the stimulus, has been shown in various organisms including: 

oxidative stress in B. subtilis [81], heat/cold shock, and salt and osmotic stress in Anabaena 

strain PCC7120 [14, 82], carbohydrate fermentation products in E. coli [19], organic solvents, 

pharmaceuticals and antibiotics in cyanobacteria [16, 17].

Evidence that membrane-bound proteins may be able to transduce Ca2+ signal was shown in 

vitro using the chimeric protein Taz1. Under low concentrations of Ca2+, Taz was phosphory-

lated leading to the activation of porin genes in E. coli [83, 84]. No in vivo studies have been 

followed up. A more recent report in Vibrio cholera, showed that Ca2+ greatly enhances the 

transmembrane virulence regulator (TcpP) activity by increasing protein-protein interaction 

in the presence of bile salts, leading to the activation of downstream virulence factors [10].

Two component regulatory systems, consisting of a sensor kinase and a transcriptional 

activator, are commonly used by bacteria to sense and respond to environmental signals. 

Several of these systems have been shown to respond to extracellular Ca2+. In the PhoPQ sys-

tem in Salmonella typhimurium and P. aeruginosa, PhoQ is a Mg2+, Ca2+ sensor that modulates 

transcription in response to cation levels. The binding of PhoQ to Ca2+, Mg2+ or Mn2+ keeps 

the protein in a repressed state inhibiting the transcription of many virulent genes [85, 86]. In  

V. cholera, the calcium regulated sensor (carS) and regulator (carR) were shown to be decreased 
when bacterial cells grew in Ca2+ supplemented medium. Further analysis demonstrated 

that expression of vps (Vibrio polysaccharide) genes and biofilm formation are negatively 
regulated by the CarRS two-component regulatory system [87]. In V. parahemolyticus, Ca2+ 

influences gene expression for type III secretion systems (T3SS
1
) and swarming. A transcrip-

tion factor called CalR was shown to repress T3SS1 and swarming, which in turn were linked 
to a σ54-dependent regulator [22]. Another two-component system AtoS-AtoC, which medi-

ates the regulation of PHB complexes in E. coli is induced by Ca2+. It was shown that the high-

est accumulation of PHB complexes occurred in AtoS-AtoC expressing E. coli cells compared 

to deletion mutants AtoSC at high Ca2+ concentration in cytosolic and membrane fractions 

[88, 89]. More recently, in P. aeruginosa, the two-component regulator PA2656-PA2657 genes 

were induced by CaCl
2
. Deletion mutations and transcriptome analysis revealed that this 

two-component system may be responsible for regulating the expression of periplasmic pro-

teins and affecting Ca2+ homeostasis [90].

Bacterial CaBP that may be involved in in signal transduction include CabC, which may be 

regulating spore germination and aerial hyphae formation in Streptomyces coelicolor [91]. The 

recently reported EfhP from P. aeruginosa that is required for Ca2+ homeostasis [38] and other 

two EF-hand proteins from S. coelicolor and S. ambofaciens whose function remains to be dis-

covered [92, 93].

Despite all the information accumulated over the past few years, Ca2+ signaling in bacterial 

physiology remains to be elucidated. Further work is needed to uncover the specific nature of 
the Ca2+ signal transduction, its components and their specific regulation and function.
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6. Ca2+ signals during host-pathogen interactions

Pathogenic bacteria have evolved various strategies to successfully colonize and cause infec-

tion in their hosts. Intracellular Ca2+ mobilization has been implicated as an important signal-

ing event during bacterial adhesion, invasion and intracellular replication during infection 

[6]. Interestingly, some pathogens induce Ca2+ increases while others interfere with the Ca2+ 

signal to promote invasion [9, 94, 95]. However, despite the significant role of Ca2+ signal-

ing during pathogenesis, the mechanisms underlying how bacterial cells and their virulent 

factors manipulate Ca2+ mobilization in host cells remains to be elucidated. This section will 

present some examples of the role of Ca2+ in host-pathogen interactions.

Neisseria meningitidis (meningococci) is the causative agent of bacterial meningitis. Pili are 

one of the major virulent factors of meningococci. Pili are bacterial structures that play an 

important role in adhesion to host cells. Analyzing the role of Ca2+ during N. meningitides 

infection, Asmat et al. [9] found that the meningococcal protein PilC1 triggered a significant 
increase of cytosolic Ca2+ in human brain microvascular endothelial cells (HBMEC), which 
was critical for adherence and subsequent internalization into host endothelial cells. Use of 

the Ca2+ chelator, BAPTA-AM, significantly reduced PilC1-mediated meningococcal adher-

ence. Mutants deficient in PilC1 were not able to increase cytosolic Ca2+ in endothelial host 

cells. Pretreatment of host cells with the phospholipase inhibitor, U73122, indicated that the 

Ca2+ increase in endothelial cells was mediated by phospholipase C (PLC). Similar findings 
where Ca2+ mediated adherence to host cells occur through pili were reported in P. aeruginosa 

[96] and efficient internalization via PLC was reported in Campylobacter jejuni [97] and Borrelia 

burgdorferi [98].

Shigella is another pathogen that utilizes Ca2+ signaling during infection of epithelial cells. 

Shigella is the etiologic agent of bacillary dysentery. This pathogen invades the intestinal 

mucosa producing massive destruction of the colonic epithelium by eliciting a strong inflam-

matory response [6]. As early as 5 min after bacterial contact with epithelial cells Shigella 

induces local Ca2+ signals in the host cell, which remodel the cytoskeleton allowing bacterial 

entrance to the cells. Global Ca2+ signals are involved in later stages of infection promoting 

slow cell death as a result of plasma membrane permeabilization and increased cytosolic Ca2+. 

Shigella also manipulates the Ca2+ signal to interfere with immune responses and inflammation 
[99]. Global Ca2+ signals have also been associated with an induced decrease of sumoylation 

by Shigella. Sumoylation is a posttranslational modification by Small Ubiquitin Modifier 
(SUMO) proteins, which is an essential regulatory mechanism involved in several processes 

including protein stability, cell cycle, cell communication and gene expression [100]. At late 

time of postinfection, Shigella induces inhibition of sumoylation through activation of calpain 

proteases, which degrade SUMO proteins [101]. Inhibition of Ca2+ influx or calpain activity 
prevented shigella-induced loss of sumoylation. On the other hand Ca2+ treatment and ino-

mycin resulted in sumoylation inhibition [101]. Knowledge of how pathogens interfere with 

SUMO enzymatic machinery is limited and remains to be characterized.

Several bacterial pathogens secrete potent virulence factors such as pore-forming toxins. 

These toxins perforate host cell membranes in order to deliver virulence factors, escape from 
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phagosmes or disrupt cell-cell junctions (Tran Van Nhieu [6]; Reboud et al. [102]). Interestingly, 

some pore-forming toxins such as Listeria listeriolysin O (LLO) induce Ca2+ oscillations as 

a result of a direct Ca2+ influx via the pore-forming toxin. An interesting feature of LLO is 
that pores open and close in a synchronized fashion leading to long lasting Ca2+ oscillating 

signaling provoking a broad spectrum of cellular responses during infection [6, 103]. Two 

other pore-forming toxins produced by the opportunistic pathogens P. aeruginosa (ExlA) 
and Serratia marcescens (ShlA), which share similar structural and functional aspects, have 

the capacity to trigger Ca2+ influx leading to disruption of cell-cell junctions of epithelial and 
endothelial cells. This influx of Ca2+ activates a metalloproteinase called 10(ADAM 10), which 
cleaves cadherin inducing cell-cell-junction breakdown and loss of tissue integrity [102].

There is a great diversity of Ca2+-dependent processes that pathogens utilize to cause infection. 

However, studies on bacterial induced Ca2+ signaling are limited. More research is needed in 

this filed to understand the mechanisms of how bacterial virulence factors regulate second 
messengers such as Ca2+ and Ca2+-dependent events during the infectious processes.

7. Conclusion

The role of Ca2+ in bacteria is a fascinating field that still remains unexplored. It is clear 
that evidence supporting the role of calcium as a regulator in prokaryotes is accumulating. 

However, the extent and significance remains unclear. A systematic assessment and careful 
analysis of the processes involving calcium warrants further analysis.
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