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Abstract

Since 1976, more and more PET radiopharmaceuticals have been developed as the clinical 
introduction of [18F]FDG for various medical applications. However, few of them could be 
involved in routinely clinical use in hospitals partly because of restrictions in regulatory 
and facilities. This chapter aims to provide an overview of PET radiopharmaceuticals that 
are common manufactured (or prepared) in industry (or hospitals) about regulatory and 
quality aspects, and further summarize pharmacopeia-listed PET radiopharmaceuticals 
and their clinical usefulness herein. Particularly, PET radiopharmaceuticals listed in lat-
est United States Pharmacopeia (USP) and/or European Pharmacopeia (EP) are included 
for this chapter. Finally, this chapter would be helpful in the basic understanding of clini-
cal PET radiopharmaceuticals for physicians or technologists.

Keywords: PET, radiopharmaceutical, regulation, quality, clinical application, USP, EP, 
pharmacopeia

1. Introduction

Positron emission tomography (PET) radiopharmaceutical is composed of a biologically 

active pharmacophore and a positron-emitting radionuclide, and belongs to a unique spe-

cies in pharmaceutical field. The most common radionuclides for PET radiopharmaceuticals 
include 11C, 15O, 13N, 18F, 68Ga and 82Rb (Table 1). In addition to radiation issue, short half-

lives of these positron emitters (78 sec~110 min) definitely result in unavoidable limitations 
on manufacturing (including production and following quality control (QC) analyses) and 

clinical use of PET radiopharmaceuticals. Above are all practical challenges for a conventional 
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pharmaceutical industry. Hence, commercial large-scale manufacturing and small-scale 

preparation of PET radiopharmaceuticals are respectively allowed in radiopharmaceutical 

industries and the radiopharmacy of hospitals in most countries worldwide. Moreover, both 

practices in radiopharmaceutical industries and hospitals are clearly regulated by national 

competence authorities, such as Food and Drug Administration (FDA) of the United States 

(U.S.) and European Medicines Agency (EMA) of the European Union (EU).

In the other hand, a pharmacopeia is a national compendium of drug quality standards, such 

as U.S. Pharmacopeia (USP) and European Pharmacopeia (EP), and is always recognized as 

an official compendium. Drug standards listed in pharmacopeia monographs are usually 
enforced to be compliance under drug-related provisions at national level in order to prevent 

the marketing of inconsistent drugs and to reduce possible risks in public health. Although 

PET radiopharmaceuticals listing in pharmacopeia monographs sometimes do not mean for 

marketing authorization under national approval and reimbursement decision of medical 

insurance [1], some countries have enabled the clinical use (i.e., use for routine patient care 

with/without reimbursement or with/without national approval) or clinical trials as long as 

their qualities are in conformity with USP or EP standards, even no good manufacturing prac-

tice (GMP)-compliant process. Moreover, for those clinical studies using national-approved 

PET radiopharmaceutical for off-label indications, burdensome submission of an investiga-

tional new drug (IND) application will not be required in some countries.

In the other hand, specific QC procedures and specification of some PET radiopharmaceuti-
cals have been listed in USP or EP. However, because of short half-lives of PET radiophar-

maceuticals, QC tests prior to human administration within such a short period is a huge 

challenge. As a result, some quality exceptions are usually allowed for PET radiopharmaceu-

ticals. Also, several efficient and quick tests have been developed for rapid QC tests of clinical 
PET radiopharmaceuticals.

This chapter first aims to provide an overview of regulations of manufacturing and clinical 
use of PET radiopharmaceuticals in U.S. and Europe. Secondly, the chapter will introduce the 

general quality aspect for PET radiopharmaceuticals. Finally, this chapter will end with the 

brief introduction of PET radiopharmaceuticals listed in the monographs of latest USP (USP 40)  
or EP (EP 9.0) (Table 2).

Radionuclide Half-life Max

specific activity  
(Ci/μmol)

ß+

(%)

Max E
ß
 

(MeV)

Max ß+ range 

(mm)

Production route

11C 20 min 9220 99 0.96 4.1 Cyclotron

15O 123 sec 90,800 100 1.19 5.1 Cyclotron

13N 10 min 18,900 100 1.72 7.3 Cyclotron

18F 110 min 1710 97 0.635 2.4 Cyclotron

68Ga 68 min 2766 88 1.9 8.2 Cyclotron/ Generator

82Rb 78 sec 150,400 95 3.35 14.1 Generator

Table 1. Characteristics of common positron emitters.
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2. Regulatory aspects of PET radiopharmaceuticals in the USA and 

Europe

2.1. USA regulatory view

In U.S., the clinical use of all radiopharmaceuticals has been regulated by FDA since 1975. 

Briefly, the regulatory process can be divided into two types. They are: 1. IND submission 
for investigational and research purposes by an individual or a commercial manufacturer, 

and 2. submissions of Notice of Claimed Investigational Exemption (NCIE), an abbreviated 

new drug application (ANDA) or New Drug Application (NDA) for commercial marketing 

only by a commercial manufacturer. However, because of the increasing clinical need of PET 

radiopharmaceuticals, based on FDA Modernization Act (FDAMA) in 1997 [2], PET radio-

pharmaceuticals were first categorized as positron-emitting drugs. In the same time, all PET 
radiopharmaceutical manufacturing facilities in U.S. were programmatically to compliant 

with PET drug GMP-compliance guideline or with USP General Chapter <823> [3], and fur-

ther registered as manufacturers. Till now, these legal manufacturers could on-site (in-house) 

produced PET radiopharmaceuticals with same specifications listed in USP monographs.

Radionuclide Compound USP EP

11C [11C]CO ✓*

[11C-methyl]Methionine ✓* ✓

N-[11C-methyl]Flumazenil ✓* ✓

[11C]N-methylspiroperidol ✓*

[11C-methoxy]Raclopride ✓* ✓

[1-11C]Sodium Acetate ✓* ✓

13N [13N]NH
3

✓ ✓

15O [15O]CO ✓

[15O]H
2
O ✓* ✓

18F [18F]FCH ✓

[18F]FDG ✓ ✓

[18F]FDOPA (prepared by electrophilic substitution) ✓* ✓

[18F]FET ✓

[18F]FLT ✓

[18F]FMISO ✓

[18F]NaF ✓ ✓

68Ga [68Ga]Ga-Citrate ✓

[68Ga]Ga-DOTA-TOC ✓

82Rb [82Rb]rubidium chloride ✓

*These monographs of 8 FDA-unapproved PET radiopharmaceuticals have been omitted from USP since May 1, 2015 
(USP 38).

Table 2. PET radiopharmaceuticals listed in USP and EP.
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In the other hand, USP is annually published by a nonprofit organization since 1820, 
U.S. Pharmacopeial Convention, and such organization also worked with FDA and special-

ists in academia and companies to establish monographs or general chapters. Typically, USP 

monographs are typically developed after FDA approval of the drug product for commercial 

marketing and thus a USP monograph of an FDA-approved drug has been used as one basis 

for a reimbursement decision. The first USP monograph for a PET drug was published in 
1990 [4] and it described the quality specification and analytic methods for [18F]FDG injection. 

However, there had been an exception for 4 approved and 8 unapproved PET drugs listed 

in USP monographs till 2013. Moreover, not only these 12 monographs were provided to 
U.S. Pharmacopeial Convention by various academic sponsors with un-validated data and 

outdated analytic methods, but also these unapproved 8 PET drugs have limited commercial 

application without FDA-approved NDA or ANDA. Consequently, based on recommenda-

tions of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) Committee [1], 

U.S. Pharmacopeial Convention announced the omission of the monographs of 8 unapproved 

PET drugs on June 2014 and the omission initiative became official on December 1, 2014.

2.2. European regulatory view

In Europe, radiopharmaceuticals have been recognized as a special group of medicines. Thus, 

the preparation and clinical use of PET radiopharmaceuticals have been regulated and vari-

ously adopted by member states. Similar to USP, EP has legal status in Europe. Compared to 

the USA, EP is only for drug quality and is independent of licensing status or clinical utility 

of such drug. Regarding to PET radiopharmaceuticals, corresponding monographs are elabo-

rated by a group that is composed of academic, commercial and regulatory specialists. From 

another point of view, a number of EU member states have set up a regulatory framework 

from the definitions of “magistral and officinal formulae” that is listed in Article 3 of Directive 
2001/83 [5]. Additionally, “in-house” small-scale preparation of PET radiopharmaceuticals 
is allowed without the requirements of a marketing authorization based on various national 

laws of European countries [5]. Both a general chapter of EP entitled “Extemporaneous 
Preparation of Radiopharmaceuticals” [6] and the new PIC/S guidance document with Annex 

3 on radiopharmaceuticals [7] are published and worked as comprehensive guidelines for 

such magistral approach. Furthermore, because of the special characteristics of PET radio-

pharmaceuticals, the clinical studies using diagnostic radiopharmaceuticals do not fall within 

the GMP-compliance regulations of conventional drugs from EU Regulation no 536/2014 of 
16 April 2014 [8, 9]. On brief summary, no matter EP or PIC/S document, they both clearly 
define a clear distinction between PET radiopharmaceuticals and conventional medicine, and 
further provide the corresponding guidance. All would be significantly helpful and powerful 
in promotion and development of PET radiopharmaceuticals in Europe.

3. Quality aspects of PET radiopharmaceuticals

Even costly implementation and maintenance of quality system for a PET radiopharma-

ceutical manufacturing (or preparing) site [10, 11], it is still thought to be cost-effective [12]. 

Moreover, it will be helpful for qualified patient care, regulatory requirements, optimization 
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of safety and efficacy for patient care and a reliable quantitative performance in both diagnos-

tic and therapeutic nuclear medicine procedures [13]. Therefore, GMP-compliant PET manu-

facturing (or preparing) process including production, QC, quality assurance (QA), package 

and distribution has been required by competent authorities in many countries worldwide. 

Furthermore, during these years, the concept of “Quality by Design (QbD)” based on guide-

lines of International Conference on Harmonization (ICH) (ICH Q8 [14], ICH Q9 [15], and ICH 

Q10 [16]) has been the fundamental topic in pharmaceutical field and an appropriate quality 
system has been widely required to implement in many radiopharmaceutical manufacturing 

sites (Figure 1). Briefly, QA covers whole process and GMP specifically characterizes those 
production and QC activities that guarantee products are produced under the constant scru-

tiny of quality standards [17], although the association of QA, GMP, and QC throughout 

whole pharmaceutical process is slightly different in various guidelines.

Particularly, QC procedure of PET radiopharmaceutical is usually critical and essential, since 

it is synthesized every day or is small-scale “prepared “in radiopharmacy of a hospital. A typi-
cal QC programme of a PET radiopharmaceutical is involved from radionuclide production to 

final product release and a series of QC tests for PET radiopharmaceuticals basically include:

1. Appearance, by visual assessment;

2. pH determination;

3. Radionuclidic identification, by gamma-ray spectrometry or half-life measurement;

4. Radionuclidic purity, by gamma-ray spectrometry;

5. Chemical purity, by high-pressure liquid chromatography (HPLC) or by thin-layer chro-

matography (TLC);

6. Radiochemical purity, by HPLC with a radioactivity detector or by TLC with a radioactiv-

ity scanner;

Figure 1. The inter-relationship for whole quality system in PET radiopharmaceutical manufacturing.
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7. Residual solvents, by gas chromatography (GC);

8. Bacterial endotoxins, by a rabbit test or limulus amebocyte lysate (LAL) test;

9. Radioactivity, by a validated dose calibrator and.

10. Sterility, by incubating the sample with fluid thioglycollate medium (FTM) at 30~35°C 
for 14 days or with soybean casein digest (SCD) medium at 20~25°C for 14 days.

However, because of short-lives of PET radiopharmaceuticals, some lengthy tests cannot be 

performed prior to release for human use and are allowable to perform within a short time 

after the release. Furthermore, in addition to the limited time for QC of PET radiopharma-

ceuticals, limited personneal for in-house preparing of PET radiopharmaceuticals is another 

major issue for a hospital. Therefore, more and more efficient systems have been developed 
and successfully implemented for clinical use, such as Endosafe® Portable Testing System™ 

(PTS™) for rapid endotoxin testing (Charles River, Wilmington, MA) (https://www.criver.
com/products-services/qc-microbial-solutions/endotoxin-testing/endotoxin-testing-systems/

endosafe-nexgen-pts?region=3681) and Tracer-QC system for automation of QC tests of 

PET radiopharmaceuticals (LabLogic Systems Ltd., Sheffield, UK) (https://lablogic.com/
nuclear-medicine-and-pet/instruments/tracer-qc).

4. Overview of current PET radiopharmaceuticals listed in USP or EP

4.1. [11C-methyl]Methionine injection (EP)

Cellular protein synthesis is a well-control process for enzymes, membrane receptors, struc-

tural proteins, and growth factors [18]. Most importantly, increased cellular protein synthe-

sis is often characterized in malignant growth [19]. Otherwise, decreased protein synthesis 

is found in certain neurodegenerative disorders [20]. Thus, the ability to in vivo visualize the 

protein synthesis rate is critical for clinic. Protein synthesis is initiated universally with the 

amino acid, methionine [21]. Therefore, one of 11C-labeled methionine analogs, [11C-methyl]

methionine ([11C]MET) [22] (Figure 2), has been used for imaging of rate of protein synthe-

sis [23, 24], although the short physical half-life of 11C (20 min) limits its accessibility for 
PET scanning centers without a cyclotron. Clinically, [11C]MET has been used in imaging 

of brain, urinary, gynecological, liver and lung cancer [25–28]. Particularly, the enhanced 

transport of [11C]MET into the brain has been known via the reversible sodium-independent 

transport system L (LAT 1) since 1995 [28] and increased LAT1 expression has been found 

in glioma and many other cancers and is associated with high grade and poor prognosis 

[29–32], thus [11C]MET has been widely in various brain tumors [33, 34].

4.2. N-[11C-methyl]Flumazenil injection (EP)

The GABA
A
/benzodiazepine receptor complex is also known as the central benzodiazepine 

receptor and specifically mediates all pharmacologic properties of ethanol, zinc, picrotoxin 
and some drugs such as benzodiazepines (sedative, anxiolytic, anticonvulsant, myorelaxant), 
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barbiturates (cerebral protection) and neuroactive steroids [35]. Based on a benzodiazepine 

antagonist, N-[11C-methyl]Flumazenil ([11C]FMZ) (Figure 2) [36] has been developed and 

known for its excellent kinetic properties for the image quantification [37]. Moreover, [11C]

FMZ has been considered as a versatile PET tracer for assessment of several conditions, such 

as neuronal damage in head injury [38], epilepsy [39], stroke-induced penumbral areas of 

infarction [40] and Alzheimer’s disease (AD) [41].

4.3. [11C-methoxy]Raclopride injection (EP)

Dopamine (DA) plays an important role in every-day brain functions including experiencing 

pleasure, regulating attention, and learning to control urges. Dysfunction of DA circuits has 
been thought to be related to various psychiatric diseases such as Parkinson’s diseases (PD), 

addiction, attention-deficit hyperactivity disorder, and schizophrenia [42]. Studying in vivo 

dopamine function in humans became possible in the mid-1990s with the development of 
[11C]raclopride (Figure 2) [43, 44], which originates from a DA receptor antagonist (D

2
/D

3
) 

with moderate affinity and reversible binding characteristics. Up to now, [11C]raclopride is the 

most widely used PET radiopharmaceutical for measuring DA changes in striatal dopamine 

levels in the synapse before and after pharmacological and behavioral challenges [45], such as 

aging [46–48], schizophrenia [49–53] and PD [54, 55].

4.4. [1-11C]sodium acetate injection (EP)

Acetate is a molecule quickly picked-up by cells to convert into acetyl-CoA by acetyl-CoA 

synthetase (EC 6.2.1.1 according to Enzyme Commission Number) and participates in 

Figure 2. Chemical structures of PET radiopharmaceuticals listed in this chapter.
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cytoplasmic lipid synthesis, which is believed to be increased in tumors. Thus, [1-11C] Sodium 

Acetate ([11C]Ac) (Figure 2) [56, 57] has been proved clinical usefulness in prostate cancer (PC) 

[58], hepatocellular carcinoma (HCC), lung cancer, nasopharyngeal carcinoma [33], renal cell 

carcinoma, bladder carcinoma and brain tumors [59]. Furthermore, [11C]Ac has been used to 

clinically measure myocardial oxygen consumption since 2010 [60] and used in some rare 

conditions, such as thymoma, cerebellopontine angle schwannoma, angiomyolipoma of the 

kidney, encephalitis, and multiple myeloma [59].

4.5. [13N]NH
3
 injection (USP and EP)

Coronary flow reserve (CFR) is calculated as the ratio of hyperemic to rest absolute myocardial 
blood flow (MBF) and is a particularly useful parameter in the assessment of adverse cardio-

vascular events such as epicardial coronary stenosis, diffuse atherosclerosis, and microvascu-

lar dysfunction on myocardial tissue perfusion [61]. Routinely used [13N]Ammonia ([13N]NH
3
) 

is not only a useful 13N-labeled PET imaging agent for assessing regional blood flow in tissues 
[62], but a well-validated radiotracer for clinical management of patients with coronary artery 

disease [62–64]. Moreover, recently [13N]NH
3
 has been used in PC, because the up-regulation 

of NH
3
 during de novo glutamine synthesis was known in tumors [65]. Furthermore, because 

excess circulating NH
3
 is neurotoxic and hyperammonemia is thought to be a major factor in 

the encephalopathy associated with several diseases, such as liver cirrhosis [66–68], [13N]NH
3
 

is also used for elucidation of NH
3
 metabolism in patients with hepatic encephalopathy [69].

4.6. [15O]CO injection (EP)

[15O]CO is one of the most common tracers used for noninvasively measuring oxygen con-

sumption and blood volume [70, 71]. Additionally, [15O]CO is crucial for the evaluation of 

acute stroke patients. Moreover, measurement of myocardial oxygen consumption is a useful 

tool to clarify the relationship between MBF and oxygen extraction fraction (OEF), because 

both OEF and MBF are important indicators in describing myocardial function [72].

4.7. [15O]H
2
O injection (EP)

Although the short half-life (123 sec) of 15O results in the challenges in clinical use, [15O]H
2
O is still 

the preferred tracer because of its ease production from generator, effectiveness and safety for 
patient use [73]. Particularly, PET with [15O]H

2
O has been a standard method and most reliable 

approach for quantitative measurement of cerebral blood flow (CBF). Also, [15O]H
2
O is capable 

to clinically investigate cerebral and myocardial perfusion [74], and tumor perfusion [75, 76].

4.8. [18F]FCH injection (EP)

Choline is a precursor for the biosynthesis of phospholipids which are essential components 

of all membranes and is phosphorylated by choline kinase (CK) to produce phosphatidylcho-

line. Upregulated CK is known in cancer cells, thus it further leads to increased uptake of cho-

line in tumor cells with the excess need for phospholipid biosynthesis [77, 78]. Consequently, 
18F-labeled choline analogs, [18F]fluoromethylcholine ([18F]FCH) (Figure 2) [79, 80] has been 

a promising tumor imaging agents for various types of tumors include brain [80], breast, 
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thyroid, lung, liver and prostate [81]. Particularly, [18F]FCH has been shown to be better than 
[18F]FDG for PC and HCC detections [81].

4.9. [18F]FDG injection (USP and EP)

Since its synthesis in 1976, 2-fluorine-[18F]fluorodeoxyglucose ([18F]FDG) [82] (Figure 2) has 

been the most widely used radiotracer for PET studies in neuroscience, cardiology and oncol-

ogy (Table 3) [83]. After FDA approval in 1997, [18F]FDG with PET or PET/CT scanner became 

an established imaging tool in the clinical assessment of many neoplasms, as well as the nonma-

lignant diseases including dementia, myocardial ischaemia, inflammation and infection [84].

4.10. [18F]FDOPA (prepared by electrophilic substitution) injection (EP)

Dihydroxyphenylalanine (DOPA) has been known as an intermediate in the catechola-

mine synthesis pathway. One of the 18F-radiolabeled analogs, 3,4-dihydroxy-6-[18F]fluoro-
L-phenylalanine ([18F]FDOPA) (Figure 2), was first reported as a PET tracer for imaging 
pre-synaptic dopaminergic functions in 1983 [85]. Subsequent studies revealed the utility 

of [18F]FDOPA for the visualization of various peripheral tumor entities via PET [86], which 

can be attributed to the up-regulation of amino acid transporters in malignant tissues due 
to an often increased proliferation [87]. In particular, because of the relationship between 

the expression of aromatic L-amino acid decarboxylase (AADC) and the metabolism of [18F]

FDOPA [88, 89], [18F]FDOPA has shown diagnostic advantages in the imaging of neuroen-

docrine cell-related malignancies like neuroendocrine tumors (NETs) [89–94], pheochro-

mocytoma [95–97], pancreatic adenocarcinoma [98, 99] and neuroblastoma (NB) [100–102] 

regarding diagnostic efficiency and sensitivity.

Classification Disease Application

Neurology Alzheimer’s Disease —

Epilepsy Pre-surgical evaluation for epileptogenic foci (85–90% 
accuracy).

Cardiology Myocardial Viability Assessment of myocardial viability prior to cardiac 

surgery

Identify high-risk patients Select patients who will benefit from bypass

Psychiatry Schizophrenia —

Depression —

Oncology Tumor Evaluation Differentiate recurrent/residual tumor from necrosis.

Tumor Staging Malignant vs. benign. Lung nodules, primary breast and 

colon cancers.

Tumor Monitoring Response to therapy.

Tumor Localization Metastases, abnormal sites

Infection and Inflammation Orthopedic infections —

Table 3. Summary for clinical application of [18F]FDG [83].
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4.11. [18F]FET injection (EP)

Na+-independent system L amino acid transporters (LATs) preferentially transports amino acids 

with large neutral side chains, including L-leucine, L-phenylalanine, and L-tyrosine. O-(2-[18F]

fluoroethyl)-L-tyrosine ([18F]FET) (Figure 2) [103] belongs to the class of large neutral amino acids, 

which are transported via specific amino acid transporters especially of LATs [104]. Although 

data today still not reveal which the transporter(s) responsible for [18F]FET accumulation in cells 

[105], [18F]FET has been well known for its high uptake in brain tumors and its potential for grad-

ing tumors particularly gliomas [106, 107]. Summarily, [18F]FET has been well-investigated in 

differential diagnosis, grading, prognostication, treatment response assessment, and differenti-
ating pseudoprogression from non-specific post-therapeutic changes [108–110]. Switzerland was 
the first country to approve [18F]FET PET for clinical use in brain tumor imaging since 2014 [105].

4.12. [18F]FLT ([18F]Alovudine) injection (EP)

Cellular proliferation plays an important role in cancer and has been an important imaging 

target of PET radiopharmaceuticals, especially with the aim targeting of DNA synthesis. Since 

the approach to the measurement of DNA synthesis in humans was explored in the early 1970s, 
based on an antiviral agent developed by Medivir, [18F]fluorothymidine ([18F]FLT, also known 

as [18F]Alovudine) (Figure 2) [111, 112] has been designed with intracellularly trapping of its 

phosphorylated metabolite within cells [113]. Up to now, [18F]FLT has been widely investigated 

in oncologic setting comprising tumor detection, staging, restaging, and response assessment 
to treatment [114–116] and [18F]FLT imaging has several clinical advantages including noninva-

sive procedure, three-dimensional tumor images and simultaneous detection of multiple tumor 

sites [117]. Also, [18F]FLT is capable to evaluate tumor heterogeneity in day-to-day practice [118].

4.13. [18F]FMISO injection (EP)

Hypoxia means insufficient oxygen availability of a cell occurring both in health and is acknowl-
edged by the observation of Gray et al. in the mid-1950s [119, 120]. Hypoxia is an important 

prognostic indicator of response to either chemotherapy or radiation therapy in cancer manage-

ment [121, 122]. Hypoxia is also an independent factor for predicting the metastases tendency of 

a tumor cell, because of its enhancement in DNA mutations of atypical cells and further appear-

ance of more aggressive cells. Consequently, 1-(2-hydroxy-3-[18F]fluoropropyl)-2-nitroimidazole 
([18F]FMISO) (Figure 2) [123, 124] is the most established agent for assessing hypoxia and has 

been used for cancer imaging over the past 30 y for glioblastoma multiforme, non-small-cell 
lung cancer, and head and neck tumors [125]. In addition, high accuracy of [18F]FMISO PET 

imaging for determining the duration of survival without relapses and for predicting the radio-

therapy efficiency in patients with malignant tumors of various localizations has been reported 
[126, 127]. Furthermore, prognostic potential of [18F]FMISO for the pretherapeutic tumor oxy-

genation status has been confirmed for glioblastoma multiforme, head and neck cancer, lung 
cancer, breast cancer, pancreatic cancer, gynecologic cancers, cervical cancer and sarcoma [127].

4.14. [18F]NaF injection (USP and EP)

The bone is the most common place of tumor metastases next to the lung and liver [128]. 

Therefore, early and accurate diagnosis of the metastatic bone diseases thus plays an important 
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role for an establishment of adequate therapeutic strategy [129]. [18F]Sodium fluoride ([18F]NaF) 

was introduced in 1962 and approved by FDA in 1972 [130]. [18F]NaF is a high sensitive bone-

seeking PET radiopharmaceutical and is considered as an excellent substitute for traditionally 

used 99mTc-labeled tracers, because its favorable characteristics of negligible protein binding, and 

rapid blood pool clearance. With 99mTc supply around the world is gradually become a crisis due 

to the shortage of 99Mo-source material [131, 132], the clinical use of [18F]NaF keeps increasing 

worldwide. Additionally, uptake of [18F]NaF reflects blood flow and bone remodeling [133], and 

[18F]NaF have been proposed for the use in detection of benign and malignant osseous abnormal-

ities that also allows the regional characterization of lesions in metabolic bone diseases [134, 135].

4.15. [68Ga]Ga-citrate injection(EP)

In addition to war and famine, bacterial infection has still been one of major worldwide causes 

for human morbidity and mortality for centuries [136, 137]. Because of the trapping of gal-

lium in the extravascular compartment for inflammatory or infectious sites with the increased 
capillary permeability [138], and the iron-like binding characteristics in bacterial siderophores 

and activated lactoferrin in neutrophils [139, 140], gallium is thought to be indirectly uptaken 

by macrophages [141, 142] or directly uptaken by bacteria [143]. Thus, [67Ga]gallium citrate 

([68Ga]Ga-Citrate) has been used for clinical imaging of infection and inflammation since 1984 
[144]. The utilities of [68Ga]Ga-Citrate include the monitoring of osteomyelitis, diskitis, intra-

abdominal infection, tuberculosis and interstitial nephritis, as well as the localization of infec-

tion in patients with cellulitis and abscesses [145, 146].

4.16. [68Ga]Ga-DOTA-TOC injection (EP)

NETs arised from neuroendocrine cells and are one of slow-growing tumors with year-by-

year increased incidence rate and 75% of overall 5-y survival, which is strongly dependent 
on stage and grade of the tumor [147]. Because NETs has been known for its unique over-

expression of somatostatin receptors (SSTrs) on the tumor cells [148], SSTr-targeting PET 

radiopharmaceuticals provide a promising and useful approach for both diagnostic imaging 

and further peptide receptor radionuclide therapy (PRRT), such as 68Ga-labeled DOTA-(Tyr3)-

octreotide acetate ([68Ga]Ga-DOTA-TOC) (Figure 2) [149]. Because octreotide is a subset of the 

amino acid in somatostatin and has been demonstrated to avidly bind to SSTr [150], [68Ga]

Ga-DOTA-TOC has been recognized for its affinity toward both the type 2 somatostatin recep-

tor (SSTr2) and the type 5 somatostatin receptor (SSTr5) [151–154]. Also, [68Ga]Ga-DOTA-TOC 

was the first PET radiopharmaceutical to clinically localize to NETs in 2001 [155] and has been 

widely used in Europe and several other countries to assist the therapy planning and accurate 

diagnosis of NETs patients [156]. In addition, [68Ga]Ga-DOTA-TOC is valuable for neuroecto-

dermal tumors, Hurthle cell thyroid carcinoma, prostate cancer patients with bone metastases 

and autoimmune thyroid disease like Graves’ disease and Hashimoto’s disease [145, 146].

4.17. [82Rb]rubidium chloride (USP)

Just like previous described [13N]NH
3
 and [15O]H

2
O, [82Rb]Rubidium chloride ([82Rb]RbCl) has 

been reported for directly proportional relationship between its uptake and MBF since 1954 

[157]. In addition, several studies have demonstrated the good diagnostic accuracy of [82Rb]RbCl 
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in monitoring of cardiac flow [158, 159]. Subsequently, 82Sr/82Rb generator (CardioGen-82®) of 

Bracco Diagnostics has been approved by FDA for clinical cardiac imaging since 1989 (NDA 

19–414). Therefore, production and administration of [82Rb]RbCl can be well coordinated with 

the 82Sr/82Rb generator in clinic [160], although a short half-life (78 sec) of 82Rb. In brief, the clinical 

advantages of [82Rb]RbCl cardiac imaging include its capacity to accurately quantify MBF and a 

low delivered radiation exposure for a rest/stress test resulted from its very short half-life [160].

5. Conclusion

With the development of imaging technology, more and more pharmaceutical industry 

and hospitals worldwide have paid attentions on clinical potential of PET radiopharma-

ceuticals. However, because of special characteristics of PET radiopharmaceuticals, current 

pharmaceutical regulatory is probably inapplicable and would be a hurdle for clinical use 

of PET radiopharmaceuticals in most countries. Thus, as these official monographs of PET 
radiopharmaceuticals listing in USP or EP, it is definitely worthy to work together for more 
pharmacopeia monographs and a PET radiopharmaceutical-specific regulatory for benefits of 
patient-centered care in the future.
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