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Abstract

In this chapter, we formulate basic physico-chemical principles that define the micro-
structural nature of the origin of the spontaneous incorporation and replication point 
errors—transitions and transversions—arising during DNA biosynthesis. At this point, 
we relied on the firstly discovered ability of the DNA base mispairs to tautomerize via 
the sequential intrapair proton transfer and highly stable, highly polar, zwitterionic tran-
sition states, accompanied by a significant shifting of the base mispairs toward DNA 
minor or major grooves. These tautomeric transitions are characterized by a change in 
geometry—from wobble to Watson-Crick and vice versa—of the purine·pyrimidine (A·T, 
G·C, G·T and A·C), purine·purine (A·A, A·G and G·G) and pyrimidine·pyrimidine (С·С, 
С·T and Т·Т) DNA base mispairs. Reported results allow us to explain, on one side, the 
origin of the mutagenic tautomers at the separation of the DNA strands before replication 
and, on the other side, how DNA base mispairs adapt to enzymatically competent size in 
the tight recognition pocket of the high-fidelity DNA polymerase.

Keywords: tautomeric hypothesis, spontaneous and induced point mutations in DNA, 
incorporation and replication point errors, mutagenic tautomerization,  
pairs of nucleotide bases, enzymatically competent conformation, DNA polymerase, 
DNA replication, hydrogen bond, van der Waals contact, quantum chemistry,  
Bader’s quantum theory of atoms in molecules (QTAIM)
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1. Introduction

High-fidelity DNA replication is a central issue in molecular biology [1]. During DNA replica-

tion, spontaneous point mutations [2–4] arise with frequencies 10−9 ÷ 10−11 [5–8] in functioning 

of living cells.

Nowadays, it is reliably known that the root cause of the origin of the spontaneous point 

mutations is the formation in the very tight, slightly deformable base pair recognition pocket 

of the high-fidelity DNA polymerase in its close state of the “wrong” DNA base pairs (i.e., mis-

matches) able to acquire in the process of thermal fluctuations the conformation of the correct 
Watson-Crick DNA base pair (i.e., enzymatically competent conformation), which guarantees 
their incorporation into the chemical structure of the synthesized DNA double helix [4].

In the literature, two approaches are currently presented, according to physico-chemical prin-

ciples of the occurrence of the mispairs leading to spontaneous point mutations in DNA. One 

of them is the “tautomeric hypothesis” suggested by J. Watson and F. Crick [9], which consists 

in the spontaneous tautomeric transition of the DNA bases from canonical to mutagenic tauto-

meric forms leading to the formation of the adenine·cytosine (A·C*)/A*·C and guanine·thymine 

(G*·T)/G·T* (here and below, mutagenic tautomers are marked with asterisk) Watson-Crick-

like mispairs with correct enzymatically competent conformation [10] containing mutagenic 

tautomers [11–13]. Despite great advances in experimental, in particular X-ray analysis [14, 15], 

NMR, in particular relaxation dispersion measurements [11–13, 16–18], and theoretical [19–21] 

investigations, there is no unique approach to the physico-chemical mechanisms enabling DNA 

bases in the canonical tautomeric form to acquire rare or mutagenic tautomeric form before 

the dissociation of the Watson-Crick nucleobase pairs into the monomers by the replication 

machinery in order to produce mispairs resulting in further misincorporations and as a result 

the spontaneous point mutations at the DNA replication. It is generally accepted in the litera-

ture that mutagenic tautomers of the DNA bases can arise via the double proton transfer (DPT) 

along intermolecular H-bonds in the Watson-Crick [22–25] and wobble [26] base pairs, and also 

in the protein-DNA complexes [27]. However, some authors also consider as the source of the 

origin of the spontaneous transitions the formation of the ionized DNA base pairs [28].

On contrary, according to second approach, other researchers believe that spontaneous point 

mutations arise due to the formation of the incorrect base pairs involving only DNA bases 

in the main, canonical tautomeric form—so-called wobble or shifted A·C and G·T base pairs 

[29, 30]. However, the mechanisms of their adaptation to the enzymatically competent sizes 
in the very tight, slightly deformable base pair recognition pocket of the high-fidelity DNA 
polymerase remain unclear [30, 31].

The common feature of these approaches is the absence of the general physico-chemical 

theory according the nature of these mispairs causing spontaneous point mutations, and the 

emergence of each of them is considered as a unique phenomenon. In the literature, there are 

no attempts or ideas aimed at combining these approaches into a unique, internally noncon-

tradictory conception. Nevertheless, creation of such a microstructural theory is an interdisci-

plinary challenge with fundamental and applied consequences.
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Thus, without clear understanding of basic mechanisms of the origin of spontaneous point 

mutations [32–34], it is difficult to develop a management strategy of genome instability and 
produce physico-chemical explanations of evolution [35, 36]; to design highly efficient muta-

gens—analogs of the nucleotide bases with targeted action for different purposes, in particu-

lar, for antiviral and anticancer therapy [37, 38]; to essentially increase precision of DNA-based 

nanodevices of biomolecular electronics as information carriers [39, 40]; to create synthetic 

macromolecular structures able to replicate with predetermined accuracy [41] and so on.

Here, we aim to reveal at the microstructural level the molecular grounds of intrinsic DNA 

mutability without involvement of external agents.

2. Computational methods

All geometric, energetic and vibrational calculations of the considered base mispairs and tran-

sition states (TSs) of their conversion have been performed by Gaussian’09 package [42] using 

B3LYP [43, 44] and MP2 [45] levels of quantum-mechanical (QM) theory combined with a 

wide variety of basis sets followed by the intrinsic reaction coordinate (IRC) calculations in the 
forward and reverse directions from each ТS using Hessian-based predictor-corrector integra-

tion algorithm [46] in vacuum and in the continuum with ε = 4, which is characteristic for the 
active center of the DNA polymerase [47, 48]. Bader’s quantum theory of Atoms in Molecules 

(QTAIM) was applied to analyze the electron density distribution [49]. Physico-chemical 

parameters have been estimated by the known formulas of physico-chemical kinetics [50].

3. Results and discussion

3.1. Classical mechanisms of DNA base tautomerization via DPT along two 

intermolecular H-bonds in H-bonded complexes

We established from the physico-chemical point of view that the generally accepted mecha-

nism of the DPT along intermolecular H-bonds [22–29] cannot be the source of formation 

of mutagenic tautomers of DNA bases in the А·T(WC) and G·C(WC) Watson-Crick (so-
called Löwdin’s mechanism) [51–53] and G·T(w) wobble [54] base pairs, and also in the 

m1T·CH
3
COOH, m9A·CH

3
COOH, m1C·CH

3
COOH and m9G·CH

3
COOH complexes by the 

participation of DNA bases and side chains of the amino acids (m-methyl group) [55].

At this point, the А*·T* Löwdin’s base pair is dynamically unstable and has a lifetime that is  
6 orders of magnitude less than the characteristic time spent by DNA polymerase on the 

forced dissociation of the DNA base pairs into the bases (~10−9 s [32, 51, 52]). The short-lived 

G*·C* Löwdin’s base pair escapes the DNA polymerase. The other final tautomerized com-

plexes containing mutagenic tautomers of DNA bases are dynamically unstable: the value of 
the zero-point energy of the corresponding vibrational mode, in which frequency becomes 
imaginary at the transition state, is higher than the value of the reverse barrier (Table 1).
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3.2. Can mutagenic tautomers of the DNA bases be formed via the DPT in  

Watson-Crick-like mispairs?

Further, we investigated the physico-chemical mechanisms of the DNA bases tautomeriza-

tion through the DPT along intermolecular H-bonds of incorrect DNA base pairs.

Tautomeric transition ∆Ga ∆Eb ∆∆G
TSy

c ∆∆E
TS

d ∆∆Ge ∆∆Ef τg

MP2/aug-cc-pVTZ//MP2/6–311++G(d,p)

A·T↔A*·T* [51–53] 11.95 12.26 10.29 12.40 −1.66 0.14 6.5 × 10−15

G·С↔G*·С* [52] 9.22 8.22 9.69 13.28 0.47 5.06 1.6 × 10−13

MP2/cc-pVQZ//MP2/6–311++G(d,p)

G·T↔G*·T* [54] 11.78 12.12 9.47 12.58 −2.31 0.46 2.1 × 10−15

MP2/6–311++G(3df,2pd)//M05/6–311++G(2df,pd)

m1T·CH
3
COOH↔m1T*·CH

3
COOH [55] 5.63 6.48 7.24 10.45 1.60 3.97 1.9 × 10−12

m9A·CH
3
COOH↔m9A*·CH

3
COOH [55] 8.21 7.23 6.68 8.52 −1.53 1.29 6.1 × 10−15

m1C·CH
3
COOH↔m1C*·CH

3
COOH [55] 3.35 2.91 6.12 7.43 2.77 4.52 1.6 × 10−11

m9G·CH
3
COOH↔m9G*·CH

3
COOH [55] 1.93 2.75 2.08 5.96 0.15 3.21 1.0 × 10−13

MP2/cc-pVQZ//B3LYP/6–311++G(d,p)

A·A*↔A*·A [65] 0.00 0.00 7.01 10.33 7.01 10.33 1.8 × 10−8

A·G↔A*·G* [56] 10.07 9.58 9.63 11.46 −0.44 1.88 4.8 × 10−14

G·G*↔G*·G [66] 0.00 0.00 5.51 8.33 5.51 8.33 8.2 × 10−10

A·C*↔A*·C [57] 3.99 3.64 8.17 10.53 4.18 6.89 1.1 × 10−10

G*·T↔G·T* [58] 1.22 1.19 2.63 5.61 2.63 5.61 8.1 × 10−13

C·C*↔C*·C [64] 0.00 0.00 8.28 10.83 8.28 10.83 1.5 × 10−7

C·T↔C*·T* [59] 9.15 8.99 9.55 11.38 0.40 2.39 2.1 × 10−13

T·T*↔T*·T [63] 0.00 0.00 4.64 8.18 4.64 8.18 1.6 × 10−10

G·G*
syn

↔G*·G*
syn

 [60] 11.02 11.15 9.07 12.17 −1.96 1.02 4.1 × 10−15

A*·A
syn

↔A·A*
syn

 [61] 13.98 14.71 14.15 16.43 0.16 1.72 1.1 × 10−13

A*·G*
syn

↔A·G*
syn

 [62] 1.89 2.20 2.42 4.60 0.52 2.40 2.2 × 10−13

aThe Gibbs free energy of the product relatively the reactant of the tautomerization reaction (T = 298.15 K).
bThe electronic energy of the product relatively the reactant of the tautomerization reaction.
cThe Gibbs free energy barrier for the forward reaction of tautomerization.
dThe electronic energy barrier for the forward reaction of tautomerization.
eThe Gibbs free energy barrier for the reverse reaction of tautomerization.
fThe electronic energy barrier for the reverse reaction of tautomerization.
gThe lifetime of the product of the tautomerization reaction.

Table 1. Energetic (kcal·mol−1) and kinetic (in s) characteristics of the tautomeric transformations of the canonical Watson-

Crick, wobble, model protein-DNA complexes, incorrect long, short and Watson-Crick-like mispairs of nucleotide bases 
via the DPT along the neighboring intermolecular H-bonds in vacuum.

Mitochondrial DNA - New Insights34



It was established that the A·G↔A*·G* [56], A·C*↔A*·C [57], G*·T↔G·T* [58], C·T↔C*·T* [59], 

G·G*
syn

↔G*·G*
syn

 [60], A*·A
syn

↔A·A*
syn

 [61] and A*·G*
syn

↔A·G*
syn

 [62] tautomerization pro-

cesses occur without changing the tautomeric status of the initial DNA base pairs, since the 

terminal, tautomerized base pairs are dynamically unstable: low-frequency intermolecular 
vibrations cannot develop during their lifetime (Figure 1, Table 1). Hence, these transforma-

tions do not generate mutagenic tautomers.

During the tautomerization of the dynamically stable short Т·Т* [63] and С·С* [64] mispairs, 

as well as long А·А* [65] and G·G* [66] mispairs, mutagenic tautomers are distributed among 

the monomers with equal probability. This is important for understanding the consolidation 

of point mutations in subsequent rounds of DNA replication (Figure 1, Table 1). Short-lived, 

low-populated А*·С and G·T* mispairs are “providers” of the long-lived enzymatically com-

petent А·С* [57] and G*·T base pairs [58], respectively, at the origin of the replication errors 

in DNA. Moreover, comparisons between calculated distances of intermolecular H-bonds 

with data from X-ray experiments [14, 15] show that incorrect А·С and G·T base pairs with 
Watson-Crick geometry occur in the А·С* and G*·T tautomeric forms in the active center of 
the high-fidelity DNA polymerase in its closed state.

Transition from vacuum to continuum with ε = 4, characteristics for the hydrophobic interfaces of 
the protein-DNA complexes, does not significantly influence the course of these tautomerization 
reactions and does not change the character of the obtained conclusions and generalizations.

Obtained data evidence that tautomeric hypothesis faces significant obstacles that could not be 
overcome without going beyond the classical framework that mutagenic tautomers of nucleotide 

bases are generated in the complexes by DPT protons along neighboring intermolecular H-bonds.

Figure 1. Geometrical structures of the three stationary structures (reagent, transition state and product) describing the 

progression of the tautomerization via DPT along intermolecular H-bonds in some mispairs (B3LYP/6–311++G(d,p) level 

of theory, ε = 1).
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3.3. Novel mechanisms of the wobble (w)↔Watson-Crick (WC) tautomeric 
interconversions in the canonical and incorrect DNA base pairs as a key to 

understand origins of spontaneous transitions and transversions

For the first time, a novel theoretical approach to elucidate microstructural mechanisms of 
incorporation and replication point errors arising at the DNA replication was proposed. We 

show for the first time that pairs of nucleotide bases with Watson-Crick architecture of the 
H-bonding—classical, long, short, in which one or both bases are in the main or rare tau-

tomeric forms, are in a slow tautomeric equilibrium with the corresponding wobble base 

pairs in comparison with the time, in which high-fidelity DNA polymerase spends on the 
incorporation of one nucleotide into the DNA double helix (~8.3 × 10−4 s [67]). In fact, a novel 

pathway of the chemical reaction was discovered—tautomerization with significant changes 
of the geometry of the base pair—from Watson-Crick to wobble and vice versa.

We have discovered novel structural hypostases of the classical A·T(WC) and G·C(WC) 

Watson-Crick DNA base pairs arising due to their ability to switch into the wobble А*·Т↑(w), 

А·Т*
O2

↑(w), А·Т*↓(w) and G·C*↑(w), G*·C↓(w), G·C*↓(w), G*·C↑(w) H-bonded mismatches 

containing rare tautomers (Figure 2) [68]. Estimated populations of the tautomerized states 
of the А·Т(WC) (6.1 × 10−9–1.5 × 10−7) and G·C(WC) (4.2 × 10−11–1.4 × 10−9) base pairs in the 

continuum with ε = 4 correspond to the interface of the protein-nucleic acid interactions. This 
evidences their involvement in nucleation of spontaneous point replication errors in DNA 

arising with frequencies ~10−11–10−9 errors per replicated nucleotide.

We found for the first time the intrinsic ability of the purine·pyrimidine (A·C [69, 70] and G·T 

[69, 71]), purine·purine (A·A [72], G·G [72] and A·G [73]) and pyrimidine·pyrimidine (С·С 
[74], Т·Т [74] and С·T [73]) DNA base mispairs to perform wobble↔Watson-Crick tautomeric 

transitions via the sequential intrapair DPT and subsequent shifting of the bases relative to 

each other (Figure 3, Table 2). These nondissociative tautomerizations via the sequential PT 

are controlled by the highly stable (ΔE
int

 > 100 kcal·mol−1), highly polar and zwitterionic tran-

sition states of the type (protonated base)·(deprotonated base). These interconversions are 

accompanied by a significant rebuilding of the base mispairs with Watson-Crick architecture 
into the mismatches wobbled toward both DNA minor and major grooves and vice versa.

Figure 2. Energetic profiles of the mutagenic tautomerization via the wobbling of the (a) A·T(WC) and (b) G·C(WC) DNA 

base pairs to the H-bonded mismatches containing rare tautomers (B3LYP/6–311++G(d,p) level of theory, ε = 1) [68].
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Notably, each of the discussed tautomerizations is realized precisely through four different 
topological and energetic pathways. The number of mobile protons (two in each pair) and 

number of wobbling directions of WC base pairs (two by the number of the grooves in DNA—

minor and major) determines the number of tautomerization pathways. Characteristically, in 

Figure 3. Energetic profiles and stationary structures on the potential energy hypersurface of the biologically important 
transformations via the PT, accompanied by the shifting of the bases relative to each other within a base pair into the 

sides of the DNA minor or major grooves, leading to the occurrence of the spontaneous transitions and transversions—

incorporation and replication errors (B3LYP/6–311++G(d,p) level theory, ε = 1).

Renaissance of the Tautomeric Hypothesis of the Spontaneous Point Mutations in DNA: New Ideas…
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each case mostly, one pathway is most probable at the origin of the spontaneous point muta-

tions (Figures 2 and 3, Table 2).

Obtained results are crucial for understanding the microstructural mechanisms of spontaneous 

transitions and transversions, since they allow us to explain how incorrect purine·pyrimidine, 
purine·purine and pyrimidine·pyrimidine wobble pairs adapt to the enzymatically competent 
sizes in the recognition pocket of the high-fidelity DNA polymerase. In particular, established 
A·C(w) → A·C*(WC) [70] and G·T(w) → G*·T(WC) [71] transformations via the sequential PT allow 

us to interpret the X-ray [14, 15] and molecular dynamics simulations data [19] according the 

acquisition by the wobble A·C(w)/G·T(w) mispairs of the Watson-Crick geometry by their trans-

formation to the A·C*(WC)/G*·T(WC) Watson-Crick-like base mispairs by the participation of the 

C* and G* mutagenic tautomers in the recognition pocket of the high-fidelity DNA polymerase. 
Moreover, we theoretically predicted the G·T(w) → G*·T(WC) transformation for the wobble 

G·T(w) base mispair, which was confirmed by an NMR experiment of a DNA duplex [16–18].

Tautomeric conversion ∆G ∆E ∆∆G
TS

∆∆E
TS

∆∆G ∆∆E τ
99.9%

a Nb

MP2/aug-cc-pVDZ//B3LYP/6–311++G(d,p)

A·Т(WC)↔A*·Т↑(w) [68] 9.90 9.59 16.72 16.02 6.82 6.43 1.1 × 10−7 5.4 × 10−8

A·T(WC)↔A·T*
O2

↑(w) [68] 10.91 11.25 16.72 16.02 5.81 4.77 2.0 × 10−8 9.9 × 10−9

A·Т(WC)↔A·Т*↓(w) [68] 13.08 14.84 20.28 20.41 7.20 5.57 2.1 × 10−7 2.5 × 10−10

G·C(WC)↔G·C*↑(w) [68] 13.35 14.10 30.47 30.74 17.12 16.64 3.95 1.6 × 10−10

G·C(WC)↔G*·C↓(w) [68] 15.10 16.49 31.08 31.53 15.98 15.04 0.58 1.3 × 10−11

G·C(WC)↔G·C*↓(w) [68] 15.08 15.96 30.88 31.41 15.80 15.45 0.42 8.8 × 10−12

G·C(WC)↔G*·C↑(w) [68] 14.85 17.22 24.87 25.64 10.02 8.42 2.5 × 10−5 8.4 × 10−12

MP2/cc-pVQZ//B3LYP/6–311++G(d,p)

A·C(w)↔A·C*(WC) [69, 70] 4.87 6.77 19.98 18.85 24.84 25.62 4.9 × 102 —

G·T(w)↔G*·T(WC) [69, 71] −1.69 −2.46 17.04 16.37 18.73 18.83 8.8 —

A·A(w)↔A*·A(WC) [72] 4.18 1.64 26.89 23.59 22.71 21.94 4.4 × 104 —

G·G(w)↔G*·G(WC) [72] −4.96 −6.75 26.81 26.08 31.77 32.83 5.0 × 107 —

A·G(WC)↔A·G*↓(w) [73] 3.76 6.19 17.01 17.07 13.25 10.88 5.3 × 10−3 —

A·G(WC)↔A*·G↑(w) [73] 14.29 14.09 25.29 24.39 11.00 10.30 1.2 × 10−4 —

C·T(WC)↔C*·T↑(w) [73] 0.56 0.55 17.05 17.36 16.48 16.81 6.8 × 10−7 —

C·T(WC)↔C·T*↓(w) [73] 12.07 14.57 26.64 25.32 14.57 10.75 5.4 × 10−2 —

T·T(w)↔T·T*(WC) [74] 8.98 8.64 31.06 31.90 22.09 23.26 1.6 × 104 —

C·C(w)↔C·C*(WC) [74] −8.90 −10.73 25.38 24.32 34.28 35.05 4.4 × 106 —

Note: for designations see Table 1.
aThe time necessary to reach 99.9% of the equilibrium concentration between the reactant and the product of the 
tautomerization reaction, s.
bPopulations of the wobble mispairs containing mutagenic tautomers.

Table 2. Energetic and kinetic characteristics of the tautomeric transformations of the classical Watson-Crick or wobble 

DNA base pairs, which are involved into the processes of the spontaneous point mutagenesis, via the DPT accompanied 

by the substantial changes of their geometry in the continuum with ε = 1.
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Mutagenic pressure of the analogues of DNA bases could be explained within the framework 
of the proposed model of the w↔WC mutagenic tautomerization. In particular, mutagenic 
action of the analogue of C-6H,8H-3,4-dihydropyrimido[4,5-c] [1, 2]oxazin-7-one [11, 12]—

increases the population of the G·P*↑ (4.5 × 10−3) and G·P*↓ (1.4 × 10−4) base mispairs by 

its participation in comparison with the analogical values for the canonical C DNA base. 

Mutagenic activity of the halogen derivatives of the uracil base is associated with the decreas-

ing of the transformation barriers of the wobble G·5XU(w) (X = H, CH
3
, Br, Cl, F) mispairs 

into the G·5XU*(WC) mispairs with Watson-Crick geometry, thus inducing higher frequency 
of the transitions. The maximal effect is observed for the 5BrU-calculated frequency of the 
induced mutations (35 [71]), which is in good accordance with experimental data (from 20 
[75] to 29 [76]).

3.4. Anti↔syn conformational transitions of the long purine-purine DNA 

mismatches

All long purine·purine DNA base mispairs can acquire enzymatically competent confor-
mations—А*·А

syn
(TF), G·А

syn
, A*·G*

syn
 and G·G*

syn
—through the A*·A(WC)↔A*·A

syn
(TF), 

G·A(WC)↔G·A
syn

, A*·G*(WC)↔A*·G*
syn

 and G·G*(WC)↔G·G*
syn

 conformational transitions 

[77], eventually guaranteeing their chemical incorporation into the newly synthesized struc-

ture of the DNA double helix (TF-Topal-Fresco nucleobase pair [10]; syn-syn-orientation 

of the base according the sugar-phosphate moiety) (Figure 4). Characteristic time of these 

nondissociative conformational transitions (~10−7 s) is much less than the period of time the 

high-fidelity DNA polymerase spends on incorporating one nucleotide into the DNA double 
helix (~8.3 × 10−4 s [67]). So-called long A*·A(WC), G·A(WC), A*·G*(WC) and G·G*(WC) DNA 

base mispairs have been outlined as “node stations” on the way of the formation of the enzy-

matically competent conformations arising in the recognition pocket of the high-fidelity DNA 
polymerase at its transition from the open to closed state.

3.5. Physico-chemical scenarios of the origin of the replication and incorporation 
point errors in DNA

In the framework of such qualitatively new model conceptions, we were able to shed light 

on the microstructural mechanisms of the occurrence of point mutations—replication and 

incorporation point errors.

Thus, the spontaneous mutagenic tautomerization of the Watson-Crick pairs of nucleotide 
bases into the wobble base mispairs, which includes the A*, T*, G* and C* mutagenic tauto-

mers, has been established to be the source of the generation of the mutagenic tautomers of the 

DNA bases arising at the separation of DNA strands. At this juncture, replication errors would 

arise in the following way (as an example, we would consider the case, when A* belongs to 
the template strand of DNA): A* + C → A*·C → A·C*, A* + A → A*·A → A*·A

syn
, A* + G → A

*·G → A·G → A*·G* → A*·G*
syn

. Similar schemes of structural transformations, which occur 

directly in the recognition pocket of the high-fidelity DNA polymerase, would take place also 
for three other cases, when G*, T* and C* belong to the template strand of DNA.

Incorporation errors would occur according to the following scenario: in the recognition pocket 
of the high-fidelity DNA polymerase, it would form the appropriate wobble base mispair 
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tautomerizing into the pair with Watson-Crick architecture of the binding. For the case, when 
A belongs to the template strand of DNA: A + C → A·C → A·C*, A + A → A·A → A*·A → A*·A

syn
, 

A + G → A·G → A*·G* → A*·G*
syn

.

Both processes have two common features—they involve the same pairs, which play the role 

of intermediates on the path of formation of enzymatically competent conformations of some 
incorrect pairs, as well as the same set of terminal incorrect pairs, able to acquire the enzy-

matically competent conformations during the process of thermal fluctuations.

Figure 4. Structures corresponding to the stationary points on the reaction pathways of the (a) A*·A(WC)↔A*·A
syn

(TF), 
(b) G·A(WC)↔G·A

syn
, (c) A*·G*(WC)↔A*·G*

syn
 and (d) G·G*(WC)↔G·G*

syn
 anti↔syn conversions through the large-scale 

adjustments of the bases relative to each other, obtained at the B3LYP/6–311++G(d,p) level of theory, ε = 1 [77].
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Finally, it becomes clear why spontaneous point errors occur quite rarely. This, in particular, 
is due to the fact that the mechanisms of their occurrence are kinetically controllable, with the 

time τ99.9%, which is necessary to reach 99.9% of the equilibrium concentration of the reactant 
and product, significantly greater than the time that the DNA polymerase spends incorporat-
ing one nucleotide into the DNA double helix that is synthesized (~8.3 × 10−4 s [67]).

Based on our own theoretical data, which have been successfully confirmed by experimental 
data [16–18], one can make an assumption, why the DNA-repair enzymes, “sharpened” pre-

cisely for the wobble base mispairs, do not provide 100% accuracy. The reason consists in the 
ability of this pair to transform into a pair with Watson-Crick geometry, which, figuratively 
speaking, is a “hiding place” from the enzyme, because it is not recognized by it, thus restrict-
ing the ultimate accuracy of the repair process.

So, obtained data, in principle, enable to understand the mechanism of elimination from the 

genome of mutagenic tautomers, whose lifetime exceeds by orders of magnitude the time of 
cellular DNA replication.

Again, established ability of the wobble pair to be formed from the Watson-Crick-like pair 

involving mutagenic tautomer of the DNA bases enables DNA-repair complex to reveal and 
eliminate them from the genome during several cycles of DNA replication.

3.6. Profiles of the physico-chemical parameters along the IRC of tautomerizations 
via DPT and PT

We developed original methodology tracking the evolution of all physico-chemical parame-

ters along the entire reaction pathways: in particular, the electronic energy, the first derivative 
of the electronic energy by the IRC-dE/dIRC, the dipole moment of the base pair, the distances 
and the angle of the intermolecular specific contacts (H-bonds or van der Waals contacts), 
electron density, the Laplacian of the electron density, ellipticity and the energy at the (3,-1) 

bond critical points of the intrapair specific contacts, the NBO charges of the hydrogen atoms 
involved in the tautomerization, the glycosidic angles and the distance between the glycosidic 
hydrogens. This works not only in the stationary structures such as reagent, product and 

transition state of the tautomerizations via the DPT and w↔WC tautomeric reactions via the 

PT [51–74, 78].

Additionally, for the first time, we have introduced the conception of the key points (KPs) 
based on the electron-topological characteristics of the intermolecular bonds, namely the 

value of the electron density and its Laplacian at the corresponding (3,-1) bond critical points. 

This approach allows us to comprehensively describe the mechanism of the tautomerization 
process. Thus, depending on the symmetry and nature of the system, maximum number of 
KPs could reach 9 and minimal—5, when KPs are degenerated (see Figures 5 and 6 for illus-

tration on the example of the 2AP·T(WC)↔2AP·T*(w)).

Arrangement of the extrema of the derivative of the energy by IRC—dE/dIRC—coincides with 
the second and penultimate KPs, where mutual transformations of the H-bond into a covalent 
bond and vice versa occur. These data allow us to separate the pathway of the tautomerization 
reaction into the zones of reagent, transition state and product of the reaction. In general, these 
key points could be considered as “fingerprints” of the tautomerization process via DPT or PT.
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This methodology enables to make an objective conclusion about the character of tautomeriza-

tion (concerted, synchronous or asynchronous), quantitatively estimate the cooperativity of 

the specific intermolecular interactions (namely, H-bonds, in particular nonclassical CH···O/N 
or dihydrogen AH···HB H-bonds, loosened A-H-B covalent bridges and attractive A···B van 
der Waals contacts), sequentially changing each other along the IRC of the tautomerization, 
and trace how these interactions are grouped into the patterns (from 9 to 15) and how they 
successively substitute each other along the IRC of tautomerization.

3.7. Complete set of incorrect DNA base pairs responsible for the origin of 

spontaneous transitions and transversions in DNA

For the first time, we outline a complete set of the 12 incorrect DNA base pairs represent-
ing a primary cause of spontaneous point mutations and determining both incorporation 

and replication errors: А·С*/С*·A, G*·T/T·G*, G·A
syn

, A*·G*
syn

, A*·A
syn

, G·G*
syn

, C·T/T·C, 

C*·C/C·C* and T*·T/T·T* (three of these mispairs—G·A
syn

, C·T and T·C—consist exclusively 
of the canonical tautomers of the DNA bases) (Figure 7). Precisely, these mismatches, which 

quite easily in the process of the thermal fluctuations acquire enzymatically competent con-

formations and do not cause steric constraints in the recognition pocket of the high-fidelity 
replication DNA polymerase (Table 3), should be experimentally observed in the closed 
conformation of the latter.

3.8. Key microstructural mechanisms of the 2-aminopurine (2AP) mutagenicity

Based on the mechanisms of the spontaneous point mutations [33, 34, 51–66, 68–74, 78], we 

established physico-chemical mechanisms of the mutagenic action of the classical mutagen 

Figure 5. Geometric structures of the nine key points with their IRC coordinated describing the evolution of the 
2AP·T(WC)↔2AP·T*(w) tautomerization via the single PT and sequential shifting of the bases relative to each other within 

the base pair into the minor groove side of the DNA helix along the IRC obtained at the B3LYP/6–311++G(d,p) level of 
theory, ε = 1 [79] tautomerization). At this point, three KPs correspond to the two abovementioned local minima (the first 
and the last KPs–reagent and product, respectively) and transition state of the tautomerization. Other KPs include two KPs, 
for which migrating proton is localized midway between the electronegative atoms involved in the specific contact and are 
characterized by the loosened A-H-B covalent bridge, and also four key points, in which the H-bonds begin to acquire the 
features of the covalent bond and vice versa, that is where the Laplacian of the electron density passes through zero: Δρ = 0.
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Figure 6. Profiles of: (a) the relative electronic energy ΔE, (b) the first derivative of the electronic energy with respect 
to the IRC (dE/dIRC), (c) the dipole moment μ, (d) the electron density ρ, (e) the Laplacian of the electron density Δρ, 
(f) the energy of the intermolecular H-bonds E

HB
 estimated by the EML formula [79] at the (3,-1) BCPs, (g) the distance 

d
A···B

 between the electronegative A and B atoms, (h) the distance d
AH/HB

 between the hydrogen and electronegative A 

or B atoms and (i) the angle ∠AH···B of the covalent and hydrogen bonds along the IRC of the 2AP·T(WC)↔2AP·T*(w) 

tautomerization obtained at the B3LYP/6–311++G(d,p) level of theory, ε = 1.

Figure 7. Geometrical structures of the 12 incorrect DNA base mispairs causing spontaneous point incorporation and 

replication errors (B3LYP/6–311++G(d,p) level of theory, ε = 1).
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2AP—high-energy structural isomer of A nucleotide base [75–77, 80–82]. In the literature, a 

great amount of experimental and theoretical phenomenological data on 2AP has been col-
lected [83–87] without proper justification and substantiation.

We have found for the first time that the microstructural mechanism of the mutagenic action 
of 2AP, causing induced replication errors, generates with higher probability the mutagenic 

tautomer T* according to the 2AP·Т(WC) → 2AP·Т*(w) tautomeric reaction, than for the 
Watson-Crick A·Т(WC) DNA base pair according to the A·Т(WC) → A·Т*(w) tautomerization 
reaction [68, 88]. At this point, the ratio of probabilities determining replication errors con-

sists Р2АР·T/РА·T = 1.8·103. The mutagenic effect is achieved due to the greater stability of the 
2AP·Т*(w) complex by the participation of 2AP (ΔE

int
 = −20.95 and ΔG

int
 = −9.18 kcal·mol−1) in 

comparison with the analogical A·Т*(w) base mispair by the participation of A (ΔE
int

 = −13.44 
and ΔG

int
 = −1.61 kcal·mol−1) (Figure 8a, Table 4) [68, 88].

Mispairs Geometrical parameters Energetic parameters

R(H
N1/N9

-H
N1/N9

)a α
1

b α
2

c ΔE
def

d -ΔE
int

e ΣE
HB

/|ΔE
int

|f -ΔG
int

g

А·C* 9.996 55.3 58.2 0.10 0.29 15.73 91.8 2.27

A*·С 10.059 55.3 57.2 0.29 0.53 23.50 65.9 10.76

G*·T 10.291 51.5 51.1 0.14 0.40 19.79 87.7 7.09

G·T* 10.202 50.6 52.2 0.45 0.90 33.40 61.3 20.66

G·A
syn

10.399 51.6 38.5 3.00 3.61 17.00 65.9 2.80

A*·G*
syn

10.411 50.3 37.5 3.18 3.72 23.00 72.6 11.47

A*·A
syn

10.322 53.9 41.2 2.18 2.72 16.73 74.8 3.83

G·G*
syn

10.425 48.7 36.1 4.04 4.66 19.82 69.5 7.28

C·T 8.215 59.7 57.0 8.67 8.87 13.86 85.4 1.54

C·C* 8.086 60.3 59.5 8.57 8.76 14.75 91.2 2.34

T·T* 8.385 53.6 58.1 10.97 10.91 16.67 84.0 4.69

A·T 10.130 54.3 54.8 0.00 0.25 14.92 86.9 1.43

G·C 10.209 52.9 55.3 0.11 0.00 29.28 60.8 15.97

aThe distance between the glycosidic protons at the N1/N9 atoms, Å.
bThe glycosidic angles for the bases situated on the left and right within the base pair, respectively, degree.
cThe glycosidic angles for the bases situated on the left and right within the base pair, respectively, degree.
dThe electronic energy of deformation, necessary to apply to the mismatch to acquire the sizes of the A·T (in the left 
column) and G·C (in the right column) Watson-Crick DNA base pairs.
eThe electronic energy of interaction.
fThe contribution of the total energy of the intermolecular H-bonds to the electronic energy of interaction, %.
gThe Gibbs free energy of interaction (T = 298.15 K).

Table 3. Selected structural and energetic (in kcal·mol−1) characteristics of the canonical and noncanonical DNA base 

pairs, responsible for the origin of the spontaneous transitions and transversions (MP2/6-311++G(2df,pd)//B3LYP/6-

311++G(d,p) level of theory, ε = 1).
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We have shown for the first time that 2AP very effectively produces induced incorporation 

errors by binding with C DNA base and forming the wobble С·2АР(w) mispair, which is 
tautomerized via the С·2АР(w) → С*·2АР(WC) tautomeric reaction into the Watson-Crick-
like С*·2АР(WC) base mispair, which quite easily in the process of the thermal fluctuations 
acquires enzymatically competent conformation (estimated ratio of probabilities РС·2АР/

РС·А = 1.92·104) (Figure 8b, Table 4) [89].

By estimating the probability ratio РА·2АР/РА·А = 40.5, we conclude that 2AP in the case of the  
А·2АР(w) → А*·2АР(WC) → А*·2АР

syn
 structural transformations (Figure 8c, Table 4) causes trans-

version, when a pyrimidine base (in this case T) is substituted by a purine, in particular—A [89].

Figure 8. Reaction pathways of the biologically important tautomerizations and conformational transitions of the 
structures containing canonical DNA bases and 2AP in the main and rare tautomeric forms leading to the replication 

(a) and incorporation (b, c, d) errors—transitions and transversions. Relative electronic ∆E and Gibbs free ∆G energies, 
electronic ΔE

int
 and Gibbs free ΔG

int
 energies of interaction, the deformation energies ΔE

def
(A·T)/ΔE

def
(G·C) necessary 

to apply to the mismatch to acquire the sizes of the A·T(WC)/G·C(WC) Watson-Crick DNA base pairs (in kcal·mol−1), 

imaginary frequencies ν
i
 (cm−1) at the TSs of the interconversions are presented below them in brackets (MP2/aug-cc-

pVDZ//B3LYP/6–311++G(d,p) level of theory in vacuum at T = 298.15 К). The base, belonging to the template strand of 
DNA, is situated on the left, while the base of the incoming nucleotide—on the right.
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We prove for the first time that 2AP* as a base of the incoming nucleotide may produce 
also another transversion, when 2AP* mutagenic tautomer pairs with G base and formed 

G·2AP*(w) mispair converts according to the route of the sequential tautomeric and confor-

mational transformations—G·2AP*(w) → G*·2AP(w) → G·2AP(WC) → G·2AP
syn

 (Figure 8d, 

Table 4) [91]. Estimated ratio of probabilities РG·2АР*/РG·А* = 1.90·107 points that this route of the 

tautomerically conformational transformations is mutagenic, generating appropriate transver-

sions, when pyrimidine bases (in this case C) are replaced by the analogue of the purine base—

2AP. This also causes low-probable transitions and transversions, since in the next rounds of 
the DNA replication, 2AP pairs not only with T, but also with the C and A DNA bases [91].

Our theoretical data are in good agreement with existing experimental results [80, 81, 83, 84] 

and also allow a unified physico-chemical interpretation of them.

By analyzing profiles of the physico-chemical characteristics for the tautomerization reactions 
via the DPT and PT involving 2AP, which are integral parts of the biologically important tauto-

merically conformational transformations, we have established that 2AP·Т(WC)↔2AP·Т*(w) 
[79], 2AP·C*(WC)↔2AP·C(w) [79], G*·2AP(w)↔G·2AP(WC) [90] and А·2АР(w)↔А*·2АР(WC) 
[90] tautomerization pathways proceed through the stepwise concerted mechanism via the 

sequential intrapair PT between the bases followed by the shifting of the 2AP relatively  

the T/C*/G*/A bases, accordingly, while the T·2AP*(w)↔T*·2AP(w) and G·2AP*(w)↔G*· 

2AP(w) [92] DPT tautomerization reactions proceed through the asynchronous concerted  
mechanism.

Tautomerization/

Conformational transition

ν
i

∆G ∆E ∆∆G
TS

∆∆E
TS

∆∆G ∆∆E τ
99.9%

τ

a) 2AP·T(WC)↔2AP·T*(w) [79, 88] 134.2 8.62 8.33 18.66 17.53 10.04 9.21 2.53·10−5 3.7 × 10−6

A·T(WC)↔A·T*(w) [51, 53, 68] 99.7 13.08 14.84 20.28 20.41 7.20 5.57 2.09·10−7 3.0 × 10−8

b) C·2AP(w)↔C*·2AP(WC) [79, 89] 146.9 1.85 1.42 21.95 20.30 20.11 18.88 5.87·102 8.9 × 101

C·A(w)↔C*·A(WC) [57, 70] 588.5 −6.07 −7.20 19.51 17.61 25.58 24.81 1.74·102 7.1 × 105

с) A·2AP(w)↔A*·2AP(WC) [89, 90] 117.0 13.71 13.57 29.85 31.00 16.14 17.43 0.76 0.1

A*·2AP(WC)↔A*·2AP
syn

 [89] 18.0 −0.83 −0.59 6.54 8.55 7.37 9.14 5.59·10−8 4.1 × 10−8

A·A(w)↔A·A*(WC) [72] 152.4 3.63 1.09 25.86 22.56 22.24 21.47 2.22·104 3.2 × 103

A·A*(WC)↔A*·A(WC) [65] 497.5 0.00 0.00 6.39 9.71 6.39 9.71 2.28·10−8 6.4 × 10−9

A*·A(WC)↔A*·A
syn

(TF) [61, 77] 15.8 0.56 1.23 8.09 8.09 7.53 6.85 2.66·10−7 5.3 × 10−8

d) G·2AP*(w)↔G*·2AP(w) [91, 92] 1099.7 −10.70 −9.96 −0.11 2.31 10.59 12.26 4.39·10−13 4.5 × 10−6

G*·2AP(w)↔G·2AP(WC) [90, 91] 130.1 1.33 1.07 18.04 16.58 16.70 15.51 1.77 0.3

G·2AP(WC)↔G·2AP
syn

 [91] 17.7 0.60 1.51 8.23 10.31 7.63 8.80 3.22·10−7 6.4 × 10−8

G·A*(w)↔G·A(WC) [73] 126.8 −6.93 −6.73 16.98 16.32 23.92 23.05 3.14 5.5 × 104

G·A(WC)↔G·A
syn

 [56, 62, 77] 20.7 0.76 0.58 8.39 8.89 7.64 8.31 3.47·10−7 6.4 × 10−8

Note: see Tables 1 and 2.

Table 4. Energetic and kinetic characteristics of the biologically important tautomerizations and conformational 

transitions of the structures containing canonical DNA bases and 2AP in the main or rare tautomeric forms leading to 

replication and incorporation errors—transitions and transversions (MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of 

theory, ε = 1).
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4. Conclusions

Reported results are crucial for understanding the microstructural mechanisms of the sponta-

neous transitions and transversions, since they allow us to explain, on one side, the origin of 
the mutagenic tautomers at the separation of the DNA strands before DNA replication and, 

on the other side, how incorrect purine·pyrimidine, purine·purine and pyrimidine·pyrimidine 

wobble mispairs adapt to enzymatically competent sizes in the recognition pocket of the high-
fidelity DNA polymerase.

Obtained results allow us to explain biological experiments available in the literature, which 
still remain without proper theoretical justification:

• Numerical estimations of the frequencies of the mispair occurrence satisfactorily 

explain experimental data: (10−3÷10−4) G·T/T·G > > A·C/C·A > > C·T/T·C > A·A > G·A/A·G 

> > G·G ≈ C·C (10−6) [93].

• Established A·C(w)↔A·C*(WC) and G·T(w)↔G*·T(WC) wobble(w)↔Watson-Crick(WC) 

transformations via the sequential PT allow us to explain the way of the acquisition by 
the A·C(w)/G·T(w) wobble mispairs of the Watson-Crick geometry in the active center of 

the high-fidelity DNA polymerase or DNA duplex and also to interpret X-ray [14, 15] and 

NMR [16–18] experiments.

• Presented approach allows us to clarify the microstructural mechanisms of the mutations 

induced by the classical mutagens, in particular 2-aminopurine, for which induced fre-

quencies agree well with the experimental data.

• Ionization mechanism cannot entirely explain the nature of the spontaneous transitions [94].

These data clarify the nature of genome variability and reveals new facets of the Watson-

Crick hypothesis of the spontaneous point mutagenesis arising during DNA replication and 

significantly expands the possibilities for rational design of chemical mutagens with targeted 
action, which could be interesting for synthetic biology and biotechnology.

Finally, authors believe that these principles could be extended without any constrains to the 
processes determining the protein synthesis.

In view of the prominent role, that play parallel and antiparallel Hoogsteen pairings in 

DNA:RNA helices, as it was reliably established by Prof. Seligmann [95, 96] for mitochondrial 

genomes, it is important to explore in future mutagenic tautomerization of these classical base 
pairs by the quantum-chemical methods.
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