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Abstract

Carotenoids are a large group of natural pigments, ranging from red, to orange, to yellow col-
ors. Synthesized by plants and some microorganisms (e.g., microalgae, fungi and bacteria), 
carotenoids have important physiological functions (e.g., light harvesting). Apocarotenoids 
are carotenoid-derived compounds and play important roles in various biological activities 
(e.g., plant hormones). Many carotenoids and apocarotenoids have high economic value 
in feed, food, supplements, cosmetics and pharmaceutical industries. Despite high com-
mercial values, they are severely undersupplied because of low abundance in natural hosts 
(usually a few milligrams per kilogram of raw materials). Furthermore, plants or microbes 
usually produce mixtures of these molecules with very similar physical and chemical prop-
erties (such as α- and β-carotenes). All these features render the extraction from natural 
hosts rather difficult and also very costly both from process economics and sustainable 
land-use viewpoints. Chemical synthesis is also expensive due to structural complexity 
(e.g., astaxanthin has many unsaturated bonds and two chiral regions). Biotechnology via 
the rapidly advancing metabolic engineering and synthetic biology approaches has led to 
alternative ways to attain several carotenoids and apocarotenoids at relatively high titers 
and yields using fast-growing microorganisms. This chapter briefly reviews the biosyn-
thesis of carotenoids and apocarotenoids by microorganisms and their industrial potential.

Keywords: metabolic engineering, fermentation, carotenoids, astaxanthin, lycopene, 
carotene, retinol and ionone

1. Introduction

Carotenoids are natural red, orange or yellow pigments widely distributed in nature. The 

vivid color of carotenoids contributes to the beauty of many flowers, fruits and animals. For 
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example, the loveliness of yellow marigolds comes mainly from lutein, a yellow carotene; the 

redness of watermelons and tomatoes is because they are rich in lycopene, a red carotene; and 

the scarlet plumage of flamingos stems from another red carotenoid, astaxanthin. The beauti-
ful colors of plants are also responsible for attracting insects and animals for their pollination 
and seed dispersal [1]. The carotenoid color originates in the structure of multiple conjugated 

double bonds. This unique structure enables two essential features of carotenoids: the light-

harvesting capability and a powerful anti-oxidant effect by the quenching of free radicals, 
singlet oxygen and reactive oxygen species. In photosynthetic organisms, carotenoids are 

indispensable for photosynthesis and photo-protection [2]. In non-photosynthetic organisms 

including animals, the anti-oxidant activity not only protects cells from oxidative damages 

(e.g., oxidative DNA damage [3]) but can provide additional benefits for humans such as anti-
inflammatory and anti-cancer effect [4]. In addition, carotenoids play an important health 

role as pro-vitamin A compounds. About 30–50 carotenoids are believed to have vitamin A 

activity including two well-known compounds: β-carotene and α-carotene [2].

Vitamin A includes retinol, retinal and retinoic acid, which are all apocarotenoids. Apocaro-

tenoids are a group of oxidative products of carotenoids. While carotenoids contribute to the 

visual beauty of flowers and fruits, apocarotenoids are famous for the pleasant aromas and 
give rise to fragrance and palatable flavors of many flowers and fruits (such as rose, violet, 
tomato and raspberry) [5–7]. These apocarotenoid aromas, in a similar manner to the colored 

carotenoids, attract pollinators and promote plant-insect interactions [8]. In addition, some 

apocarotenoids act as hormones. For example, the plant growth hormone, abscisic acid, has 

multiple functions in plant development processes including bud dormancy and response to 

environmental stress and plant pathogens [5]. Strigolactones are another important subclass 

of apocarotenoids, functioning as shoot-branching inhibitors and promoting the formation of 

symbiotic association between plants and fungi [9, 10].

Due to the color, aroma, remarkable nutrition and health benefits, carotenoids and apocarot-
enoids have been widely used in food, feed, nutritional, pharmaceutical and personal care 

industries. The market demands for carotenoids and apocarotenoids are rising rapidly as 

increasing clinical research studies report various health and pharmaceutical benefits [11–13]. 

The global carotenoid market is projected to reach 1.53 billion USD by 2021 [14]. The regular 

uptake of food with a high content of carotenoids (e.g., β-carotene) or retinoids is vital to alle-

viate vitamin A deficiency. Vitamin A deficiency can lead to severe aftermath including blind-

ness, decreased immune function and even death [15]. Lutein and zeaxanthin are critical for 

eye health by preventing age-related macular degeneration [16]. Astaxanthin has even more 

benefits such as potent anti-oxidant activities, promoting immune response, reducing eye 
fatigue, enhancing muscle performance and so on [11]. Because of low exceptional fragrance 

property, α-ionone and β-ionone are widely used in cosmetics such as perfumes [17]. Crocin 

is another valuable apocarotenoid and is responsible for the red pigmentation of saffron, a 
high-value spice with retail prices ranging between 2000 and 7000 euros/kg [18].

Despite carotenoids and apocarotenoids being widely distributed in nature, their cellular con-

tents are extremely low. For example, 100 tons of raspberries, or 20 hectares of agricultural area, 

could only yield 1 g of α-ionone [19]. Similarly, it requires the manual harvest of stigmas from 

as many as 110,000–170,000 flowers to obtain 1 kg of saffron [20], justifying the high cost of 
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these molecules. Chemically synthetized carotenoids, despite being less expensive, have been 

reported to have hazardous effects to human health and are increasingly unpopular with con-

sumers [19]. Currently, microbial-derived commercial carotenoids are those derived from native 

producer strains which have not been genetically engineered but in some cases have undergone 

classical mutagenesis followed by selection to screen for improved production characteristics. 

These include the β-carotene production strains of the microalga Dunaliella [21] and the fungus 

Blakeslea trispora [2]. Recent advances in microbial biotechnology have made the microbial pro-

duction of carotenoids and apocarotenoids potentially more efficient and cost-effective, using 
metabolic engineering strategies in industrial workhorse strains such as Escherichia coli and 

Saccharomyces cerevisiae, for which the fermentation strategies are well established.

To date, 1117 natural carotenoids and apocarotenoids have been reported, which consist of 

C30, C40, C45 and C50 carotenoids [22]. Among them, C40 carotenoids and their derived 

apocarotenoids are the most abundant with 1093 different structures. In this chapter, I will 
cover only a few of the commercially interesting C40 carotenoids and apocarotenoids that will 

illustrate the challenges and potentials of this biosynthetic alternative supply chain.

2. Biosynthesis of carotenoids and apocarotenoids in nature

To understand how carotenoids and apocarotenoids can be produced in microbes, it is essen-

tial to elucidate the biosynthetic enzymes which constitute these metabolic pathways.

Carotenoids are a subclass of terpenoids (or isoprenoids); thus, as other terpenoids, they share 

the common C5 building blocks, isopentenyl pyrophosphate (IPP) and its isomer dimethylal-

lyl pyrophosphate (DMAPP). In nature, there exist two independent biosynthetic pathways to 

produce IPP/DMAPP: the mevalonate (MVA) pathway [23] and the 2-C-methyl-D-erythritol 

4-phosphate (MEP) pathway, also referred to as the 1-deoxy-D-xylulose 5-phosphate (DXP) 

or the non-MVA pathway [24].

The MEP pathway starts from the condensation of pyruvate and glyceraldehyde-3-phosphate, 

which are catalyzed by DXP synthase (dxs), to produce DXP, which is subsequently reduced 

into MEP by DXP reductase (dxr). MEP is converted into 4-diphosphocytidyl-2-C-methyl-

D-erythritol (CDPME) by CDPME synthase (ispD). CDPME is subsequently transformed 

into 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate (HMBPP) through two intermediates, 

4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol (CDPMEP) and 2-C-methyl-D-erythritol-
2,4-cyclodiphosphate (MEC) by CDPME kinase (ispE), MEC synthase (ispF) and HMBPP 

synthase (ispG), respectively. Finally, HMBPP reductase catalyzes HMBPP into a 5-6:1 ratio of 

IPP and DMAPP, while IPP isomerase (idi) inter-converts IPP and DMAPP to adjust the ratio 

according to the cellular requirements (Figure 1).

In the MVA pathway, two molecules of acetyl-CoA are condensed into one molecule of 

acetoacetyl-CoA by acetyl-CoA acetyltransferase (atoB). Acetoacetyl-CoA is converted into 

mevalonate via an intermediate (S)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by HMG-

CoA synthase and HMG-CoA reductase, respectively. IPP is produced from mevalonate 

by another three enzymes, mevalonate kinase (mk), phosphomevalonate kinase (pmk) and 
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Figure 1. Biosynthetic pathway of terpenoid precursors. Carotenoids are a subclass of terpenoids. In nature, two major bio-

synthetic pathways of terpenoids exist, one is the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, and the other is the 

mevalonate (MVA) pathway. Abbreviations: dxs (DXP synthase), dxr (DXP reductase), ispD (4-diphosphocytidyl-2-C-methyl-

D-erythritol, or CDPME synthase), ispE (CDPME kinase), ispF (2-C-methyl-D-erythritol-2,4-diphosphate synthase), ispG 

(1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase), ispH (1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase), 

atoB (acetoacetyl-CoA thiolase), hmgs (hydroxymethylglutaryl-CoA, or HMG-CoA synthase), hmgr (HMG-CoA reductase), mk 

(mevalonate kinase), pmk (phosphomevalonate kinase), pmd (phosphomevalonate decarboxylase), and idi (IPP isomerase).
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phosphomevalonate decarboxylase (pmd). Thus, while the MEP pathway produces mix-

tures of DMAPP and IPP, the MVA pathway produces only IPP and requires idi to generate 

DMAPP (Figure 1).

Most bacteria including cyanobacteria use exclusively the MEP pathway, whereas most 

eukaryotes and archaea possess only the MVA pathway. Interestingly, plants have both path-

ways: the MVA pathway located in the plant cytoplasm and the MEP pathway located in 

plastids. This is consistent with the hypothesis that chloroplasts originate from cyanobacteria 

endosymbionts [25]. Both pathways have been engineered to produce terpenoids including 

carotenoids. The MEP pathway has a higher theoretical yield than the MVA pathway [26] due 

to its adoption of a variety of cofactors (ATP, NADPH, CTP and flavodoxin, etc.) whereas the 
MVA pathway mainly uses ATP. However, in practice, it is easier to manipulate the MVA 

pathway and its theoretical yield has been achieved for certain products [27–30]. In contrast, 

the practical yield of the MEP pathway is often limited by the low activity of ispG and ispH 

enzymes and their special requirement of iron-sulfur cofactors. To the best of my knowledge, 

the highest reported yields of terpenoids synthesized by the MEP pathway in literature are 

less than 20% of its theoretical yield [30].

The two pathway metabolites IPP and DMAPP are condensed to give geranyl diphosphate 

(GPP, C10) or farnesyl diphosphate (FPP, C15), catalyzed by GPP synthase (gpps) or FPP syn-

thase (fpps), respectively. Geranylgeranyl diphosphate (GGPP) synthase catalyzes the addition 

Figure 2. Biochemical pathway of carotenoids and apocarotenoids.
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of another IPP into FPP to yield GGPP (C20). Finally, phytoene synthase (crtB) catalyzes the 

first committed step of carotenoid biosynthesis, the formation of one molecule of phytoene 
(C40) from two molecules of GGPP (Figure 2). Phytoene is a colorless acyclic carotene with 

only three conjugated double bonds. All the C40 carotenoids are derived from phytoene, which 

accounts for over 90% of total carotenoids to date [22]. Based on molecular structures, carot-

enoids are classified into two groups: carotenes and xanthophylls. Carotenes are hydrocarbon 
carotenoids with only carbon and hydrogen atoms (e.g., lycopene and β-carotene), whereas 
xanthophylls are oxygenated carotenoids by hydroxylation, ketolation and epoxidation (e.g., 

astaxanthin, lutein, Figure 2) [31]. In plants, algae, fungi and bacteria, apocarotenoids are 

derived from the oxidation of carotenoids or other apocarotenoids with carotenoid cleavage 

enzymes (such as carotenoid cleavage dioxygenases or CCDs and apocarotenoid cleavage 

oxygenases or ACOs) [32]. Some apocarotenoid examples are shown in Figure 2.

3. Production of carotenoids in engineered microbes

3.1. Biosynthesis of carotenes

As a colorless carotene, phytoene is the common precursor to all the C40 carotenoids (Figure 2). 

It exhibits excellent anti-UV activity [33] and is clinically proved to have activities of skin 

whitening and wrinkle reduction [34]. Hence, there are increasing cosmetic products devel-

oped based on phytoene. Phytoene is an intermediate carotenoid in plants and exists only as a 

minor product; hence, it is expensive to extract phytoene from plant materials. Consequently, 

it is promising to engineer microbes to produce higher concentrations of phytoene and more 

importantly, to produce it at high purity without other carotenoids. By deleting the crtI gene, 

encoding phytoene desaturase (see below), from an engineered lycopene-producing strain of 

Escherichia coli previously developed in our laboratory [19], it was relatively simple to gen-

erate strains of producing more than 50 mg/L of high-purity phytoene in simple low-cell 

density shake flasks [35]. Although this carotene with a high-potential market in cosmetics 

could be relatively simple to transfer to the industry, this is only just the beginning to attract 
interest, as witnessed by a French company Deinove (www.deinove.com) [36]. Despite cer-

tainly being more efficient than the use of the tomato strain developed to this end, there could 
still be considerable progress made by optimizing the engineered strains such as that used 

in our study and coupling this to high cell density fermentation processes to achieve a more 

cost-effective process.

Lycopene, a red color pigment most commonly associated with tomatoes, belongs to one of 

the top six commercial carotenoids. It is produced from the dehydrogenation of phytoene 

catalyzed by different types of phytoene desaturases (crtI, PDS or ZDS, Figure 2). Lycopene 

has been used as animal feed, food coloring and nutritional products. Some clinical studies 

have suggested that lycopene functions in reducing the risk of prostate cancers [37, 38]. In 

recent years, multiple research groups reported relatively high concentrations of lycopene 

produced in E. coli and yeasts. In E. coli, Kim et al. have used a mixture of carbon sources con-

taining glucose, glycerol and arabinose to produce lycopene at 1.35 g/L [39]. Our laboratory 

initially optimized the MEP pathway which enabled the E. coli strain to produce at 20 mg/g 
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dry cell weight (DCW) of lycopene [40] and more recently reconstituted the MVA pathway 

in E. coli to produce lycopene in a glucose-defined medium, reaching 1.5 g/L in a simple non-
optimized fed-batch process [19]. Xie et al. evolved the bifunctional enzyme crtYB to acquire 

only the phytoene synthase function. By applying this mutated enzyme and optimizing the 

copy number of crt genes, the engineered Saccharomyces cerevisiae strain produced 1.61 g/L of 

lycopene [41]. In addition, Yarrowia lipolytica, the oleaginous yeast, has also been engineered 

to produce lycopene but at slightly lower yields [42, 43].

Moving further along the carotenoid biosynthetic pathway, lycopene is usually cyclized into  

β-carotene or α-carotene by a lycopene cyclase (Figure 2). Both α- and β-carotenes are yellow 
pigments; β-carotene is more commonly marketed, being one of the most important commer-

cial carotenoids. As mentioned earlier, β-carotene is a direct precursor of vitamin A (Figure 2). 

It has been widely used as a colorant, nutritional supplement, animal feed and in pharmaceu-

tical and personal care industries. Chemically synthesized β-carotene is less popular among 
consumers than that extracted from natural sources or so-called ‘bio-based’ sources. At the 

same time, naturally derived β-carotene has gradually taken over the market. Currently, 
β-carotene is produced mainly in the microalga Dunaliella [21] and the fungus Blakeslea trispora 

[2]. As summarized in Table 1, many groups have engineered fast-growing microorganisms 

and achieved high titers of β-carotene. Yang et al. have applied a hybrid MVA pathway in E. 

coli to overproduce β-carotene at 3.2 g/L [44]. Zhao et al. have engineered the central metabolic 

pathway to increase cofactor supply in an E. coli strain, which enabled the strain to produce 

at 2.1 g/L of β-carotene [45]. Y. lipolytica has shown potential as a better host for producing 
β-carotene; 4 g/L of β-carotene was achieved in an Y. lipolytica strain by integrating multiple 

copies of key enzymes (hmgr in Figure 1 and the bi-functional enzymes phytoene synthase/

lycopene cyclase carRP) [46]. Recently, based on an engineered lipid overproducing strain 

of Y. lipolytica, Larroude et al. have rewired it to produce at 6.5 g/L and 90 mg/g DCW of 

β-carotene [47]. These results are relatively better than those previously achieved [48–50]. It 

would not be surprising if some of these examples would lead to the successful commercial-

ization notably of novel β-carotene sources in the near future.

3.2. Biosynthesis of xanthophylls

The modification of carotenes by enzymes such as hydroxylases and ketolases leads to the syn-

thesis of xanthophylls (Figure 2). Due to the polarity introduced by oxygen, xanthophylls have 

different physical properties and physiological activities. For example, unlike carotenes, most 
xanthophylls do not possess provitamin A activity but do have higher anti-oxidant activities. 

The reason is that, in addition to the polyene structure, the functional groups of xanthophylls 

such as keto groups in the β-ionone rings can also quench singlet oxygen resides [31].

Among various xanthophylls, astaxanthin is the most important commercial product. 

Astaxanthin is a red pigment with numerous health benefits. As a potent anti-oxidant, astax-

anthin protects the tissue against UV-light damage [51–53] and exhibits anti-cancer activity 

[54, 55] and anti-inflammatory properties [56]. In double-blind, randomized controlled trials, 

astaxanthin lowered oxidative stress in obese subjects and improved cognition and promoted 

proliferation of nerve stem cells [57]. Astaxanthin also improves integrated immune response 

[58], reveals anti-aging effects by protecting red blood cells in both aging and young people 
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[59, 60] and relieves eye fatigue especially beneficial for persons spending too much time on 
the computer and smartphones [61]. In addition, astaxanthin supplement can prevent athero-

sclerotic cardiovascular disease [62, 63] and diabetes [64, 65]. More importantly, besides all 

these benefits, astaxanthin is clinically proven to be safe for human and animals. Therefore, 
astaxanthin has been widely used in fish feeding, food, nutritional, medicinal and cosmetic 
industries. The current global annual market of astaxanthin is around 250 tons worth $447 

million [66], and it is growing rapidly. Synthetic astaxanthin, like β-carotene, is less popular 
with consumers and yields a mixture of three isomers, RR, RS and SS, at the ratio of 1:2:1 and 

appears to be less available for assimilation than the natural forms. Astaxanthin produced 

by the microalga Haematococcus pluvialis has a higher cost and lower purity than synthetic 

astaxanthin so additional work is required before good natural astaxanthin can be marketed 

effectively. Furthermore, astaxanthin in microalgae, shrimp and fish exists as an ester form 
rather than in the free form, which limits its nutraceutical applications.

No. Hosts Carotenes Titer (mg/L) Content 

(mg/g 

DCW)

Culture conditions References

1 Escherichia coli Phytoene 50 35 1–2 days, in flasks [35]

2 Escherichia coli Lycopene 224 34.5 1–2 days, in flasks [48]

3 Escherichia coli Lycopene / 20 1–2 days, in flasks [40]

4 Escherichia coli Lycopene 1500 35 2 days, in 

bioreactors

[19]

5 Escherichia coli Lycopene 1350 32 2 days, in 

bioreactors

[39]

6 Saccharomyces cerevisiae Lycopene 1610 24.4 5–6 days, in 

bioreactors

[41]

7 Saccharomyces cerevisiae Lycopene 1650 54.6 5–6 days, in 

bioreactors

[49]

8 Yarrowia lipolytica Lycopene / 16 7–8 days, in flasks [42]

9 Yarrowia lipolytica Lycopene 213 21.1 10 days, in 

bioreactors

[43]

10 Blakeslea trispora β-Carotene 5600 / 7 days, in 

bioreactors

[50]

11 Escherichia coli β-Carotene 2100 60 3–4 days, in 

bioreactors

[45]

12 Escherichia coli β-Carotene 3200 / 2–3 days, in 

bioreactors

[44]

13 Yarrowia lipolytica β-Carotene 6500 90 5–6 days, in 

bioreactors

[47]

14 Yarrowia lipolytica β-Carotene 4000 50 10–11 days, in 

bioreactors

[46]

Table 1. Microbial production of carotenes in literature.
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Due to the wide application of astaxanthin, many researchers have been working hard to engi-

neer microbes to produce high titer and yield of astaxanthin. It is not trivial to optimize the 

biotransformation of β-carotene to astaxanthin as the biosynthetic pathway is rather complex 
with many intermediates and a complex network of enzymatic reactions [67]. By screening dif-

ferent β-carotene hydroxylases and ketolases, there has been success to improve astaxanthin 
production from sub-milligram to milligram per gram DCW [67, 68]. Further optimization of 

the metabolic pathway leading to astaxanthin synthesis has led to improved yields which are 

now promising for commercialization. For example, Zhou et al. developed a S. cerevisiae strain 

that overproduced astaxanthin at 47.2 mg/L and 8.1 mg/g DCW, where they used a direct 

evolution approach to generate a triple mutant of beta-carotene ketolase with higher activity 

[69]. Lin et al. integrated a multicopy of the key biosynthetic genes of astaxanthin (hpchyb and 

No. Hosts Carotenoids Titer 

(mg/L)

Content 

(mg/g 

DCW)

Culture 

conditions

References

1 Saccharomyces cerevisiae Astaxanthin / 4.7 3–4 days in 

flasks
[72]

2 Saccharomyces cerevisiae Astaxanthin / 0.029 5 days in flasks [73]

3 Escherichia coli Astaxanthin / 2.64 2 days in flasks [74]

4 Escherichia coli Astaxanthin / 0.31 2 days in flasks [68]

5 Escherichia coli Astaxanthin 2.1 1.41 2 days in flasks [75]

7 Escherichia coli Astaxanthin 2.9 1.99 2 days in flasks [67]

8 Corynebacterium glutamicum Astaxanthin / 1.6 2 days in flasks [76]

9 Xanthophyllomyces dendrorhous, 

previously as Phaffia rhodozyma
Astaxanthin 1.6 0.29 3 days in flasks [77]

10 Xanthophyllomyces dendrorhous Astaxanthin / 9.0 8 days in flasks [78]

11 Xanthophyllomyces dendrorhous Astaxanthin 561 5.0 4–5 days in 

bioreactors

[79]

12 Saccharomyces cerevisiae Astaxanthin 47.2 8.1 3–4 days in 

flasks
[69]

13 Kluyveromyces marxianus Astaxanthin / 9.90 3 days in 

bioreactors

[70]

14 Yarrowia lipolytica Astaxanthin 54.6 3.5 3–4 days in 

plates

[66]

15 Escherichia coli Astaxanthin 320 15.0 2 days in 

bioreactors

[71]

16 Xanthophyllomyces dendrorhous Zeaxanthin 10.8 0.5 7.5 days in flasks [80]

17 Escherichia coli Zeaxanthin / 11.9 2 days in 

bioreactors

[81]

18 Escherichia coli Zeaxanthin 722 23.2 2.5 days in 

bioreactors

[82]

Table 2. Microbial production of astaxanthin and zeaxanthin in literature.
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bkt) into the Yarrowia lipolytica. As a result, they were able to achieve about 9.97 mg/g DCW of 

astaxanthin [70]. By developing and using an efficient multidimensional heuristic process and 
colorimetric medium screening approach, our laboratory has achieved one of the best results 

of astaxanthin using E. coli, 320 mg/L and 15 mg/g DCW [71]. As summarized in Table 2, 

the engineered S. cerevisiae [69], Y. lipolytica [66], Kluyveromyces marxianus [70] and E. coli [71] 

have produced promisingly high titers and yields of astaxanthin. The recently achieved titers 

and yields [66, 70, 71] are from 10-fold to 100-fold higher than those previously reported in 

S. cerevisiae [72, 73], E. coli [74, 75], Corynebacterium glutamicum [76] and Xanthophyllomyces 

dendrorhous, previously as Phaffia rhodozyma [77–79].

Zeaxanthin is another important xanthophyll with high commercial values. Lutein, an isomer 

of zeaxanthin, is typically found in plants (such as corn), whereas zeaxanthin is present in 

cyanobacteria and some non-photosynthetic bacteria [2]. Although both lutein and zeaxan-

thin are used as colorants and potentially in pharmaceutical and nutraceutical industries, 

the demand for alternative sources of zeaxanthin is more urgent than lutein. Till now, X. 

dendrorhous has been engineered to produce 10 mg/L of zeaxanthin [80]. The first attempt to 
produce zeaxanthin in E. coli achieved 11.9 mg/ g DCW in bioreactors [81]. A few years later, 

the same group applied a dynamic control system to E. coli in which 720 mg/L of zeaxanthin 

was produced [82] (Table 2).

4. Production of apocarotenoids in engineered microbes

As shown in Figure 2, carotenoids can be further converted into apocarotenoids by CCDs 

or other oxygenases. Here, three apocarotenoids of high commercial values are highlighted 

here. Retinol, or vitamin A, is one of the most important apocarotenoids to humans. Retinol 

exhibits an essential function in vision, bone development and also promotes skin health as an 

anti-oxidant [83]. The other two are aromatic molecules, α-ionone, which naturally exists in 
raspberry, and β-ionone, which is found in many flowers, for example, rose, osmanthus and 
violet [84]. The chemical synthesis of these three molecules is not very difficult and contrib-

utes significantly to the current market share. However, consumers prefer natural derivatives 
and are willing to pay higher prices for natural ingredients [19]. As mentioned in the intro-

duction, the extremely low concentrations in natural plant materials make their extraction 

an extremely expensive process. Consequently, the fermentation of engineered microbes is a 

promising alternative route.

4.1. Biosynthesis of retinol or vitamin A

As an important nutritional compound and an active cosmetic ingredient, retinol market size 

is estimated at 1.6 billion dollars [85]. Jang et al. pioneered retinol production in metabolically 

engineered E. coli [85]. Unlike carotenoids that are stored intracellularly in the lipid structures 

of microbes, apocarotenoids are smaller and thus can pass the cell membrane into the cul-

ture media. Consequently, a two-phase culture system was applied to capture extracellular 

retinol and improve its production by minimizing its degradation [85]. The same group later 

identified a gene (ybbo) that has retinal reductase activity that converts retinal into retinol. 

Progress in Carotenoid Research94



Consequently, overexpression of the YBBO enzyme improved the final yield (76 mg/L) and 
purity (88%) of retinol in the final products [86]. Based on our lycopene chassis strain, we 

developed a ‘plug-n-play’ system that could easily adapt our E. coli strain into different apoca-

rotenoids, such as α-, β-ionones and retinol [19] with promising results obtained (Figure 3).

4.2. Biosynthesis of α- and β-ionone

Both α-ionone and β-ionone have exceptional aroma activities as their odor threshold is 
at the sub-ppb range [7, 87]. Hence, they have been widely used as fragrance molecules in 

cosmetics and perfumes. As consumers prefer natural ingredients, the market demand for 

natural ionone is increasing dramatically. In addition, there is a chiral center for α-ionone. 
Natural α-ionone from plants (such as raspberry) is (R)-(+)-(E)-alpha-ionone. In contrast, 
synthetic α-ionone has two isomers (R and S). The R-enantiomer has a unique and strong 
floral flavor and aroma, described as a violet-like, fruit-like or raspberry-like flavor, while the 
S-enantiomer is woody or β-ionone like. Lashbrooke et al. did a proof-of-principle production 
of α-ionone at about 300 ng/L [88]. By coupling the modular metabolic engineering approach 

and enzyme engineering methods (N-terminal truncation and protein fusion), we developed 

an E. coli strain to produce ‘natural identical’ α-ionone at almost 500 mg/L, about 1400 times 
higher than that previously reported [19] (Table 3). Similarly, Phytowelt (www.phytowelt.

com), a German company, has also developed an E. coli-based process to produce α-ionone, 
demonstrating that it has attracted more commercial interest.

Figure 3. A ‘plug-n-play’ platform for biosynthesis of apocarotenoids. Adapted from author’ s paper [19]. crtY—lycopene 

beta-cyclase; CCD1—carotenoid cleavage dioxygenase; BCDO (or blh)—β-carotene dioxygenase; ybbO—NADP+-
dependent aldehyde reductase.
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Although several groups have attempted to produce β-ionone using yeast or E. coli, their yields 

are relatively low. Simkin et al. firstly engineered E. coli cells to synthesize β-ionone but with 
only detectable trace amounts being reported [89]. Beekwilder et al. engineered Saccharomyces 

cerevisiae for the production of β-ionone; however, the titer achieved was only 0.22 mg/L [87]. 

López et al. inserted extra copies of geranylgeranyl diphosphate synthase gene and CCD1 

gene from the plant Petunia hybrid, which enabled their S. cerevisiae strain to produce about 

6 mg/L of β-ionone when grown in a bioreactor [90]. To date, the best-reported β-ionone 
strain was from our laboratory, where the engineered E. coli strain produced 500 mg/L of 

β-ionone [19] (Table 3).

5. Challenges and potential for the commercialization of microbial 

production of carotenoids and apocarotenoids

In general, the chief challenge for commercializing microbial production of chemicals is rela-

tively high cost. The cost depends mainly on titer, rate (or productivity) and yield (or ‘TRY’) 

[91]. Hence, researchers are inventing and exploring different approaches to engineer microbes 
to obtain TRY figures of merit. Until then, it would not be cost effective or competitive to other 
sources (such as chemical synthesis). The good news is that carotenoids and apocarotenoids 

are high-value specialty chemicals; thus, their requirements for commercialization are less 

stringent as compared to fuels and commodity chemicals. For example, the current processes 

of β-carotene production in microalga Dunaliella [21] and the fungus Blakeslea trispora [2] are 

already profitable. Many recent cases of microbial production of carotenoids have reached 

No. Hosts Apocarotenoids Titer (mg/L) Specific 
titer (mg/g 

DCW)

Culture 

conditions

References

1 Escherichia coli Retinol 54 6.3 2–3 days in flasks [85]

2 Escherichia coli Retinol 76 9.8 2–3 days in flasks [86]

3 Escherichia coli Retinol 28 10.0 2 days in flasks [19]

4 Saccharomyces cerevisiae β-Ionone 0.22 / 2–3 days in flasks [87]

5 Saccharomyces cerevisiae β-Ionone 6 1.0 2–3 days in 

bioreactors

[90]

6 Escherichia coli β-Ionone 500 16.0 2 days in 

bioreactors

[19]

7 Escherichia coli α-Ionone 340 ng/L / 2 days in flasks [88]

8 Escherichia coli α-Ionone 480 7.0 2 days in 

bioreactors

[19]

Table 3. Microbial production of retinol, α- and β-ionones in literature.
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TRY figures [46, 47, 71] higher than existing processes. It is not surprising that some of them 

will be translated into more cost-effective industrial processes. More importantly, scientists 
and engineers are working together to continue improving microbial strains and fermenta-

tion processes. Breakthrough by innovation and collective knowledge will markedly reduce 

product cost and make it more competitive. In addition, the recent trend of consumers’ pref-

erence to ‘natural’ or ‘bio-based’ ingredients will make microbial-derived carotenoids and 

apocarotenoids more appealing.

6. Conclusion

Amid diverse natural products, carotenoids and apocarotenoids are particularly interesting. 

This is not only due to their bright color and pleasant fragrances but also their light-harvest-

ing capability, the electron/energy transferring ability, the potent anti-oxidant properties, 

the hormone function, vitamin A activity and numerous other health benefits to both human 
and other life forms on the Earth. Increasingly, clinical studies have supported the concept 

that the regular uptake of carotenoids can prevent many serious diseases. The list of benefits 
and applications keeps growing and with the market for commercial exploitation it can be 

confidently expected to increase. In light of this and the extremely low levels found in plant 
materials, it is urgent to find solutions enabling these valuable molecules to be supplied in 
a sustainable and cost-effective manner. In the past decade, the metabolic engineering of 
microorganisms has progressed remarkably for the production of carotenoids and apocarot-

enoids. Some of these processes are being commercialized already but the scope to further 

extend this family of molecules is high, adding an increasingly solicited pipeline of natural 

products to compete with chemical synthesis.
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