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1. Introduction     

Fault detection, analysis, and recovery with effective monitoring in distributed systems is a 
challenging research problem due to the exponential growth in scale and complexity of 
system resources and applications, the continuous changes in software and hardware 
configurations, and the heterogeneous services being offered and deployed. In spite of 
enormous advances in hardware and software technology, there are many uncertainties and 
unpredictable operations in distributed systems that could be triggered by one or a 
combination of several events such as  network failures, intermittent software failures, bugs 
in software and services, etc. Various distributed systems especially employed in safety-
critical environments must work correctly in spite of the occurrence of faults. 
The fault detection and analysis approach presented in this chapter is based on 
hardware/software fault tolerance techniques and data mining techniques including 
regression trees, neural networks, multivariate linear regression, fuzzy classification, logistic 
regression, classification tree, naïve bayes , and sequential minimal optimization. 
In this chapter, we present an innovative approach to detect faults (hardware or software) 

and also identify the source of the faults. Our online monitoring mechanism collects 

significant interactions among system state components such as CPU, memory, I/O, and 

network interface in real-time between all the components of a distributed system. We 

record and trace these runtime properties and analyze all the interactions using data mining 

and supervised learning techniques to acquire the rules that can accurately model the 

normal interactions among these components. We have implemented an anomaly-based 

fault detection engine and used it to detect faults in a typical multi-tier web based 

ecommerce environment that implements ecommerce transactions based on the TPC-W web 

ecommerce benchmark (TPC-W, 2005). 

The organization of the remaining sections of the chapter is as follows. In section 2, we 

review related work. In section 3, we explain theoretical framework including system 

presentation, normal and abnormal definition with system interfaces and attribute 

definitions. In section 4, we present anomaly analysis methodology to implement efficient 

fault detection and analysis. We discuss data sources, training and testing data and fault 

types used in our experiments and then present our experimental results and evaluation of 

our approach in section 5 and 6. In section 7, we summarize the chapter and discuss future 

research activities. O
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2. Related work 

Fault detection and analysis has always been an active research area due to its importance to 
distributed systems and their applications. It is necessary for the system to be able to detect 
the faults and take the appropriate actions to avoid further degradations of the service. In 
this section, we classify fault detection techniques based on different categories such as 
hardware and software techniques and based on the detection schemes such as statistical 
methods, distance and model based methods and profiling methods. 

2.1 Hardware based 

(Reinhardt & Mukherjee, 2000) proposed Simultaneous and Redundant Threading (SRT) to 
provide transient fault coverage with high performance by taking advantage of the multiple 
hardware contexts of Simultaneous Multithreading (SMT). It provides high performance by 
using active scheduling of its hardware components among the redundant replicas and 
reduces the overhead of validation by eliminating cache misses. (Ray et al., 2001) proposed 
modern superscalar out-of-order datapath by modifying a superscalar processor’s micro-
architectural components and validating the redundant outcomes of actively duplicated 
threads of execution, while the fault recovery plan uses the branch-rewind mechanism to 
restart at a place which error happened. Commercial fault-tolerant systems combine several 
techniques such as error correcting codes, parity bits and replicated hardware. For example, 
Compaq Non-Stop Himalaya (Wood, 2004) employs ‘lockstepping’ which runs the same 
program on two processors and compares the results by a checker circuit.  

2.2 Software based 

(Reis et al., Dec. 2005) introduced PROFiT technique regulating the stage of reliability at fine 
granularities by using software control. This profile-guided fault tolerance determines the 
weakness and performance trade-offs for each program region and decide where to turn on 
and off redundant by using a program profile. (Oh et al., 2002) proposed Error Detection by 
Duplicated Instructions (EDDI) which copies all instructions and inserts check instructions 
for validation. Software based mechanisms present high reliability gain at low hardware 
cost and high fault coverage. However the performance degradation and failure to directly 
check micro-architectural components result in another trend of fault detection, hybrid 
redundancy techniques (Reis et al., June. 2005) such as CompileR-Assisted Fault Tolerance 
(CRAFT).  
We classify detection and analysis strategy based on the following approaches such as 
statistical, profiling, model-based, and distance-based methods.  

2.3 Statistical methods 

This method traces the system behavior or user activity by gauging variables over time such 
as event message between components, system resource consumption, login/out time of 
each session. It maintains averages of these variables and detects the anomaly behavior by 
making a decision whether thresholds are exceeded based on the standard deviation of the 
variables monitored. It also compares profiles of short/long term user activities using 
complex statistical models. (Ye & Chen, 2001) employs chi-square statistics to detect 
anomalies. In this approach, the activities on a system are monitored through a stream of 
events and they are distinguished by event type. For each event type, the normal data from 
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audit events are categorized and then used to get chi-square for difference between the 
normal data and testing data. It considers large deviations as abnormal data.  

2.4 Distance based methods 

One of the limitations of statistical approaches is that it becomes inaccurate and hard to 
calculate approximately the multidimensional distributions of the data points when outlier 
detection exists in higher dimensional spaces (Lazarevic et al., 2006). Distance based 
methods try to overcome this limitation and identify outliers by computing distances among 
points. For example, (Cohen et al., 2005) presents an approach using usual clustering 
algorithms such as k-mean and k-median to get the system status.  The difference with 
others focusing on clustering algorithm is that they use a signature and show the efficacy for 
clustering and connection based recovery by means of distinguished techniques such as 
pattern recognition and information retrieval.  

2.5 Model based methods 
This method describes the normal activity of the monitored system by using different types 
of models and identifies anomalies as divergence for the model that characterizes the 
normal activity. For example, (Maxion & Tan, 2002) obtains a sequential data streams from a 
monitored procedure and employs a Markov models to decide whether the states are 
normal or abnormal. It calculates the probabilities of transitions between the states using the 
training data set, and utilizes these probabilities to evaluate the transitions between states in 
test data set.  

2.6 Profiling methods 

It builds profiles of normal behavior for diverse types of systems, users, applications etc., 
and variations from them are regarded as anomalous behaviors. These profiling methods 
vary significantly different data mining techniques while others use various heuristic based 
approaches. In data mining methods, each case in training data set is configured as normal 
or abnormal and a data mining learning algorithm is trained over the configured data set. 
By using these methods, new kinds of anomalities can be detected in fault detection models 
with retraining (Lazarevic et al., 2006). (Lane & Brodley, 1999) uses a temporal sequence 
learning technique in profiling Unix user commands for normal and abnormal scenarios. It 
then uses these profiles to detect any anomalous user activity. Other algorithms for fault 
detection include regression trees, multivariate linear regression, logistic regression, fuzzy 
classification, neural networks and decision trees.  

3. Theoretical framework 

3.1 System presentation 
Consider a general n input m output nonlinear dynamic system which can be expressed by 
the Nonlinear Auto Regressive Moving Average (NARMA) model (Chenand & Billings, 
1994) as 

 

( ) ( ,  u, )

         { ( 1) , ( 2) ,. . . , ( )}

        u { ( 1) , ( 2) ,. . . , ( )}

y k f y

y y k y k y k n

u k u k u k m

θ

γ γ γ

=

= − − −

= − − − − − −

9 9

  (1) 
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where : ,P Qf ℜ ×ℜ →ℜ  with 
1

m

i
i

P p
=

=∑ , 
1

n

j
j

Q q
=

=∑  is the mathematical realization of 

the system dynamics for the th9  output. ( )y k ∈ℜ  is the output of the system at sample 

instant k, ( )u k ∈ℜ  is the input to the system. p  and q  are the lengths of the regression 

vectors of y  and u , respectively. f  is a recognized nonlinear function describing the 

dynamic characteristics of the system. γ  is the relative degree of the system. n and m are 

known system structure orders. θ is the system parameter vector whose unanticipated 

changes are regarded as faults in the system. It represents all the potential faults in the 

nonlinear system such as sensors and processes. 

In our research, we use available system input and output, respectively u  and y  to detect 

and predict any undesirable changes in θ. To simplify the presentation, we assume that 

during the initial stage [0, ]k T∈ , the normal and healthy values of these values are 

available and can be obtained from the system under consideration. There is a certain 

normal trajectory related with system interfaces. So, we can say the system parameter vector 

in normal activities is θN.  It means that there is a known θN  such that 

  Nθ θ=   (2) 

To define the system abnormality, we may construct a redundant relation such that 

 ( ) | ( ) ( ,  u , ) |Nm k y k f y θ= −9 9 9   (3) 

If m(k) is large enough by checking the values against a pre-specified threshold, we say there 

is abnormality in the system. Contrarily, if m(k) is very small, the system is normal.   

3.2 Normal and abnormal definition with system interfaces 

We develop a systematic framework for identifying potential system abnormality. Ψ  

denote the system attributes, and ◊Ψ  is the set of sequences over the alphabet Ψ . We say 

that system attributes S ◊∈Ψ  is accepted by the detection system if executing the sequence 

S = {S1, S2, S3, …..  } does not trigger any alarm. Let N ◊⊆ Ψ  denote the set of system 

attributes allowed by the detection system, i.e., 

 { }  :  S  is  accepted by the detect ion sys tem defN S ◊∈Ψ   (4) 

Also, let A ◊⊆ Ψ   denote the set of system attributes that are not allowed by the detection 

system, i.e., 

 :  S is  an equivalent variant  
  

            on the given suspicious sequence 

def S
A

◊⎧ ⎫∈Ψ⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 (5) 

Now we can state the conditions for the existence of abnormality in distributed systems. The 

set   AN ∩  is exactly the set of system attributes that give the suspicious or abnormal status 

to host without detection, and thus the abnormalities are possible if  A  N ≠ ∅∩ . 
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3.3 Attribute definitions 

We use the following attributes for the abnormality analysis: Attribute rate (AR) per target 
attribute, Component rate (CR) per target component, Aggregate System rate (ASR) per 
target system and Number of abnormal session (NAS) 
Definition 1 
AR per target address is used to find out the current flow rate for a given target IP address  
Pj as observed by a interface monitor and can be computed as in (1) 

 
2

( ,  ,  )  { ( )} T

T

i j

t T

AR A P t DT t

=

= ∑   (6) 

where DT denotes the number of data belonging to attribute Ai and to a target Pj within a 
given time T. 
Definition 2 
CR per target address is used to determine the current flow rate as observed by a Interface 
monitor for all the attributes Ai that go through the same interface (Ik) and have the same 
target IP address (Pj). This metric can be computed as in (2) 

 
 

( ,  ,  )   ( ,  ,  )k j i j
i

CR I P t AR A P t
∀

= ∑   (7) 

Definition 3 
ASR per target address denotes the current flow rate for a given target IP address Pj as 
observed by Interface monitor 

 
 

( ,  )   ( ,  ,  )j k j
k

ASR P t CR I P t
∀

= ∑   (8) 

Definition 4 
NAS the number of abnormal sessions for a target Pj  as observed by Interface monitor 

 
 

( ,  )  (1 )j i
i

NAS P t S
∀

= −∑   (9) 

where Si is a binary variable that is equal to 1 when the session is successful and 0 and when 
it is not. 

4. Abnormality analysis methodology 

Our approach is based on autonomic computing paradigm that requires continuous 

monitoring and analysis of the system state, and then plan and execute the appropriate 

actions if it is determined that the system is deviating significantly from its expected normal 

behaviors as shown in Figure 1. 

By monitoring the system state, we collect measurement attributes about the CPU, IO, 
memory, operating system, and network operations. The analysis of this data can reveal any 
anomalous behavior that might be triggered by failures. 
Once a fault is detected, the next step is to identify the appropriate fault recovery strategy to 
bring the system back into a fault-free state. In this paper, we focus on monitoring and 
analyzing the interactions among these components to detect any hardware or software 
failures. 
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Fig. 1. Self-healing Engine 

4.1 Monitoring and analysis of system component operations 

The first step is to identify a set of measurement attributes that can be used to define the 
normal behaviors of these components as well as their interactions with other components 
within the distributed system. For example, when a user runs a QuickTime application, one 
can observe certain well defined CPU, Memory and I/O behaviors. These operations will be 
significantly different when the application experience un-expected failure that leads to 
application termination; one can observe that the application, although consuming CPU and 
memory resources, does not interact normally with its I/O components. 
These monitored data are analyzed using two types of vector-based (VR) metrics (Wood, 
2004): Local-VR (LVR) and Global-VR (GVR). The LVR is used to evaluate the interface 
interaction, detection, analysis and recovery measurements associated with a specific fault, f, 
in the set of faults in the fault hypothesis, F as shown in Equations 10-13: 

 
i interfaces f = ( CPU,MEM,I/O,NET,OS)FLVR ∈

iiiiif
  (10) 

 
i detect ion f  =  (  AR,  CR, ASR, NAS,  Precis ion,  

                            Recall ,  F-measure,  False  negat ive rate ,  

                            Fals  posi t ive rate ,  T ime to  detect ,  . . .  )

FLVR ∈
iiiiif

  (11) 

 i analysis  f = (  Accuracy,  T ime to analyze,

                           Analyzed or  not? )

FLVR ∈
iiiiif

  (12) 

 i recovery f = ( Accuracy,  T ime to  recover,  

                            Recovered or not? )

FLVR ∈
iiiiif

  (13) 

‘CL’ refers to metrics measured on the client, and ‘DB’ refers to metrics measured on the 
database server. Equation (10) is used to identify the measurement attributes associated 
with the interactions among system components. When a specific fault, e.g. application 

abnormal termination is generated in the system,  
i interfaces f FLVR ∈

iiiiif
 is composed with the 
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related measurement attributes. For example, 
i interfaces f FLVR ∈

iiiiif
 in abnormal termination of 

QuickTime application will consist of measurements of user CPU, active memory in 
directory and I/O read activities as shown in Equation 10. Equation 11 describes several 
metrics used to find out the characteristic of interfaces explained in section 3.3 and evaluate 
the performance of the fault detection strategy using several metrics: 1) False negative rate is 
the percentage of abnormal flows incorrectly classified as normal 2) Precision is the 
proportion of correctly detected abnormal flows in the set of all normal flows returned by 
detection. 3) Recall is the number of correctly detected abnormal flows in retrieved as 
fraction of all abnormal flows. And 4) F-measure is used to quantify the trade-off between 
recall and precision. All these performance metrics were explained in (Kim & Hariri, 2007).  
Equation 12 and 13 evaluate the accuracy of our approach using several metrics such as: 1) 
Accuracy is used to estimate whether all actual faults are correctly identified. 2) Time to 
analyze/recovery is used for measuring the time taken the system to analyze/recovery from 
faults. 
The global vector based metric GVR quantifies in a similar way to LVR the quality of the 
analysis, detection and recovery as shown in Equations 14-16. 

  detection  = ( Throughput, Response t ime, Availability,

                       Cost,  Time )

GVR
iiiiif

  (14) 

  analysis  = ( Throughput, Response time, Availability,

                      Cost, Time )

GVR
iiiiif

  (15) 

  recovery  = ( Throughput ,  Response t ime,  Avai labi li ty,

                       Cost ,  T ime )

GVR
iiiiif

  (16) 

The main difference between LVR and GVR is in defining the target. That means LVR is 
used to evaluate the measurements associated with a specific fault in the set of faults but 
GVR is used to evaluate the role of the target system in a given environment. LVRs in each 
fault have an effect on the GVR. For example, if there is a memory related fault, we may see 

interface interactions in interfacesLVR
iiiiif

 resulting in value changes in detect ion  LVR
iiiiif

. These 

changes also affect detect ionGVR
iiiiif

allowing us to evaluate the healthiness of the target 

system. This operation flow is depicted in Figure 2. We need this classification because our 
target system to detect the faults is in the domain of distributed system. Equations (14), (15), 
and (16) describe the metrics to measure the performance of the target system in detection, 
analysis, and recovery: 1) Throughput is the summation of data rates sent to all system 
nodes. 2) Response time means the time taken to react to a given goal such as ‘detect’ and 
‘recover’ in the system. 3) Availability is the ratio of the total time through which the system 
is available to the overall total time. 
Normal execution will have a certain trajectory with respect to system interfaces as shown in 
Figure 2. For example, if the disk is behaving normal without any fault, this can be 
recognized by obvious disk trajectory over time. In case of abnormal state, all information 
monitored in the normal state will have different trajectories. We capture and monitor this 

trajectory features, train this interface trajectory with LVR
iiiiif

 and  GVR
iiiiif

 by using rules 

generated from the training data set and apply them at runtime. It shows normal trajectory 

drifting to suspicious trajectory by exemplifying one of 
i interfaces f  FLVR ∈

iiiiif
 and one of 
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Metric Description 

var_CL_CPUIF 
_KERNAL 

variance of the number of kernel time spent on client received 
through cpu interface 

var_CL_CPUIF 
_USER 

variance of the number of user time spent on client received 
through cpu interface 

val_CL_MEMIF_ACT
IVE 

value of number of memory hat has been used more recently 
and usually not reclaimed unless absolutely necessary received 
through memory interface on client 

val_CL_MEMIF_IN_
DIR 

value of number of memory that takes more work to free on 
client 

val_CL_MEMIF_IN_
TARGET 

value of number of memory that kernel uses for making sure 
there are enough inactive pages around on client 

val_CL_IOIF 
_READ 

value of IO load read received through IO interface on client 

val_CL_IOIF 
_WRITE 

value of IO load read received through IO interface on client 

var_DB_IOIF 
_READ 

value of IO load read received through IO interface on database 
server 

val_CL_CON 
_SWITCHES 

value of the number of context switches that counts the number 
of times one process was ``put to sleep'' and another was 
``awakened'' on client 

Table 1. A sample of metrics used to characterize the interaction among components 

 detect ionGVR
iiiiif

 metrics over time. Rules can be formed of the interface metrics including 

states, events, state variables and time of transitions. These rules are generated to evaluate 
system healthiness as following: 

Rule 1: j  T  ( , )i t a jM I M t t k≤ ≤ ∈ +  

Interface tI  in some time k starting at time jt  is delimited by high value  aM  and low 

value iM  when defined normal flow occurs. 

 

Fig. 2. Abnormality identification: LVR and GVR drift 
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Rule 2:   ( , )  =>   ( , ) 
i n a j j i a a g g
M I M T t t k M I M T t t r′ ′≤ ≤ ∀ ∈ + ≤ ≤ ∀ ∈ +  

Interface nI  delimited by high value aM  and low value iM  in time k will affect another 

interface aI  delimited by high value aM ′  and low value iM ′  and it will last some period r. 

This rule is about interaction among interfaces and it needs higher latency than the previous 
rule because of matching more interfaces 
We build a fault detection prototype to demonstrate the utility of VR metrics to detect faults. 
Figure 3 shows a sampling of metrics among more than 40 interfaces and real data 
monitored at the client side. For clarity, we pick a sample of metrics as shown in Table 1. All 
data monitored in the experiment with fault injections are stored in a database and the rules 
are generated during the training stage. In Figure 3, the set of data from time t0 to the time 
before ti is normal with respect to a given workload. The first injected fault at ti shows the 
interaction with 5 interfaces such as var_CL_CPUIF_KERNAL, val_CL_MEMIF_ACTIVE, 
val_CL_MEMIF_IN_DIR, var_CL_CPUIF_USER, and val_CL_MEMIF_IN_TARGET.  

2398477312961562412518481.59218.408

2504412312921595612516882.0917.9104

3644313061218761330441.99010.99503

2993493062423781329566.46773.9801

3961978312961554412535683.58216.4179

4562012313121610012535685.57214.4279

30832630608109813424814.477621.48756

3123913061257913362815.472622.98507

289478313201591212451641.0917.9104

299345313241698012450838.07514.9254

4015123061201345565.47264.47761

25433530608581347965.47269.95025

387354312681652012485281.59218.408

398243312441581612484483.58216.4179

2653123061215413431631.49311.99503

5123903061224513431218.99513.49751

3092093061220913431225.9954.99503

311222306129813431620.9957.49254

4324783061212313431610.9956.49751

2344233060813513590835.3234.47761

654398306122313560016.4185.47264
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Fig. 3. A sampling of metrics and data monitored at a client side 

We use these interfaces to catch the abnormality caused by the fault. All these 5 interfaces 

show significant difference when compared to normal value. The second injected fault is at 

tk. In this case, there are three major interfaces and two minor interfaces. Major interfaces 

include val_CL_MEMIF_ACTIVE, val_CL_MEMIF_IN_DIR, and 

val_CL_MEMIF_IN_TARGET while minor interfaces include var_CL_CPUIF_KERNAL and 

var_CL_CPUIF_USER. At time tl, if we consider only minor interfaces, it will cause false 

alarm because of the similarity of these states to normal states. The interfaces are used to 

form two types of significant rules that depend on injected faults. For example, the fault 

injected at tm results in increase in read load that is related to IO but the fault at tr results in 

the increase of write load. From the above, several types of rules can be generated as 

following: 

• j
20 var_ _ _ 40   T  ( , )

t j
CL CPUIF KERNAL t t k≤ ≤ ∈ +  

• j
5 40   T  ( , )

j
ResponseT ime t t k≤ ≤ ∈ +  
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• 
 1 2 7 8 4 5 _ _ _ 1 3 9 8 2 1,  

5 1 3 4 _ _ _ _ 1 9 3 2 1 

a n d  1 3 9 5 v a r _ _ _  ( , )  j j

v a l C L M E M I F A C T I V E

v a l C L M E M I F I N D I R

C L I O I F R E A D T t t k

≤ ≤
≤ ≤

≤ ∀ ∈ +

 

• 

 0132 _ _ _ _ 9846 and  

20 va r_ _ _ 40 ( , )  

= >    ( , ) 

t j j

i a g g

va l CL MEMIF IN DIR

CL CPUIF KERNAL T t t k

M Throughpu t M T t t r

≤ ≤

≤ ≤ ∀ ∈ +

′ ′≤ ≤ ∀ ∈ +

 

The first rule explains that when the number of kernel time spent on client received through 
cpu interface is larger than and equal to 20 and less than and equal to 40 in time interval k, it 
is abnormal. The second and third rules are about response time, number of active memory 
and dirty memory and value of I/O load read.  In Fourth rule, we didn’t include it in our 
experiments but may classify the interactions more. It means that we can achieve high 
detection rate by revealing their behaviors and states by virtue of their interactions among 
interfaces. These kinds of rules are applied in the experiments to detect abnormal flows and 
increase the performance. 

4.2 Abnormality analysis algorithm 

Our approach for abnormality analysis to achieve self-healing system is anchored in 
behavior modeling and analysis of system component impact with rule based. Suppose we 

have λ system attributes (SA). Then, the flow behavior of SA can be represented as 

 ( ,  R)  {  ( ) ,  ( 1) ,  . . . ,  ( R)}SA t SA t SA t SA t= + +9 9 9 9   (17) 

where R is preliminary block to acquire in-control data to determine the mean S A and 

covariance matrix S. These values are used to verify normal interactions with respect to the 

λ system attributes. The mean S A  determines the normal region center and the 

sample covariance matrix S determines the shape of the normal region. We apply this idea 
to attribute definition such as AR, CR, and ASR explained in section 3.3 to quantify how 
close/far the current flow state of a component from the normal state for a given fault 
scenario which quantifies the current flow state of the system component based on the 
current values of one or more monitored attributes. The normalized abnormality extent 
degree (AED) with respect to each attribute is defined as 

 

2
( , ) ( )

( ,  )  
( )

j j
j

S A j

S A t P A R P
A E D t P

P

λ

σ

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦9

9
9   (18) 

where AR denotes attribute rates to find out the current flow rate for a given target IP 

address Pj as observed by a interface monitor and  S Aσ
9

is the variance under the 

normal operation condition corresponding to flow. ( )S A t9 is the current value of 

system attribute  λ. 
Figure 4 shows the rule-based analysis for abnormality detection algorithm used by our 
monitoring and analysis agents that compute and evaluate the attributed definition. During 
the training stage (line 2), we monitor and collect system attributes where R is the 
preliminary block to obtain in-control data (line 3). To acquire rule set (line 4), we input the 
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data set into a rule engine (Cohen, 1995) that produce a rule set. After we get the rule set, we 
configure the key attributes to gauge attribute definition (line 5 and 6). Once the training 
stage is completed, process q is applied to real data (line 7). In this algorithm, K (line 9) 
denotes the number of observations and 15 is used for the number of observations. Attribute 
definition including abnormality extent degree will be computed for any new observation 

(line 11). If abnormality extent degree is beyond the normal thresholds and ( )tSA violates 

the rule set, then the system is assumed to be operating in an abnormal state, and then the 
recovery algorithm is activated to carry out the appropriate control actions such as 
restarting from the initial point and notifying the information to agents (line 12 and 13). 
Once accumulating K observations, the thresholds will be revised (line 14 and 15). 
 

 Process p: 
1. Ruleset := 0 
2. While (Training) do  

3. Monitor&Collect (
1 2 3( ), ( ) , ( ) ,. . . , ( )Rt t t tSA SA SA SA ); 

4. RuleSet  = Acquire_ RuleSet  ( S A 9 ); 

5. Configure_Important_Attributes ( RuleSet ); 

6. AED/AR/CR/ASR ä Gauge_Attribute_Definition; 
7. EndWhile 
Process q: 
8. Repeat Forever 
9. For (t = 1 ; t < K) do 
10.  Monitor&Collect   (

1 2 3( ), ( ) , ( ) ,. . . , ( )Pt t t tSA SA SA SA ); 

11.  D = Evaluate_Attribute_Definition( ( )tSA ); 

12.  If ((D > Threshold)&&( ( )t RuleSetSA ∈ )) 

13.   Anomaly_Analysis & Detection ( ( )tSA );  

                               apply rule and  attribute definition both 
14.  If (t = K) 
15.   Revise_Threshold_Weights() 
16. End For 
17. End Repeat 

Fig. 4. Rule-based analysis for abnormality detection algorithm 

5. Problem definition 

This section illustrates the fault detection problem, including the data source, abnormal 
loads, training data and testing data.  

5.1 Data source 

In our evaluation, we use TPC-W, an industry standard e-commerce application to emulate 
the complex environment of e-commerce application.  
As shown in Figure 5, the system is used to run a typical end user e-commerce activity 
initiated through a web browser and consisting of several TPC-W transactions. It defines 3 
types of traffic mixes such as browsing mix, shopping mix and ordering mix and specifies 14 
unique web transactions. In our environments, the database is configured for 288,000 
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customers and 10,000 items. According to the TPC-W specification, the number of 
concurrent sessions is executed throughout the experiment to emulate concurrent users. The 
maximum number of Apache clients and maximum Tomcat threads are set to 90. The 
workloads are generated by the workload generator that varies the number of concurrent 
sessions and running time from 90 to 300 seconds. Also, we developed abnormal workload 
generator which will be defined later. It allows us to make and track the system abnormally 
behavior. 
 

 

Fig. 5. TPC-W Benchmark E-commerce Application 

While every components and workloads are given to the system, we monitor all system 
interactions and measure different lots of feature including the CPU, IO, memory, operating 
system, and network devices. The analysis of these features reveals any anomalous behavior 
that might be triggered by failures in any hardware or software component of the three-tier 
web based distributed system.   

5.2 Abnormal loads 

The abnormal loads used in this paper include generally accepted definition (Avizienis et 
al., 2000), fault and error. If we borrow the concepts, a fault is the cause generating the 
system corruption and an error that results in the failure is the system state corrupted. We 
both inject faults such as system corruption and errors such as directly throwing an 
exception. In our chapter, we usually call fault and error as fault or abnormal loads. 
To enlighten our variety in abnormal loads, several papers (Oppenheimer et al., 2003) 
(Nagaraja et al., 2003) (Chen et al., 2002) are considered as a previous study in faults injected 
in their experiments. Some of them focus on triggering only application level failures; others 
inject the faults concentrated on problems that cause program crashes or byzantine faults. 
We believe that there are system interaction symptoms that characterize how system will 
respond to a fault injected. Thus, we have confidently decided to include software failures 
as well as hardware failures in complex distributed systems. Table 2 shows the types of fault 
classes to be used by our rule based fault detection scenarios. The fault classes can be 
broadly classified into two groups such as hardware and software. Each group is also 
divided into three types such as severe, intermittent and lenient. 
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In these experiments, we inject seven different types of faults explained in Table 2. We 
categorize and inject these faults by building three different categories. First category is 
application corruption regarding 3 different types of TPC-W traffic such as browsing, 
ordering, and shopping. We model faults that are triggered by the interfaces including 
interactions between an application and the operating system or between an application and 
other function libraries. These faults injected are from shared libraries into applications to 
  

Fault class Faults 

Software, severe, 
intermittent 

• TPC-W browsing – corruption (Segmentation Fault) 

• TPC-W ordering – corruption (Segmentation Fault) 

• TPC-W shopping – corruption (Segmentation Fault) 

Hardware, lenient 
intermittent,  

• Network disconnection 

Software, severe or 
lenient, intermittent 

• Declared exceptions and undeclared exceptions such as 
Unknown host Exception 

• Infinite loops interfering and stopping the application 
request  from completing 

• DB failure – Access denied 

Table 2. Fault cases injected 

test the capability of applications to handle faults from library routines referring the fault 
injection technique [10]. We inject the faults using 3 different system calls such as read (), 
write (), and close () and observe the effect of injected faults related with interfaces. 
Hardware faults such as network failure are considered next. It allows us to isolate the node 
by removing the connection from the network interfaces. Third one is about database related 
failure such as access denial and application exceptions such as declared exceptions. 
Because java based e-commerce application engenders various different kinds of failures 
from programmer faults to IO faults, injection of exception faults are apposite to reveal the 
abnormal behavior of e-commerce application by tracking system interactions. Here, we 
injected declared exceptions which are often handled and masked by application itself such 
as unknown host exception and also infinite loops interfering and stopping the application 
request from completing. All these faults happen in the process of TPC-W transaction. We 
believe that the selected faults span the axes from expected to unexpected/undesirable 
behaviors and divulge the relationship of system interaction for the problems that can occur 
in a real life. 

5.3 Training and testing data 
In this study, we have several kinds of data set composed of different number of normal 
flows and abnormal flows. Our experiments are composed of four kinds of classes such as  
trustworthiness for fault, noise and data types and performance validation for testing data 
sets. These training data sets and testing data sets are gathered by tracing normal and 
abnormal activities. Normal activities and abnormal activities are emulated to produce these 
data sets by injecting our faults. 
First experiment mentioned in section 6.1 is about trustworthiness and validation of our 
approach for each fault types. We implement and evaluate four scenarios. Fault scenario 1 
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(FS1) focuses on faults triggered by application corruption using three different types of 
TPC-W traffic such as browsing, ordering , and shopping. The data set used in scenario 1 
consist of 23355 normal flows and 347 abnormal flows. Fault scenario 2 (FS2) considers 
hardware faults such as network disconnection. The data set consisting of 23355 normal 
flows and 70 abnormal flows. Fault scenario 3 (FS3) considers application and database 
faults such as declared exceptions, infinite loops, and database access denial. The data set of 
FS3 contains 23355 normal flows and 230 abnormal flows. Fault scenario all (FSA) includes 
all faults explained in section 5.2 and the data set consisting of same number of normal 
flows previously mentioned and 647 abnormal flows.  
The data utilized in section 6.2 employs noise curves such as negative noise (NN) by varying 

the ratio of abnormal flows in the normal set from 10% to 90% incrementing by 10% each 

and positive noise (PN) by varying the ratio of nomral flows in the abnormal set from 10% 

to 90% incrementing by 10% each to evaluate the resilience of detecion algorithm and traced 

the error rate at each noise ratio points. Each NN and PN data set is consists of 650 abnormal 

flows and 23354 normal flows, respectively. 

The experiment explained in section 6.3 reveals the impact of bulk training data set by 

composing data based on the specification supplied with the industry standard e-commere 

environments and includes the four scenarios. Data scenario 1 (DS1) consists of the 

abnormal set containing normal set containing 23354 flows and 650 flows that are using 

negative noise curves by varying the ratio of abnormal flows in the normal set from 10% to 

90% with 10% increment. Data scenario 2 (DS2) also applies the negative noise curves to 

explore the correlation in trustworthiness with abnormal flows by building more abnormal 

flows. The data set is composed of the normal set containing 23354 flows and abnormal set 

containing 650 flows for data scenario 3 (DS3) and the normal set containing 46000 flows 

and abnormal set containing 650 flows for data scenario 4 (DS4). Both scenarios employ 

positive noise curves by varying the ratio of normal flows in the abnormal set to explore the 

correlation in trustworthiness. We use the testing data set consisting of 20144 flows for 

normal activities and 420 flows for abnormal activities in the validation of classifiers.  

6. Experimental results and evaluation 

In this section, we evaluated the detection capabilities of our approach using abnormality 

extent degree and rule-based fault detection algorithm. The failure data was collected 

through our distributed test environments shown in Figure 6. We can inject several faults 

that emulate failures in CPU modules, memory, the disk subsystem, and network modules. 

To make the system behaviors as real as possible, we use the following six pairs of 

workload: TPC-W browsing, ordering, shopping, HTTP gif transfer, MPEG video stream, 

and HTTPS secure transactions. To generate the fault detection rules, we use a popular data 

mining tool, Repeated Incremental Pruning to Produce Error Reduction (RIPPER) rule 

learning technique (Cohen, 1995). The generated rules are based on the insight that 

abnormality can be captured from system interface flows. The comparisons between our 

detection approach and the other techniques such as SMO and Naive Bayes were showed 

and explained in our paper (Kim, 2007). In this approach, we train RIPPER to classify the 

normal and abnormal flows that occurred during the training period and then apply the 

generated rules to detect the faults that are injected during each experiment scenario. 
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Fig. 6. Testing environments with fault injector and workload generator 

6.1 Trustworthiness and validation of rule-based classifiers for fault types 

In this experiment, we have three different fault scenarios explained in table 2 and section 

5.3. We categorize and inject faults by building three different scenarios. In scenario 1, the 

faults injected are from shared libraries into applications to test the capability of applications 

to handle faults from library routines referring the fault injection technique (Avizienis et al., 

2000). We injected the faults with three different system calls such as read (), write (), and 

close () and utilized TPC-W application with three different functions such as browsing, 

shopping and ordering to observe the effect of injected faults with interfaces. Hardware 

faults such as network failure are considered in scenario 2. It allows us to isolate the node by 

removing the connection from the network interfaces. In scenario 3, we chose to inject 

particular faults such as declared exceptions, infinite loops, and database access denied. For 

the three scenarios explained, we evaluate the cross-validated true positive rate (the 

percentage of abnormal flows correctly classified as abnormal) and false positive rate (the 

percentage of normal flows incorrectly classified as abnormal) to evaluate detection 

algorithm. To measure the accuracy of generated signatures, we calculated the values for F-

measure. We utilized the C implementation of rule algorithm and employed noise curves 

(negative noise (NN)) by varying the ratio of abnormal flows in the normal set from 10% to 

90% at 10% increments to evaluate the resilience of detection algorithm and traced the error 

rate at each noise ratio point. 

Fault scenario 1 (FS1), fault scenario 2 (FS2), fault scenario 3 (FS3), and fault scenario all 

(FSA) that utilizes all previous three scenarios based on a random mix are given with the 

percentage of the noise in the abnormal set. Figure 7 shows the false positive rate, true 

positive rate and F-Measure for all studied scenarios. From the graphs, it is noticeable that 

FS1, FS2 and FS3 achieved the lowest false positive rate as well as the highest true positive 

rate. One might think that FSA would have the worst results compare to FS1, FS2, and FS3 

since FSA has all of the generated faults that might result in complex and intricate 

interactions when compared to each fault type. But it is the other way around. Our results 

www.intechopen.com



 Theory and Novel Applications of Machine Learning 

 

254 

show that FSA has the highest false postitive rate, true positive rate, and F-Measure in many 

noise values such as false positive rate at 30 % and true positive rate at 20 %. (a) Use Custom 
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Fig. 7. (a) False Positive and (b) True Positive Rate (c) F-Measure for each fault scenario 

6.2 Trustworthiness and validation of rule-based classifiers for noise types  

We evaluated the true positive rate and false positive rate to evaluate the detection 
algorithm. To measure the accuracy of generated signatures, we calculated the values for 
precision rate.  
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Fig. 8. (a) False Positive and (b) True Positive Rate (c) Precision under varying the noise 
percentage in the abnormal set and normal set 

In this experiment, we employed noise curves (positive noise (PN) and negative noise (NN)) 
to evaluate the resilience of detection algorithm and traced the error rate at each noise ratio 
points. The detail description of data set was explained in section 5.3. The ratio of the 
normal flows in the abnormal set(TrainingWithNN) and abnormal flows in the normal 
set(TrainingWithPN) are given as the percentage of the noise in the normal set and 
abnormal set each. Figure 8 shows the true positive rates, false positive rates and precision 
rate for different noise percentage in the abnormal set and normal set. As shown in Figure 8, 
our rule based approach for abnormal detection is very reliable even in the nosiy flows. For 
example, the noise value of 50% produce 0.0265 (NN) and 0.03 (PN) for false positive rate, 
0.9735 (NN) and 0.997 (PN) for true positive rate, and 0.959 (NN) and 0.998(PN) for 
precision rate. These results show that our detection approach is very trustworthy in the 
distributed computing environment. The performance of the detection algorithm that is 
trained with TraniningWithPN is more reliable in severe noisy flows. For example, the 
precision value that is trained with TraniningWithPN equals to 0.998 while the precision 
value that is trained with TrainingWithNN equals to 0.959 in 50% noise value. The 
difference between the two noisy environments results from the size of the training set 
which consists of 23354 normal flows and 650 abnormal flows. However, the 0.959 rate is 
superior when compared to the other algorithms.  

6.3 Trustworthiness and validation of rule-based classifiers for data types 

In this experiment, we classify and compose data based on the specification supplied with 
the multi-tier web benchmark by building four different scenarios. These four scenarios 
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reveal the impact of bulk training data set. In scenario 1, the size of the training data set is 
6,506k that consists of 650 abnormal flows and the 23354 normal flows that use negative 
noise curves by varying the ratio of abnormal flows in the normal set from 10% to 90% at 
10% increments. We explore the correlation in trustworthiness with abnormal flows by 
building more abnormal flows, 1300 flows, in scenario 2. In scenario 3, the data set is made 
up of 23354 normal flows and 650 abnormal flows. In scenario 4, we explore the correlation 
in trustworthiness with normal flows in a data set that consists of 46000 normal flows and 
650 abnormal flows. 
 

False Positive Rate

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Noise (%)

DS1 DS2 DS3 DS4

  

True Positive Rate

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Noise (%)

DS1 DS2 DS3 DS4

 

Fig. 9. (a) False Positive and (b) True Positive Rate for each data scenario 

Data scenario 1 (DS1), data scenario 2 (DS2), data scenario 3 (DS3), and data scenario 4 (DS4) 

are given with the size of flows and the percentage of the noise in the abnormal set and 

normal set. The results are shown in Figure 9. One notable issue is in DS2. All scenarios have 

good results even in severe noisy flows. However, there is slight difference in DS2 when 

compared to the other scenarios because of the ratio of the abnormal flows in data set. DS2 

has more abnormal noisy flows than the other scenarios. However, we still achieve the 

lowest false positive rate as well as the highest true positive rate even in DS2. As shown in 

Figure 9, our rule based approach is a trustworthy even with noisy flows and variance in 

data sizes.   

6.4 Performance validation of rule-based classifiers for the testing data set 

Based on the confidence about the results showed before, we tested each result obtained 

within the generated training data set for variation of the noise percentages, 0% and 10% to 

underscore the trustworthiness of the detection approach. The testing data set consisting of 

each abnormal set and normal set was explained in section 5.3. Table 3 shows the false alarm 

and missed alarm for all the scenarios for different noise percentage in each training data 

set. As expected, the false alarm and missed alarm rate were very good for fault scenarios 

such as FS1, FS2, and FS3. But FCA has a higher rate, but is still small. TrainingWithNN and 

TrainingWithPN achieved very low false alarm and missed alarm even in the noisy 

situation. Data scenarios also achieved very low false alarm and missed alarm. But the 

wrong rules generated in the traing stage because of the ratio of abnormal flows in the data 

result in the increase of missed alarm and false alarm in DS2 with noisy flows. Other than 

that, the missed alarm and false alarm rate is near 0%. It proves that our approach is 

superior in each fault scenario as well as the scenario with all faults. 
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 False Alarm 
( 0% Noise) 

Missed Alarm 
( 0% Noise) 

False Alarm 
(10% Noise) 

Missed Alarm 
(10% Noise) 

FS1 0 % 0 % 0 % 0 % 

FS2 0 % 0 % 0 % 0 % 

FS3 0 % 0 % 0 % 0 % 

FSA 0.207952 % 0 % 0.399268 % 0 % 

Training 
WithNN 0.207952 % 0 % 0.399268 % 0 % 

Training 
WithPN 0.207952 % 0 % 0.399268 % 0.3 % 

DS1 0.208 % 0 % 0.4 % 0 % 

DS2 0.208 % 0 % 1.83 % 1.4 % 

DS3 0.208 % 0 % 0.16 % 0.3 % 

DS4 0.208 % 0 % 0.06 % 1.23 % 

Table 3. False Alarm and Missed Alarm rate of all scenarios under applying the rules 
produced with varying the noise percentage in training data set 

7. Conclusion 

In this paper, we developed an effective rule-based fault detection algorithm to detect any 
type of faults for a distributed computing environment. And we evaluate the false alarm 
rates of our approach for four different fault scenarios and for different data sizes with 
varying levels of noise. Our analysis show that our approach is superior when compared to 
other techniques. For example, the precision value that is trained with Tranining with PN 
equals to 0.998 in 50% noise value and the missed alarm and false alarm rate is near 0%. We 
are currently extending our approach to not only detect the fault s once they occur, but also 
perform root-cause analysis and automatic fault recovery.  
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