
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

17

Anomaly-based Fault Detection with Interaction
Analysis Using State Interface

Byoung Uk Kim
The University of Arizona

USA

1. Introduction

Fault detection, analysis, and recovery with effective monitoring in distributed systems is a
challenging research problem due to the exponential growth in scale and complexity of
system resources and applications, the continuous changes in software and hardware
configurations, and the heterogeneous services being offered and deployed. In spite of
enormous advances in hardware and software technology, there are many uncertainties and
unpredictable operations in distributed systems that could be triggered by one or a
combination of several events such as network failures, intermittent software failures, bugs
in software and services, etc. Various distributed systems especially employed in safety-
critical environments must work correctly in spite of the occurrence of faults.
The fault detection and analysis approach presented in this chapter is based on
hardware/software fault tolerance techniques and data mining techniques including
regression trees, neural networks, multivariate linear regression, fuzzy classification, logistic
regression, classification tree, naïve bayes , and sequential minimal optimization.
In this chapter, we present an innovative approach to detect faults (hardware or software)

and also identify the source of the faults. Our online monitoring mechanism collects

significant interactions among system state components such as CPU, memory, I/O, and

network interface in real-time between all the components of a distributed system. We

record and trace these runtime properties and analyze all the interactions using data mining

and supervised learning techniques to acquire the rules that can accurately model the

normal interactions among these components. We have implemented an anomaly-based

fault detection engine and used it to detect faults in a typical multi-tier web based

ecommerce environment that implements ecommerce transactions based on the TPC-W web

ecommerce benchmark (TPC-W, 2005).

The organization of the remaining sections of the chapter is as follows. In section 2, we

review related work. In section 3, we explain theoretical framework including system

presentation, normal and abnormal definition with system interfaces and attribute

definitions. In section 4, we present anomaly analysis methodology to implement efficient

fault detection and analysis. We discuss data sources, training and testing data and fault

types used in our experiments and then present our experimental results and evaluation of

our approach in section 5 and 6. In section 7, we summarize the chapter and discuss future

research activities. O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Theory and Novel Applications of Machine Learning, Book edited by: Meng Joo Er and Yi Zhou,
 ISBN 978-3-902613-55-4, pp. 376, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Theory and Novel Applications of Machine Learning

240

2. Related work

Fault detection and analysis has always been an active research area due to its importance to
distributed systems and their applications. It is necessary for the system to be able to detect
the faults and take the appropriate actions to avoid further degradations of the service. In
this section, we classify fault detection techniques based on different categories such as
hardware and software techniques and based on the detection schemes such as statistical
methods, distance and model based methods and profiling methods.

2.1 Hardware based

(Reinhardt & Mukherjee, 2000) proposed Simultaneous and Redundant Threading (SRT) to
provide transient fault coverage with high performance by taking advantage of the multiple
hardware contexts of Simultaneous Multithreading (SMT). It provides high performance by
using active scheduling of its hardware components among the redundant replicas and
reduces the overhead of validation by eliminating cache misses. (Ray et al., 2001) proposed
modern superscalar out-of-order datapath by modifying a superscalar processor’s micro-
architectural components and validating the redundant outcomes of actively duplicated
threads of execution, while the fault recovery plan uses the branch-rewind mechanism to
restart at a place which error happened. Commercial fault-tolerant systems combine several
techniques such as error correcting codes, parity bits and replicated hardware. For example,
Compaq Non-Stop Himalaya (Wood, 2004) employs ‘lockstepping’ which runs the same
program on two processors and compares the results by a checker circuit.

2.2 Software based

(Reis et al., Dec. 2005) introduced PROFiT technique regulating the stage of reliability at fine
granularities by using software control. This profile-guided fault tolerance determines the
weakness and performance trade-offs for each program region and decide where to turn on
and off redundant by using a program profile. (Oh et al., 2002) proposed Error Detection by
Duplicated Instructions (EDDI) which copies all instructions and inserts check instructions
for validation. Software based mechanisms present high reliability gain at low hardware
cost and high fault coverage. However the performance degradation and failure to directly
check micro-architectural components result in another trend of fault detection, hybrid
redundancy techniques (Reis et al., June. 2005) such as CompileR-Assisted Fault Tolerance
(CRAFT).
We classify detection and analysis strategy based on the following approaches such as
statistical, profiling, model-based, and distance-based methods.

2.3 Statistical methods

This method traces the system behavior or user activity by gauging variables over time such
as event message between components, system resource consumption, login/out time of
each session. It maintains averages of these variables and detects the anomaly behavior by
making a decision whether thresholds are exceeded based on the standard deviation of the
variables monitored. It also compares profiles of short/long term user activities using
complex statistical models. (Ye & Chen, 2001) employs chi-square statistics to detect
anomalies. In this approach, the activities on a system are monitored through a stream of
events and they are distinguished by event type. For each event type, the normal data from

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

241

audit events are categorized and then used to get chi-square for difference between the
normal data and testing data. It considers large deviations as abnormal data.

2.4 Distance based methods

One of the limitations of statistical approaches is that it becomes inaccurate and hard to
calculate approximately the multidimensional distributions of the data points when outlier
detection exists in higher dimensional spaces (Lazarevic et al., 2006). Distance based
methods try to overcome this limitation and identify outliers by computing distances among
points. For example, (Cohen et al., 2005) presents an approach using usual clustering
algorithms such as k-mean and k-median to get the system status. The difference with
others focusing on clustering algorithm is that they use a signature and show the efficacy for
clustering and connection based recovery by means of distinguished techniques such as
pattern recognition and information retrieval.

2.5 Model based methods
This method describes the normal activity of the monitored system by using different types
of models and identifies anomalies as divergence for the model that characterizes the
normal activity. For example, (Maxion & Tan, 2002) obtains a sequential data streams from a
monitored procedure and employs a Markov models to decide whether the states are
normal or abnormal. It calculates the probabilities of transitions between the states using the
training data set, and utilizes these probabilities to evaluate the transitions between states in
test data set.

2.6 Profiling methods

It builds profiles of normal behavior for diverse types of systems, users, applications etc.,
and variations from them are regarded as anomalous behaviors. These profiling methods
vary significantly different data mining techniques while others use various heuristic based
approaches. In data mining methods, each case in training data set is configured as normal
or abnormal and a data mining learning algorithm is trained over the configured data set.
By using these methods, new kinds of anomalities can be detected in fault detection models
with retraining (Lazarevic et al., 2006). (Lane & Brodley, 1999) uses a temporal sequence
learning technique in profiling Unix user commands for normal and abnormal scenarios. It
then uses these profiles to detect any anomalous user activity. Other algorithms for fault
detection include regression trees, multivariate linear regression, logistic regression, fuzzy
classification, neural networks and decision trees.

3. Theoretical framework

3.1 System presentation
Consider a general n input m output nonlinear dynamic system which can be expressed by
the Nonlinear Auto Regressive Moving Average (NARMA) model (Chenand & Billings,
1994) as

() (, u,)

 { (1) , (2) ,. . . , ()}

 u { (1) , (2) ,. . . , ()}

y k f y

y y k y k y k n

u k u k u k m

θ

γ γ γ

=

= − − −

= − − − − − −

9 9

 (1)

www.intechopen.com

 Theory and Novel Applications of Machine Learning

242

where : ,P Qf ℜ ×ℜ →ℜ with
1

m

i
i

P p
=

=∑ ,
1

n

j
j

Q q
=

=∑ is the mathematical realization of

the system dynamics for the th9 output. ()y k ∈ℜ is the output of the system at sample

instant k, ()u k ∈ℜ is the input to the system. p and q are the lengths of the regression

vectors of y and u , respectively. f is a recognized nonlinear function describing the

dynamic characteristics of the system. γ is the relative degree of the system. n and m are

known system structure orders. θ is the system parameter vector whose unanticipated

changes are regarded as faults in the system. It represents all the potential faults in the

nonlinear system such as sensors and processes.

In our research, we use available system input and output, respectively u and y to detect

and predict any undesirable changes in θ. To simplify the presentation, we assume that

during the initial stage [0,]k T∈ , the normal and healthy values of these values are

available and can be obtained from the system under consideration. There is a certain

normal trajectory related with system interfaces. So, we can say the system parameter vector

in normal activities is θN. It means that there is a known θN such that

 Nθ θ= (2)

To define the system abnormality, we may construct a redundant relation such that

 () | () (, u ,) |Nm k y k f y θ= −9 9 9 (3)

If m(k) is large enough by checking the values against a pre-specified threshold, we say there

is abnormality in the system. Contrarily, if m(k) is very small, the system is normal.

3.2 Normal and abnormal definition with system interfaces

We develop a systematic framework for identifying potential system abnormality. Ψ

denote the system attributes, and ◊Ψ is the set of sequences over the alphabet Ψ . We say

that system attributes S ◊∈Ψ is accepted by the detection system if executing the sequence

S = {S1, S2, S3, ….. } does not trigger any alarm. Let N ◊⊆ Ψ denote the set of system

attributes allowed by the detection system, i.e.,

 { } : S is accepted by the detect ion sys tem defN S ◊∈Ψ (4)

Also, let A ◊⊆ Ψ denote the set of system attributes that are not allowed by the detection

system, i.e.,

 : S is an equivalent variant

 on the given suspicious sequence

def S
A

◊⎧ ⎫∈Ψ⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 (5)

Now we can state the conditions for the existence of abnormality in distributed systems. The

set AN ∩ is exactly the set of system attributes that give the suspicious or abnormal status

to host without detection, and thus the abnormalities are possible if A N ≠ ∅∩ .

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

243

3.3 Attribute definitions

We use the following attributes for the abnormality analysis: Attribute rate (AR) per target
attribute, Component rate (CR) per target component, Aggregate System rate (ASR) per
target system and Number of abnormal session (NAS)
Definition 1
AR per target address is used to find out the current flow rate for a given target IP address
Pj as observed by a interface monitor and can be computed as in (1)

2

(, ,) { ()} T

T

i j

t T

AR A P t DT t

=

= ∑ (6)

where DT denotes the number of data belonging to attribute Ai and to a target Pj within a
given time T.
Definition 2
CR per target address is used to determine the current flow rate as observed by a Interface
monitor for all the attributes Ai that go through the same interface (Ik) and have the same
target IP address (Pj). This metric can be computed as in (2)

(, ,) (, ,)k j i j
i

CR I P t AR A P t
∀

= ∑ (7)

Definition 3
ASR per target address denotes the current flow rate for a given target IP address Pj as
observed by Interface monitor

(,) (, ,)j k j
k

ASR P t CR I P t
∀

= ∑ (8)

Definition 4
NAS the number of abnormal sessions for a target Pj as observed by Interface monitor

(,) (1)j i
i

NAS P t S
∀

= −∑ (9)

where Si is a binary variable that is equal to 1 when the session is successful and 0 and when
it is not.

4. Abnormality analysis methodology

Our approach is based on autonomic computing paradigm that requires continuous

monitoring and analysis of the system state, and then plan and execute the appropriate

actions if it is determined that the system is deviating significantly from its expected normal

behaviors as shown in Figure 1.

By monitoring the system state, we collect measurement attributes about the CPU, IO,
memory, operating system, and network operations. The analysis of this data can reveal any
anomalous behavior that might be triggered by failures.
Once a fault is detected, the next step is to identify the appropriate fault recovery strategy to
bring the system back into a fault-free state. In this paper, we focus on monitoring and
analyzing the interactions among these components to detect any hardware or software
failures.

www.intechopen.com

 Theory and Novel Applications of Machine Learning

244

Fault

Analysis

Fault

Recovery

Fault

Detection

Monitor

CPU Memory

I/O

(Read/

Write)

Network

Operating

System

Library

Interaction

Fig. 1. Self-healing Engine

4.1 Monitoring and analysis of system component operations

The first step is to identify a set of measurement attributes that can be used to define the
normal behaviors of these components as well as their interactions with other components
within the distributed system. For example, when a user runs a QuickTime application, one
can observe certain well defined CPU, Memory and I/O behaviors. These operations will be
significantly different when the application experience un-expected failure that leads to
application termination; one can observe that the application, although consuming CPU and
memory resources, does not interact normally with its I/O components.
These monitored data are analyzed using two types of vector-based (VR) metrics (Wood,
2004): Local-VR (LVR) and Global-VR (GVR). The LVR is used to evaluate the interface
interaction, detection, analysis and recovery measurements associated with a specific fault, f,
in the set of faults in the fault hypothesis, F as shown in Equations 10-13:

i interfaces f = (CPU,MEM,I/O,NET,OS)FLVR ∈

iiiiif
 (10)

i detect ion f = (AR, CR, ASR, NAS, Precis ion,

 Recall , F-measure, False negat ive rate ,

 Fals posi t ive rate , T ime to detect , . . .)

FLVR ∈
iiiiif

 (11)

 i analysis f = (Accuracy, T ime to analyze,

 Analyzed or not?)

FLVR ∈
iiiiif

 (12)

 i recovery f = (Accuracy, T ime to recover,

 Recovered or not?)

FLVR ∈
iiiiif

 (13)

‘CL’ refers to metrics measured on the client, and ‘DB’ refers to metrics measured on the
database server. Equation (10) is used to identify the measurement attributes associated
with the interactions among system components. When a specific fault, e.g. application

abnormal termination is generated in the system,
i interfaces f FLVR ∈

iiiiif
 is composed with the

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

245

related measurement attributes. For example,
i interfaces f FLVR ∈

iiiiif
 in abnormal termination of

QuickTime application will consist of measurements of user CPU, active memory in
directory and I/O read activities as shown in Equation 10. Equation 11 describes several
metrics used to find out the characteristic of interfaces explained in section 3.3 and evaluate
the performance of the fault detection strategy using several metrics: 1) False negative rate is
the percentage of abnormal flows incorrectly classified as normal 2) Precision is the
proportion of correctly detected abnormal flows in the set of all normal flows returned by
detection. 3) Recall is the number of correctly detected abnormal flows in retrieved as
fraction of all abnormal flows. And 4) F-measure is used to quantify the trade-off between
recall and precision. All these performance metrics were explained in (Kim & Hariri, 2007).
Equation 12 and 13 evaluate the accuracy of our approach using several metrics such as: 1)
Accuracy is used to estimate whether all actual faults are correctly identified. 2) Time to
analyze/recovery is used for measuring the time taken the system to analyze/recovery from
faults.
The global vector based metric GVR quantifies in a similar way to LVR the quality of the
analysis, detection and recovery as shown in Equations 14-16.

 detection = (Throughput, Response t ime, Availability,

 Cost, Time)

GVR
iiiiif

 (14)

 analysis = (Throughput, Response time, Availability,

 Cost, Time)

GVR
iiiiif

 (15)

 recovery = (Throughput , Response t ime, Avai labi li ty,

 Cost , T ime)

GVR
iiiiif

 (16)

The main difference between LVR and GVR is in defining the target. That means LVR is
used to evaluate the measurements associated with a specific fault in the set of faults but
GVR is used to evaluate the role of the target system in a given environment. LVRs in each
fault have an effect on the GVR. For example, if there is a memory related fault, we may see

interface interactions in interfacesLVR
iiiiif

 resulting in value changes in detect ion LVR
iiiiif

. These

changes also affect detect ionGVR
iiiiif

allowing us to evaluate the healthiness of the target

system. This operation flow is depicted in Figure 2. We need this classification because our
target system to detect the faults is in the domain of distributed system. Equations (14), (15),
and (16) describe the metrics to measure the performance of the target system in detection,
analysis, and recovery: 1) Throughput is the summation of data rates sent to all system
nodes. 2) Response time means the time taken to react to a given goal such as ‘detect’ and
‘recover’ in the system. 3) Availability is the ratio of the total time through which the system
is available to the overall total time.
Normal execution will have a certain trajectory with respect to system interfaces as shown in
Figure 2. For example, if the disk is behaving normal without any fault, this can be
recognized by obvious disk trajectory over time. In case of abnormal state, all information
monitored in the normal state will have different trajectories. We capture and monitor this

trajectory features, train this interface trajectory with LVR
iiiiif

 and GVR
iiiiif

 by using rules

generated from the training data set and apply them at runtime. It shows normal trajectory

drifting to suspicious trajectory by exemplifying one of
i interfaces f FLVR ∈

iiiiif
 and one of

www.intechopen.com

 Theory and Novel Applications of Machine Learning

246

Metric Description

var_CL_CPUIF
_KERNAL

variance of the number of kernel time spent on client received
through cpu interface

var_CL_CPUIF
_USER

variance of the number of user time spent on client received
through cpu interface

val_CL_MEMIF_ACT
IVE

value of number of memory hat has been used more recently
and usually not reclaimed unless absolutely necessary received
through memory interface on client

val_CL_MEMIF_IN_
DIR

value of number of memory that takes more work to free on
client

val_CL_MEMIF_IN_
TARGET

value of number of memory that kernel uses for making sure
there are enough inactive pages around on client

val_CL_IOIF
_READ

value of IO load read received through IO interface on client

val_CL_IOIF
_WRITE

value of IO load read received through IO interface on client

var_DB_IOIF
_READ

value of IO load read received through IO interface on database
server

val_CL_CON
_SWITCHES

value of the number of context switches that counts the number
of times one process was ``put to sleep'' and another was
``awakened'' on client

Table 1. A sample of metrics used to characterize the interaction among components

 detect ionGVR
iiiiif

 metrics over time. Rules can be formed of the interface metrics including

states, events, state variables and time of transitions. These rules are generated to evaluate
system healthiness as following:

Rule 1: j T (,)i t a jM I M t t k≤ ≤ ∈ +

Interface tI in some time k starting at time jt is delimited by high value aM and low

value iM when defined normal flow occurs.

Fig. 2. Abnormality identification: LVR and GVR drift

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

247

Rule 2: (,) => (,)
i n a j j i a a g g
M I M T t t k M I M T t t r′ ′≤ ≤ ∀ ∈ + ≤ ≤ ∀ ∈ +

Interface nI delimited by high value aM and low value iM in time k will affect another

interface aI delimited by high value aM ′ and low value iM ′ and it will last some period r.

This rule is about interaction among interfaces and it needs higher latency than the previous
rule because of matching more interfaces
We build a fault detection prototype to demonstrate the utility of VR metrics to detect faults.
Figure 3 shows a sampling of metrics among more than 40 interfaces and real data
monitored at the client side. For clarity, we pick a sample of metrics as shown in Table 1. All
data monitored in the experiment with fault injections are stored in a database and the rules
are generated during the training stage. In Figure 3, the set of data from time t0 to the time
before ti is normal with respect to a given workload. The first injected fault at ti shows the
interaction with 5 interfaces such as var_CL_CPUIF_KERNAL, val_CL_MEMIF_ACTIVE,
val_CL_MEMIF_IN_DIR, var_CL_CPUIF_USER, and val_CL_MEMIF_IN_TARGET.

2398477312961562412518481.59218.408

2504412312921595612516882.0917.9104

3644313061218761330441.99010.99503

2993493062423781329566.46773.9801

3961978312961554412535683.58216.4179

4562012313121610012535685.57214.4279

30832630608109813424814.477621.48756

3123913061257913362815.472622.98507

289478313201591212451641.0917.9104

299345313241698012450838.07514.9254

4015123061201345565.47264.47761

25433530608581347965.47269.95025

387354312681652012485281.59218.408

398243312441581612484483.58216.4179

2653123061215413431631.49311.99503

5123903061224513431218.99513.49751

3092093061220913431225.9954.99503

311222306129813431620.9957.49254

4324783061212313431610.9956.49751

2344233060813513590835.3234.47761

654398306122313560016.4185.47264

val_CL_IOIF

_WRITE

val_CL_IOIF_

READ

val_CL_ME

MIF_IN_TA

RGET

val_CL_ME

MIF_IN_DI

R

val_CL_MEMI

F_ACTIVE

var_CL_CPUI

F_USER

var_CL_CPUIF_

KERNAL

Time t0

ti

tj

tk

tl

tm

tn

tr

Fault

Fault

Fault

Fault

îMajor Interfaces

îMinor Interfaces

(Conditional)

îFalse Alarm Interface

Fig. 3. A sampling of metrics and data monitored at a client side

We use these interfaces to catch the abnormality caused by the fault. All these 5 interfaces

show significant difference when compared to normal value. The second injected fault is at

tk. In this case, there are three major interfaces and two minor interfaces. Major interfaces

include val_CL_MEMIF_ACTIVE, val_CL_MEMIF_IN_DIR, and

val_CL_MEMIF_IN_TARGET while minor interfaces include var_CL_CPUIF_KERNAL and

var_CL_CPUIF_USER. At time tl, if we consider only minor interfaces, it will cause false

alarm because of the similarity of these states to normal states. The interfaces are used to

form two types of significant rules that depend on injected faults. For example, the fault

injected at tm results in increase in read load that is related to IO but the fault at tr results in

the increase of write load. From the above, several types of rules can be generated as

following:

• j
20 var_ _ _ 40 T (,)

t j
CL CPUIF KERNAL t t k≤ ≤ ∈ +

• j
5 40 T (,)

j
ResponseT ime t t k≤ ≤ ∈ +

www.intechopen.com

 Theory and Novel Applications of Machine Learning

248

•
 1 2 7 8 4 5 _ _ _ 1 3 9 8 2 1,

5 1 3 4 _ _ _ _ 1 9 3 2 1

a n d 1 3 9 5 v a r _ _ _ (,) j j

v a l C L M E M I F A C T I V E

v a l C L M E M I F I N D I R

C L I O I F R E A D T t t k

≤ ≤
≤ ≤

≤ ∀ ∈ +

•

 0132 _ _ _ _ 9846 and

20 va r_ _ _ 40 (,)

= > (,)

t j j

i a g g

va l CL MEMIF IN DIR

CL CPUIF KERNAL T t t k

M Throughpu t M T t t r

≤ ≤

≤ ≤ ∀ ∈ +

′ ′≤ ≤ ∀ ∈ +

The first rule explains that when the number of kernel time spent on client received through
cpu interface is larger than and equal to 20 and less than and equal to 40 in time interval k, it
is abnormal. The second and third rules are about response time, number of active memory
and dirty memory and value of I/O load read. In Fourth rule, we didn’t include it in our
experiments but may classify the interactions more. It means that we can achieve high
detection rate by revealing their behaviors and states by virtue of their interactions among
interfaces. These kinds of rules are applied in the experiments to detect abnormal flows and
increase the performance.

4.2 Abnormality analysis algorithm

Our approach for abnormality analysis to achieve self-healing system is anchored in
behavior modeling and analysis of system component impact with rule based. Suppose we

have λ system attributes (SA). Then, the flow behavior of SA can be represented as

 (, R) { () , (1) , . . . , (R)}SA t SA t SA t SA t= + +9 9 9 9 (17)

where R is preliminary block to acquire in-control data to determine the mean S A and

covariance matrix S. These values are used to verify normal interactions with respect to the

λ system attributes. The mean S A determines the normal region center and the

sample covariance matrix S determines the shape of the normal region. We apply this idea
to attribute definition such as AR, CR, and ASR explained in section 3.3 to quantify how
close/far the current flow state of a component from the normal state for a given fault
scenario which quantifies the current flow state of the system component based on the
current values of one or more monitored attributes. The normalized abnormality extent
degree (AED) with respect to each attribute is defined as

2
(,) ()

(,)
()

j j
j

S A j

S A t P A R P
A E D t P

P

λ

σ

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦9

9
9 (18)

where AR denotes attribute rates to find out the current flow rate for a given target IP

address Pj as observed by a interface monitor and S Aσ
9

is the variance under the

normal operation condition corresponding to flow. ()S A t9 is the current value of

system attribute λ.
Figure 4 shows the rule-based analysis for abnormality detection algorithm used by our
monitoring and analysis agents that compute and evaluate the attributed definition. During
the training stage (line 2), we monitor and collect system attributes where R is the
preliminary block to obtain in-control data (line 3). To acquire rule set (line 4), we input the

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

249

data set into a rule engine (Cohen, 1995) that produce a rule set. After we get the rule set, we
configure the key attributes to gauge attribute definition (line 5 and 6). Once the training
stage is completed, process q is applied to real data (line 7). In this algorithm, K (line 9)
denotes the number of observations and 15 is used for the number of observations. Attribute
definition including abnormality extent degree will be computed for any new observation

(line 11). If abnormality extent degree is beyond the normal thresholds and ()tSA violates

the rule set, then the system is assumed to be operating in an abnormal state, and then the
recovery algorithm is activated to carry out the appropriate control actions such as
restarting from the initial point and notifying the information to agents (line 12 and 13).
Once accumulating K observations, the thresholds will be revised (line 14 and 15).

 Process p:
1. Ruleset := 0
2. While (Training) do

3. Monitor&Collect (
1 2 3(), () , () ,. . . , ()Rt t t tSA SA SA SA);

4. RuleSet = Acquire_ RuleSet (S A 9);

5. Configure_Important_Attributes (RuleSet);

6. AED/AR/CR/ASR ä Gauge_Attribute_Definition;
7. EndWhile
Process q:
8. Repeat Forever
9. For (t = 1 ; t < K) do
10. Monitor&Collect (

1 2 3(), () , () ,. . . , ()Pt t t tSA SA SA SA);

11. D = Evaluate_Attribute_Definition(()tSA);

12. If ((D > Threshold)&&(()t RuleSetSA ∈))

13. Anomaly_Analysis & Detection (()tSA);

 apply rule and attribute definition both
14. If (t = K)
15. Revise_Threshold_Weights()
16. End For
17. End Repeat

Fig. 4. Rule-based analysis for abnormality detection algorithm

5. Problem definition

This section illustrates the fault detection problem, including the data source, abnormal
loads, training data and testing data.

5.1 Data source

In our evaluation, we use TPC-W, an industry standard e-commerce application to emulate
the complex environment of e-commerce application.
As shown in Figure 5, the system is used to run a typical end user e-commerce activity
initiated through a web browser and consisting of several TPC-W transactions. It defines 3
types of traffic mixes such as browsing mix, shopping mix and ordering mix and specifies 14
unique web transactions. In our environments, the database is configured for 288,000

www.intechopen.com

 Theory and Novel Applications of Machine Learning

250

customers and 10,000 items. According to the TPC-W specification, the number of
concurrent sessions is executed throughout the experiment to emulate concurrent users. The
maximum number of Apache clients and maximum Tomcat threads are set to 90. The
workloads are generated by the workload generator that varies the number of concurrent
sessions and running time from 90 to 300 seconds. Also, we developed abnormal workload
generator which will be defined later. It allows us to make and track the system abnormally
behavior.

Fig. 5. TPC-W Benchmark E-commerce Application

While every components and workloads are given to the system, we monitor all system
interactions and measure different lots of feature including the CPU, IO, memory, operating
system, and network devices. The analysis of these features reveals any anomalous behavior
that might be triggered by failures in any hardware or software component of the three-tier
web based distributed system.

5.2 Abnormal loads

The abnormal loads used in this paper include generally accepted definition (Avizienis et
al., 2000), fault and error. If we borrow the concepts, a fault is the cause generating the
system corruption and an error that results in the failure is the system state corrupted. We
both inject faults such as system corruption and errors such as directly throwing an
exception. In our chapter, we usually call fault and error as fault or abnormal loads.
To enlighten our variety in abnormal loads, several papers (Oppenheimer et al., 2003)
(Nagaraja et al., 2003) (Chen et al., 2002) are considered as a previous study in faults injected
in their experiments. Some of them focus on triggering only application level failures; others
inject the faults concentrated on problems that cause program crashes or byzantine faults.
We believe that there are system interaction symptoms that characterize how system will
respond to a fault injected. Thus, we have confidently decided to include software failures
as well as hardware failures in complex distributed systems. Table 2 shows the types of fault
classes to be used by our rule based fault detection scenarios. The fault classes can be
broadly classified into two groups such as hardware and software. Each group is also
divided into three types such as severe, intermittent and lenient.

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

251

In these experiments, we inject seven different types of faults explained in Table 2. We
categorize and inject these faults by building three different categories. First category is
application corruption regarding 3 different types of TPC-W traffic such as browsing,
ordering, and shopping. We model faults that are triggered by the interfaces including
interactions between an application and the operating system or between an application and
other function libraries. These faults injected are from shared libraries into applications to

Fault class Faults

Software, severe,
intermittent

• TPC-W browsing – corruption (Segmentation Fault)

• TPC-W ordering – corruption (Segmentation Fault)

• TPC-W shopping – corruption (Segmentation Fault)

Hardware, lenient
intermittent,

• Network disconnection

Software, severe or
lenient, intermittent

• Declared exceptions and undeclared exceptions such as
Unknown host Exception

• Infinite loops interfering and stopping the application
request from completing

• DB failure – Access denied

Table 2. Fault cases injected

test the capability of applications to handle faults from library routines referring the fault
injection technique [10]. We inject the faults using 3 different system calls such as read (),
write (), and close () and observe the effect of injected faults related with interfaces.
Hardware faults such as network failure are considered next. It allows us to isolate the node
by removing the connection from the network interfaces. Third one is about database related
failure such as access denial and application exceptions such as declared exceptions.
Because java based e-commerce application engenders various different kinds of failures
from programmer faults to IO faults, injection of exception faults are apposite to reveal the
abnormal behavior of e-commerce application by tracking system interactions. Here, we
injected declared exceptions which are often handled and masked by application itself such
as unknown host exception and also infinite loops interfering and stopping the application
request from completing. All these faults happen in the process of TPC-W transaction. We
believe that the selected faults span the axes from expected to unexpected/undesirable
behaviors and divulge the relationship of system interaction for the problems that can occur
in a real life.

5.3 Training and testing data
In this study, we have several kinds of data set composed of different number of normal
flows and abnormal flows. Our experiments are composed of four kinds of classes such as
trustworthiness for fault, noise and data types and performance validation for testing data
sets. These training data sets and testing data sets are gathered by tracing normal and
abnormal activities. Normal activities and abnormal activities are emulated to produce these
data sets by injecting our faults.
First experiment mentioned in section 6.1 is about trustworthiness and validation of our
approach for each fault types. We implement and evaluate four scenarios. Fault scenario 1

www.intechopen.com

 Theory and Novel Applications of Machine Learning

252

(FS1) focuses on faults triggered by application corruption using three different types of
TPC-W traffic such as browsing, ordering , and shopping. The data set used in scenario 1
consist of 23355 normal flows and 347 abnormal flows. Fault scenario 2 (FS2) considers
hardware faults such as network disconnection. The data set consisting of 23355 normal
flows and 70 abnormal flows. Fault scenario 3 (FS3) considers application and database
faults such as declared exceptions, infinite loops, and database access denial. The data set of
FS3 contains 23355 normal flows and 230 abnormal flows. Fault scenario all (FSA) includes
all faults explained in section 5.2 and the data set consisting of same number of normal
flows previously mentioned and 647 abnormal flows.
The data utilized in section 6.2 employs noise curves such as negative noise (NN) by varying

the ratio of abnormal flows in the normal set from 10% to 90% incrementing by 10% each

and positive noise (PN) by varying the ratio of nomral flows in the abnormal set from 10%

to 90% incrementing by 10% each to evaluate the resilience of detecion algorithm and traced

the error rate at each noise ratio points. Each NN and PN data set is consists of 650 abnormal

flows and 23354 normal flows, respectively.

The experiment explained in section 6.3 reveals the impact of bulk training data set by

composing data based on the specification supplied with the industry standard e-commere

environments and includes the four scenarios. Data scenario 1 (DS1) consists of the

abnormal set containing normal set containing 23354 flows and 650 flows that are using

negative noise curves by varying the ratio of abnormal flows in the normal set from 10% to

90% with 10% increment. Data scenario 2 (DS2) also applies the negative noise curves to

explore the correlation in trustworthiness with abnormal flows by building more abnormal

flows. The data set is composed of the normal set containing 23354 flows and abnormal set

containing 650 flows for data scenario 3 (DS3) and the normal set containing 46000 flows

and abnormal set containing 650 flows for data scenario 4 (DS4). Both scenarios employ

positive noise curves by varying the ratio of normal flows in the abnormal set to explore the

correlation in trustworthiness. We use the testing data set consisting of 20144 flows for

normal activities and 420 flows for abnormal activities in the validation of classifiers.

6. Experimental results and evaluation

In this section, we evaluated the detection capabilities of our approach using abnormality

extent degree and rule-based fault detection algorithm. The failure data was collected

through our distributed test environments shown in Figure 6. We can inject several faults

that emulate failures in CPU modules, memory, the disk subsystem, and network modules.

To make the system behaviors as real as possible, we use the following six pairs of

workload: TPC-W browsing, ordering, shopping, HTTP gif transfer, MPEG video stream,

and HTTPS secure transactions. To generate the fault detection rules, we use a popular data

mining tool, Repeated Incremental Pruning to Produce Error Reduction (RIPPER) rule

learning technique (Cohen, 1995). The generated rules are based on the insight that

abnormality can be captured from system interface flows. The comparisons between our

detection approach and the other techniques such as SMO and Naive Bayes were showed

and explained in our paper (Kim, 2007). In this approach, we train RIPPER to classify the

normal and abnormal flows that occurred during the training period and then apply the

generated rules to detect the faults that are injected during each experiment scenario.

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

253

CPU Fault

Memory

Fault

I/O Fault

Network

Fault

Injection

Strategy

: Random

Based

CPU Function

Memory

Function

I/O Function

Network

Function

Generation

Strategy

: Mix-Based

CPU Memory

I/O

(Read/

Write)

Network

Communic-

ation

System

CPU Memory

I/O

(Read/

Write)

Network

Communic-

ation

System

LAN

W
A
N

W
A
N

Data Base

Workload

Generator

Fault

Injector

Fig. 6. Testing environments with fault injector and workload generator

6.1 Trustworthiness and validation of rule-based classifiers for fault types

In this experiment, we have three different fault scenarios explained in table 2 and section

5.3. We categorize and inject faults by building three different scenarios. In scenario 1, the

faults injected are from shared libraries into applications to test the capability of applications

to handle faults from library routines referring the fault injection technique (Avizienis et al.,

2000). We injected the faults with three different system calls such as read (), write (), and

close () and utilized TPC-W application with three different functions such as browsing,

shopping and ordering to observe the effect of injected faults with interfaces. Hardware

faults such as network failure are considered in scenario 2. It allows us to isolate the node by

removing the connection from the network interfaces. In scenario 3, we chose to inject

particular faults such as declared exceptions, infinite loops, and database access denied. For

the three scenarios explained, we evaluate the cross-validated true positive rate (the

percentage of abnormal flows correctly classified as abnormal) and false positive rate (the

percentage of normal flows incorrectly classified as abnormal) to evaluate detection

algorithm. To measure the accuracy of generated signatures, we calculated the values for F-

measure. We utilized the C implementation of rule algorithm and employed noise curves

(negative noise (NN)) by varying the ratio of abnormal flows in the normal set from 10% to

90% at 10% increments to evaluate the resilience of detection algorithm and traced the error

rate at each noise ratio point.

Fault scenario 1 (FS1), fault scenario 2 (FS2), fault scenario 3 (FS3), and fault scenario all

(FSA) that utilizes all previous three scenarios based on a random mix are given with the

percentage of the noise in the abnormal set. Figure 7 shows the false positive rate, true

positive rate and F-Measure for all studied scenarios. From the graphs, it is noticeable that

FS1, FS2 and FS3 achieved the lowest false positive rate as well as the highest true positive

rate. One might think that FSA would have the worst results compare to FS1, FS2, and FS3

since FSA has all of the generated faults that might result in complex and intricate

interactions when compared to each fault type. But it is the other way around. Our results

www.intechopen.com

 Theory and Novel Applications of Machine Learning

254

show that FSA has the highest false postitive rate, true positive rate, and F-Measure in many

noise values such as false positive rate at 30 % and true positive rate at 20 %. (a) Use Custom

Size Format, Width = 17cm, Height = 24cm, (b) top margin is set to 2,5 cm and bottom

margin is set to 3,0 cm; left and right margins are set to 2,0 cm on the manuscript format

17x24 cm, (c) use the whole space of all pages, don’t leave free space, (d) the text must finish

exact at the bottom of the last page. The manuscript has to be submitted in MS Word (*.doc)

and PDF format. If you use other word editors and can not transfer it in Word and PDF

please contact us.

False Positive Rate

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

NN (%)

FS1 FS2 FS3 FSA

(a)

True Positive Rate

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
Noise (%)

FS1 FS2 FS3 FSA

(b)

F-Measure

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90
Noise (%)

FS1 FS2 FS3 FSA

(c)

Fig. 7. (a) False Positive and (b) True Positive Rate (c) F-Measure for each fault scenario

6.2 Trustworthiness and validation of rule-based classifiers for noise types

We evaluated the true positive rate and false positive rate to evaluate the detection
algorithm. To measure the accuracy of generated signatures, we calculated the values for
precision rate.

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

255

False Positive Rate

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Noise(%)

TrainingWithNN TrainingWithPN

True Positive Rate

0.01

0.21

0.41

0.61

0.81

1.01

0 10 20 30 40 50 60 70 80 90

Noise(%)

TrainingWithNN TrainingWithPN

 (a) (b)

Precision

0.01

0.21

0.41

0.61

0.81

1.01

0 10 20 30 40 50 60 70 80 90

Noise(%)

TrainingWithNN TrainingWithPN

(c)

Fig. 8. (a) False Positive and (b) True Positive Rate (c) Precision under varying the noise
percentage in the abnormal set and normal set

In this experiment, we employed noise curves (positive noise (PN) and negative noise (NN))
to evaluate the resilience of detection algorithm and traced the error rate at each noise ratio
points. The detail description of data set was explained in section 5.3. The ratio of the
normal flows in the abnormal set(TrainingWithNN) and abnormal flows in the normal
set(TrainingWithPN) are given as the percentage of the noise in the normal set and
abnormal set each. Figure 8 shows the true positive rates, false positive rates and precision
rate for different noise percentage in the abnormal set and normal set. As shown in Figure 8,
our rule based approach for abnormal detection is very reliable even in the nosiy flows. For
example, the noise value of 50% produce 0.0265 (NN) and 0.03 (PN) for false positive rate,
0.9735 (NN) and 0.997 (PN) for true positive rate, and 0.959 (NN) and 0.998(PN) for
precision rate. These results show that our detection approach is very trustworthy in the
distributed computing environment. The performance of the detection algorithm that is
trained with TraniningWithPN is more reliable in severe noisy flows. For example, the
precision value that is trained with TraniningWithPN equals to 0.998 while the precision
value that is trained with TrainingWithNN equals to 0.959 in 50% noise value. The
difference between the two noisy environments results from the size of the training set
which consists of 23354 normal flows and 650 abnormal flows. However, the 0.959 rate is
superior when compared to the other algorithms.

6.3 Trustworthiness and validation of rule-based classifiers for data types

In this experiment, we classify and compose data based on the specification supplied with
the multi-tier web benchmark by building four different scenarios. These four scenarios

www.intechopen.com

 Theory and Novel Applications of Machine Learning

256

reveal the impact of bulk training data set. In scenario 1, the size of the training data set is
6,506k that consists of 650 abnormal flows and the 23354 normal flows that use negative
noise curves by varying the ratio of abnormal flows in the normal set from 10% to 90% at
10% increments. We explore the correlation in trustworthiness with abnormal flows by
building more abnormal flows, 1300 flows, in scenario 2. In scenario 3, the data set is made
up of 23354 normal flows and 650 abnormal flows. In scenario 4, we explore the correlation
in trustworthiness with normal flows in a data set that consists of 46000 normal flows and
650 abnormal flows.

False Positive Rate

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Noise (%)

DS1 DS2 DS3 DS4

True Positive Rate

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

Noise (%)

DS1 DS2 DS3 DS4

Fig. 9. (a) False Positive and (b) True Positive Rate for each data scenario

Data scenario 1 (DS1), data scenario 2 (DS2), data scenario 3 (DS3), and data scenario 4 (DS4)

are given with the size of flows and the percentage of the noise in the abnormal set and

normal set. The results are shown in Figure 9. One notable issue is in DS2. All scenarios have

good results even in severe noisy flows. However, there is slight difference in DS2 when

compared to the other scenarios because of the ratio of the abnormal flows in data set. DS2

has more abnormal noisy flows than the other scenarios. However, we still achieve the

lowest false positive rate as well as the highest true positive rate even in DS2. As shown in

Figure 9, our rule based approach is a trustworthy even with noisy flows and variance in

data sizes.

6.4 Performance validation of rule-based classifiers for the testing data set

Based on the confidence about the results showed before, we tested each result obtained

within the generated training data set for variation of the noise percentages, 0% and 10% to

underscore the trustworthiness of the detection approach. The testing data set consisting of

each abnormal set and normal set was explained in section 5.3. Table 3 shows the false alarm

and missed alarm for all the scenarios for different noise percentage in each training data

set. As expected, the false alarm and missed alarm rate were very good for fault scenarios

such as FS1, FS2, and FS3. But FCA has a higher rate, but is still small. TrainingWithNN and

TrainingWithPN achieved very low false alarm and missed alarm even in the noisy

situation. Data scenarios also achieved very low false alarm and missed alarm. But the

wrong rules generated in the traing stage because of the ratio of abnormal flows in the data

result in the increase of missed alarm and false alarm in DS2 with noisy flows. Other than

that, the missed alarm and false alarm rate is near 0%. It proves that our approach is

superior in each fault scenario as well as the scenario with all faults.

www.intechopen.com

Anomaly-based Fault Detection with Interaction Analysis Using State Interface

257

 False Alarm
(0% Noise)

Missed Alarm
(0% Noise)

False Alarm
(10% Noise)

Missed Alarm
(10% Noise)

FS1 0 % 0 % 0 % 0 %

FS2 0 % 0 % 0 % 0 %

FS3 0 % 0 % 0 % 0 %

FSA 0.207952 % 0 % 0.399268 % 0 %

Training
WithNN 0.207952 % 0 % 0.399268 % 0 %

Training
WithPN 0.207952 % 0 % 0.399268 % 0.3 %

DS1 0.208 % 0 % 0.4 % 0 %

DS2 0.208 % 0 % 1.83 % 1.4 %

DS3 0.208 % 0 % 0.16 % 0.3 %

DS4 0.208 % 0 % 0.06 % 1.23 %

Table 3. False Alarm and Missed Alarm rate of all scenarios under applying the rules
produced with varying the noise percentage in training data set

7. Conclusion

In this paper, we developed an effective rule-based fault detection algorithm to detect any
type of faults for a distributed computing environment. And we evaluate the false alarm
rates of our approach for four different fault scenarios and for different data sizes with
varying levels of noise. Our analysis show that our approach is superior when compared to
other techniques. For example, the precision value that is trained with Tranining with PN
equals to 0.998 in 50% noise value and the missed alarm and false alarm rate is near 0%. We
are currently extending our approach to not only detect the fault s once they occur, but also
perform root-cause analysis and automatic fault recovery.

8. Referring

Avizienis, A.; Laprie, J.C. and Randell, B., Fundamental concepts of dependablility, in Third
Information Survivability Workshop, Boston, MA, 2000

Chenand, S. & Billings, S.A., Neural networks for nonlinear system modeling and
identification, in "Advances in Intelligent Control", pp. 85- 112, Ed C. J. Harris, Taylor
& Francis, London, 1994,

Chen, M.Y.; Kiciman, E.; Fratkin, E.; Fox, A. & Brewer, E. Pinpoint: problem determination
in large, dynamic Internet services, International Conference on Dependable Systems
and Networks, June 2002

Cohen, I.; Zhang, S.; Goldszmidt, M.; Symons, J.; Kelly, T. & Fox, A., Capturing, indexing,
clustering, and retrieving system history, ACM SOSP '2005

Cohen, W. W., Fast effective rule induction, in the Proceedings of the 12th International
Conference on Machine Learning, pp. 115-123, Morgan Kaufmann, July 9-12, 1995

Kim, B. & Hariri, S., Anomaly-based Fault Detection System in Distributed System, in
proceedings of the Fifth IEEE International Conference on Software Engineering Research,
Management and Applications, August 2007

www.intechopen.com

 Theory and Novel Applications of Machine Learning

258

Lane, T. & Brodley, C., Temporal Sequence Learning and Data Reduction for Anomaly
Detection, ACM Transactions on Information and System Security, vol. 2, 3, pp. 295-331,
1999

Lazarevic, A. , Kumar, V. & Srivastava, J., Intrusion Detection: A Survey, Springer US, Volume
5, 2006

Maxion, R. & Tan, K., Anomaly Detection in Embedded Systems, IEEE Transactions on
Computers, vol. 51, pp. 108-120, 2002

Nagaraja, K.; Li, X.; Bianchini, R.; Martin, R. P. & Nguyen, T. D., Using fault injection and
modeling to evaluate the performability of cluster-based services, in the proceedings
of the 4th USENIX Symposium on Internet Technologies and Systems, March 2003

Oh, N.; Shirvani, P. P., & Mccluskey, E. J.. Error detection by duplicated instructions in
super-scalar processors. In IEEE Transactions on Reliability, pp. 63–75, 2002c

Oppenheimer, D.; Gananpathi, A. & Patterson, D., Why do internet services fail, and what
can be done about it?, in the proceedings of 4th USENIX Symposium on Internet
Technologies and Systems, 2003

Ray, J.; Hoe, J. C. & B. Falsafi. Dual use of superscalar datapath for transient-fault detection
and recovery. In Proceedings of the 34th annual ACM/IEEE international symposium on
Microarchitecture, pp. 214–224. IEEE Computer Society, 2001.

Reinhardt, S. K. & Mukherjee. S. S. Transient fault detection via simultaneous
multithreading. In Proceedings of the 27th annual international symposium on Computer
architecture, pp. 25–36. ACM Press, 2000.

Reis, G.A.; Chang, J.; Vachharajani, N.; Mukherjee, S.S. & Rangan, R.; Design and evaluation
of hybrid fault-detection systems, In the proceedings of the International Symposium on
Computer Architecture, pp. 148 – 159, June 2005

Reis, G. A.; Chang, J.; Vachharajani, N. & Mukherjee, S. S., Software - controlled fault
tolerance, ACM Transactions on Architecture and Code Optimization, Vol. V, No. N,
pp.1–28, December 2005.

TPC-W. http://www.tpc.org/tpcw, April 2005.
Wood, Alan, Data Integrity Concepts, Features, and Technology, Tandem Division White

paper, Compaq Computer Corporation, 2004
Ye, N. & Chen, Q., An Anomaly Detection Technique Based on Chi-Square Statistic. Quality

and Reliablility Engineering International, vol. 17, 2, pp. 105-112, 2001

www.intechopen.com

Theory and Novel Applications of Machine Learning

Edited by Meng Joo Er and Yi Zhou

ISBN 978-953-7619-55-4

Hard cover, 376 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Even since computers were invented, many researchers have been trying to understand how human beings

learn and many interesting paradigms and approaches towards emulating human learning abilities have been

proposed. The ability of learning is one of the central features of human intelligence, which makes it an

important ingredient in both traditional Artificial Intelligence (AI) and emerging Cognitive Science. Machine

Learning (ML) draws upon ideas from a diverse set of disciplines, including AI, Probability and Statistics,

Computational Complexity, Information Theory, Psychology and Neurobiology, Control Theory and Philosophy.

ML involves broad topics including Fuzzy Logic, Neural Networks (NNs), Evolutionary Algorithms (EAs),

Probability and Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern

Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics applications. This

books reports the latest developments and futuristic trends in ML.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Byoung Uk Kim (2009). Anomaly-based Fault Detection with Interaction Analysis Using State Interface, Theory

and Novel Applications of Machine Learning, Meng Joo Er and Yi Zhou (Ed.), ISBN: 978-953-7619-55-4,

InTech, Available from:

http://www.intechopen.com/books/theory_and_novel_applications_of_machine_learning/anomaly-

based_fault_detection_with_interaction_analysis_using_state_interface

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

