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TempUnit: A Bio-Inspired  
Spiking Neural Network 

Olivier F. L. Manette 
Unité de Neurosciences Intégrative et Computationnelle (UNIC), CNRS  

France 

1. Introduction 

Formal neural networks have many applications. Applications of control of tasks (motor 
control) as well as speech generation have a certain number of common constraints. We are 
going to see seven main constraints that a system based on a neural network should follow 
in order to be able to produce that kind of control. Afterwards we will present the TempUnit 
model which is able to give some answers for all these seven criteria.  

1.1 Learning 

Neural networks show usually a certain level of learning abilities, (Hornik, 1991). In the case 
of systems of motor control or of speech generation those learning skills are particularly 
important. Indeed they enable the system to establish the link between the motor command 
and the act as it has been achieved. In real systems (not simulated), biological or machines, 
the effector could evolve for all sort of reasons such as limb growth or injury for biological 
systems; For artificial systems, the reason could be some breakage or a subsystem 
malfunction. It has also been demonstrated that the motor command is directly related to 
the characteristics of the effector (Bernstein, 1967; Hogan & Flash, 1987; Gribble & Ostry, 
1996). Thus learning capabilities should be permanently maintained: it is necessary that the 
neural network is able to evolve its transfer function. In this case, because the aim is to learn 
the link between a desired output (the effector activity) and a given input (the motor 
command), it is called supervised learning. 

1.2 Inverse model 

Several models of motor control exist but we can globally group them into two categories: 
reactive (Sherrington, 1906/1947) and predictive (Beevor, 1904). Reactive models usually 
work as a closed loop, in which a very imprecise motor command is sent and is then 
updated using sensory feedbacks. For most movements, for instance, the basket ball throw 
(Seashore, 1938; Keele, 1968; Bossom, 1974; Taub, 1976), sensory feedback is simply too slow 
to enable efficient motor control. In this chapter, we will focus particularly on predictive 
models. Predictive models imply the calculation of a forward function which gives, from a 
given motor command, a prediction of the effector activity (Desmurget & Grafton, 2000). 
This type of function can be very useful because it enables the result of a given command to 
be simulated without the need to effectively carry it out. However, the inverse function is O
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much more useful because it enables determination of the motor command from a desired 
motor output. Theory of motor control predicted the need for an inverse model (Berthoz, 
1996) in the brain to enable calculation of the motor command (Shadmehr & Mussa-ivaldi, 
1994; Wolpert et al., 1995; Kawato, 1999). The use of an inverse function enables the system 
to calculate by itself the motor command that leads to a specific desired result, which is a 
great advantage.  

1.3 Syntax 

In linguistics, syntax is the group of rules that defines the chain of words to form sentences.  
In control of speech production, it is easy to understand why the system needs to be able to 
respect those syntax rules. But it should also be the case in control of movements and it is 
even more important than in speech generation. Indeed, while a limb is in a particular 
position, it is simply impossible to immediately reach any other arbitrary position. From a 
given position of a limb, only a few other positions are accessible, otherwise some bad 
command could possibly damage the system if those rules are not respected. The neural 
network in charge of the overall control of the system should therefore necessarily respect 
scrupulously those chaining rules from one state to another state of the system.  

1.4 Decision node 

The lack of flexibility is generally the main problem in a feed-forward system: a system 
should be able to interrupt the execution of a motor program to change direction in order to, 
for example, ward off an unexpected disruption. Hence, a process able to manage decision 
nodes at every single time step, with the aim of enabling the system to evolve in different 
directions, should be integrated. 

1.5 Respect of the range limits 

Keeping the system in the range of possible values is another important constraint for a task 
control system. Also, some mechanism able to handle aberrant values has to be integrated in 
order to avoid damage to the system.  

1.6 Complexity 

The choice of the neural network architecture is also an important issue since it is absolutely 
necessary to use an architecture adapted to the problem to be solved. An under-sized 
network will not be able to obtain the expected results with the desired level of 
performance. Conversely, an over-sized network can show problems such as over-learning, 
i.e. an inability to correctly generalize the data, possibly even to the point of learning the 
noise. It is therefore important to obtain a system adapted to the desired task and a clear 
way to find the best fit architecture. 

1.7 Parsimony 

In a predictive model, the system includes a feed-forward module that gives the predicted 
motor activity from a motor command. It is then equivalent to encoding the motor activity 
in the command domain. A well designed system should limit the command size at its 
maximum. It does mean maximize the information compression rate.  
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1.8 Suggested solution 

The choice of a transfer function is generally a problem for formal neural networks, because 
they should be determined “by hand” after several trials. After having been chosen, the 
transfer function does not evolve anymore and limits the future neural network abilities in a 
decisive behavior. Furthermore, there exist only empirical solutions to determination of the 
number of neurons or the size of the hidden layer (Wierenga & Kluytmans, 1994; Venugopal 
& Baets, 1994; Shepard, 1990). 
The behavior of the TempUnit model presented below enables us to give some solutions to 
these problems found in common formal neural network models. TempUnit does not have a 
fixed transfer function but is able to learn the best adapted one to fit the desired signal. The 
basic principle is quite simple because it is only based on the principle of temporal 
summation such as has been observed in biological neurons. In order to keep thinking at a 
biologically inspired level, the input of each TempUnit neuron is a spikes train: only binary 
values. We will now develop in the following the reasons why TempUnit is a particularly 
well-adapted model for satisfying all the constraints previously discussed. 

2. The tempUnit model 

2.1 Temporal summation and straight forward function 

The TempUnit model is based on the mechanism of the temporal summation of post-

synaptic potentials as observed in biological neurons (e.g. Rieke et al, 1996). TempUnit 

means simply ‘Temporal summation unit’. When a spike arrives at a synaptic bouton it 

triggers a local potential in the soma of the post-synaptic neuron. If many spikes arrive at a 

fast enough rate, the triggered potentials are summed in the post-synaptic neuron to shape a 

global membrane activity. This new global temporal activity of the post-synaptic neuron 

depends only on the structure of the input spikes train from the pre-synaptic neurons. In 

fact, this principle, as noticed in biological neurons, can be generalized to any serial system 

where the output is only correlated to the input. A TempUnit network can be considered in 

this form as a binary-analog converter whose output is totally deterministic, as we shall see 

later. Furthermore, biological neurons have, in common with TempUnit, a deterministic 

behavior, as shown by empirical (Mainen & Sejnowski, 1995). 
In the simplest case, a TempUnit network is composed of only a single pre-synaptic neuron 
which is the input and a post-synaptic neuron which is the location of the temporal 
summation. 堅 is the result of the temporal summation, the membrane activity,  捲 is the 
spiking activity of the pre-synaptic neuron and 懸 is the post-synaptic potential or basis 
function. To simplify we will work on a discrete time level. The potential 懸 lasts 喧 time 
steps. 喧 will define for the rest of this article the size of the vector 懸. It is then possible from 
those parameters to write the membrane potential 堅 of the post-synaptic neuron as a 
function of time 建: 

堅岫建岻 噺 布 捲痛貸椎袋沈懸沈椎
沈退怠  (1) 

The 憲痛 vector can define the sequence of values from 捲痛貸椎 to 捲痛, which means the sequence 

of the input activity 捲 from time step 建 伐 喧 to time step 建. It implies that the 憲 vector is also 
of size 喧 like the 懸 vector. We can hence simplify equation 1 in this manner: 
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堅岫建岻 噺 布 憲沈痛懸沈椎
沈退怠 噺 憲痛懸 (2) 

2.2 Supervised learning 

The learning skills of the TempUnit neurons have been already demonstrated in Manette 
and Maier, 2006 but the learning equations have not been explicitly published. Let 血岫建岻 be a 
temporal function that we wish to learn with TempUnit. The learning algorithm should 
make 堅岫建岻 reach 血岫建岻 by modifying the weights 懸沈 of the basis function vector. For every 件 
from 1 to 喧, it is possible to follow this rule: 

褐件 穴結 な à 喧 柑 穴懸沈岫建岻穴建 噺 紘盤血岫建岻 伐 堅岫建岻匪捲痛貸椎袋沈 (3) 

This equation gives very good results and a very good convergence; see Manette & Maier, 
2006, for more details.  

2.3 Evolution of r analysis 

Let us see how the output signal evolves as a function of the time and as a function of the 
basis function  懸: 

穴堅岫建岻穴建 噺 捲痛袋怠懸椎 髪 崛布 憲沈痛岫懸沈貸怠 伐 懸沈岻椎
沈退態 崑 伐 憲怠痛 懸怠 (4) 

We observe in equation 4 that 穴堅岫建岻 穴建⁄  shows an evolution depending only on the new 
input value: 捲痛袋怠, which indicates that this is a decision node depending on the new binary 
value 捲痛袋怠. Thus the next spike is able to define if the following time activity of the 
TempUnit will follow one direction or another.  

2.4 The graph of the neural activity  

Equation 4 shows that the output of the TempUnit neuron can at every time step takes two 
different directions depending on the new binary input, i.e. whether a new spike arrives at 
instant t+1 or not. According to this principle, it is thus possible to build a graph that 
represents the entire neuron activity. We can define, F as a vector space and 岫潔怠, 橋 , 潔津岻 a 
basis of F. In the current case with only one input (pre-synaptic neuron) and only one 
TempUnit (post-synaptic neuron), 券 噺 に. We can, using this vector space, project the entire 
set of input vector 憲痛 by calculating the coordinates 潔怠 and 潔態 as follows: 

憲痛 噺
菌衿芹
衿緊潔怠 噺 布 に沈貸怠憲沈痛椎

沈退怠潔態 噺 布 に椎貸沈憲沈痛椎
沈退怠

 (5) 
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Given that every 憲 vector is of size 喧, as defined earlier, and contains only binary data, there 
exist exactly に椎 different input vectors. Our vector space contains thus this exact amount of 
nodes. Every vector 憲痛 is thus represented in the vector space by a point with coordinates 岫潔怠痛 , 潔態痛岻. According to equation (4), every single point in this vector space is a decision node 
from where it is possible to follow two different paths on the graph through two different 
nodes. We can calculate the coordinates of the vertices that connect the nodes to each other: 

欠痛 噺
菌衿芹
衿緊に椎貸怠捲痛袋怠 伐 布 に沈貸怠憲沈痛椎

沈退態 伐 憲怠痛
捲痛袋怠 髪 布 に椎貸沈憲沈痛椎

沈退態 伐 に椎貸怠憲怠痛
 (6) 

 

The coordinates of vertices 欠痛 depend only on 憲痛, i.e. directly from the previous node in the 

vector space, and on the presence or absence of a spike at the next time step  建 髪 な. As a 

consequence, at every node in the space F as defined by the basis 岫潔怠, 潔態岻, there exist only 

two vertices reaching two other nodes of this space. Thus there exist に椎袋怠 vertices in the 

space F.  岫潔怠, 潔態岻 makes a basis because every vector 憲痛 can be associated with only a unique pair of 

coordinates in space F. It is therefore easy to move from a vector 憲痛 to the coordinates of a 

particular node of the graph and vice versa. In reality, 潔怠 and 潔態 are both a basis and it is 

unnecessary to know both coordinates of a specific node to be able to identify the related 

vector 憲痛. Let us take the case of the calculation of vector 憲痛 using only 潔態: 

for i噺な : 崕憲怠痛 噺 な 嫌件 潔態痛 半 に椎貸怠憲怠痛 噺 ど 結健嫌結
褐件 血堅剣兼 に 建剣 喧 柑 崔憲沈痛 噺 な 嫌件 潔態痛 半 峭に椎貸沈 髪 布 に椎貸珍憲珍痛沈貸怠珍退怠 嶌憲沈痛 噺 ど 結健嫌結

 (7) 

Example: 
To illustrate this, we will calculate the coordinates of the node in F of the vector 憲痛 噺 岷どどなど峅. 
In this case, 憲戴痛 噺 な while 憲怠痛 噺 憲態痛 噺 憲替痛 噺 ど, so that, taking into account equation (5), we can 
calculate the coordinates 潔怠 and 潔態 which are: 憲痛 噺 岫に戴貸怠, に替貸戴岻 噺 岫ね,に岻. From equation (6), 
we can calculate also the two vertices 欠怠痛  and 欠態痛  from this node: 欠怠痛 噺 岷伐に,に峅 and 欠態痛 噺  岷は,ぬ峅. 
We know then that from the original node 憲痛 it is possible to reach the next node of 
coordinates 憲痛袋怠 噺 岫に,ね岻 or the other node  憲痛袋怠 噺 岫など,の岻. Using equation (7) we can 
determine the corresponding input vectors 憲痛袋怠 噺 岷どなどど峅 and 憲痛袋怠 噺 岷どなどな峅 respectively. 
Graphical representation: 
In the case of only one TempUnit with only one binary input, it is still possible to make a 

graphical representation of the graph of the neural activity. It is then easier to understand 

how information is organized on the graph. Figure 1 presents in a schematic fashion a very 

small graph of neuronal activity containing only 16 nodes.  

Figure 2, by contrast, is drawn using the exact coordinates 潔怠 and 潔態 as calculated from 

equation (5), with vertices as calculated from equation (6).   
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Fig. 1. This diagram illustrates the organization of a graph of neural activity for a TempUnit 
which has a basis function of four time steps in length. This makes, therefore sixteen 
different combinations of the inputs which are represented by a colored circle, red or blue as 
a function of the presence or absence of a spike in the bin at the extreme left respectively. 
Absence of a spike in a bin is represented with a ‘0’ in the 4-element code in every circle. 
Presence of a spike is symbolized with one of the letters w, x, y or z depending on the 
position of this specific spike within the train of four time steps. Vertices are drawn with a 
colored arrow. Red arrows indicate an increase in the global number of spikes in the input 

train 憲痛 ; blue arrows indicate the decrease of one spike in the input vector; black color 
typify that there is no global modification in the amount of spike but there are no spikes in 
the next time step t+1. Pink arrows indicate that there is no modification of the global 
number of spikes but a spike will arrive at the next time step.  

 

Fig. 2. Graph of the neural activity calculated with Matlab® for 256 nodes. Each node is 
represented by an ‘x’ and the beginning of each vertex by an arrow. We clearly observe 
trends in orientation related to the localization of the vertices. 

潔怠 

潔態 
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2.5 Inverse function 

It is possible to draw on the same graph of neural activity both the input and the output of 
the TempUnit neuron with a particular color code. As well as in figure 2 where we can see 
trends in the vertex directions and positions, in figure 3 & 4 we can observe that outputs 
values are not organized on a randomly but on contrary as a function of their intensity. Of 
course, the organization of the outputs on the graph is directly based on the basis function 懸. 
Nevertheless, in spite of great difference that can be observed from one basis function 懸 (e.g. 
fig. 3) to another (e.g. fig. 4), it is still possible to establish some similarities which enable us 
to calculate an inverse function.  
An inverse function enables calcultation of the input corresponding to a desired output. The 
inverse of the function in equation (2) is a surjective function for the most of the sets of 
weights in the basis function v and this is the main problem. Because a surjective function 
means that for a specified value there can exists more than one possible answer and it is 
difficult to determine which of all those possible answers is the one that is needed. Indeed in 
figure 3 there are areas of the same color including many input nodes, which means of the 
same output values. The graph of neural activity gives a way to determine which of those 
possible values is the good one. 

 

Fig. 3. Graph of neural activity showing all the possible outputs of a TempUnit neuron using 
the same system of coordinates of the input from equation (5). The input 憲 and the basis 
function 懸 are in this case of size 喧 噺 なな time steps, thus there are 2048 nodes in the graph. 

The basis function v is an inverted Gaussian function: 懸沈 噺 ど.に 伐 結沈貸岫椎 態⁄ 岻鉄 態岫椎 泰⁄ 岻鉄⁄ 喧√に講 の⁄板 . 

The color code represents the intensity of the output value. Red indicates higher values 
while blue indicates lower values.  

潔怠

潔態 

堅 
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Fig. 4. Graph of neural activity showing the output using a color code. The basis function v 

is a Gaussian function: 懸沈 噺 ど.に 伐 結沈貸岫椎 態⁄ 岻鉄 態岫椎 泰⁄ 岻鉄⁄ 喧√に講 の⁄板  which is compatible with the 

“value” type of neural coding (Salinas & Abbott, 1995, Baraduc & Guigon, 2002). 

In brief, the inverse function algorithm which from a sequence of temporal desired output 

values gives back the path on the graph of the neural activity and then the temporal 

sequence of the related input, is composed of five steps: 

1. Determine the set of coordinates on the graph associated with a given output at 
time t. 

2. From the set of the selected nodes in 1), calculate the set of nodes for time step t+1. 
3. In the set of nodes for time step t+1 delete all the nodes which do not correspond to the 

desired output value at time t+1 and delete as well all the nodes in the subset 
corresponding to time step t which are not reaching any of the remaining nodes of the 
subset t+1. 

4. Start again from step 1 while in the subset t there is more than one possible solution. 
Instant t+1 becomes instant t and instant t+2 becomes instant t+1. 

5. From the sequence of coordinates on the graph, calculate the corresponding binary 
input using equation (7). 

Why to try to determine on the graph the set of nodes leading to a particular output value? 

Simply because on the graph the output values are organized as a function of their intensity, 

we will see in the following that only a simple calculation is necessary to find out all the 

researched nodes. Another important point is that it is also possible to use the links between 

the nodes in order to reduce the indeterminacy of the multiple possible results. 
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How are the output values organized on the graph? 
Studying the relationship between the coordinates of the nodes on the graph 堅 噺 訣岫潔怠岻, one 
observes that it is a periodic function containing multiple imbricated periods and generally 
growing especially if v is growing. Periods of 訣 are always the same and are completely 
independent of the function v but only depend on p: 劇怠 噺 に椎貸怠, 劇態 噺 に椎貸態, etc. … It is hence 
easy from a small amount of data to deduce the complete set of possible output values 
because of this known property of periodic functions: 褐件 な 判 件 判 喧 伐 な 柑 訣岫潔怠 髪 劇沈岻 噺 訣岫潔怠岻 髪 兼沈 (8) 

For instance, if p=5, the graph contain 25=32 nodes. The function 堅 噺 訣岫潔怠岻 has hence 5-1=4 

imbricated periods: 劇怠 噺 に泰貸怠 噺 なは, 劇態 噺 ぱ, 劇戴 噺 ね, 劇替 噺 に. To infer all the 32 possible output 
values on the graph, one should first calculate 堅 噺 訣岫な岻, 堅 噺 訣岫に岻 then 堅 噺 訣岫ぬ岻 which 
following equation (8), allow one to calculate 兼替 噺 訣岫ぬ岻 伐 訣岫な岻. 兼戴 噺 訣岫の岻 伐 訣岫な岻, 兼態 噺訣岫ひ岻 伐 訣岫な岻 and 兼怠 噺 訣岫なば岻 伐 訣岫な岻. Thus, from only these six values we can deduce the 
complete set of the 32 values of the graph. The search algorithm in the output values could 
be similar to already known algorithm of search in an ordered list. 
Figure 5 shows an example of the function 堅 噺 訣岫潔怠岻 for a basis function 懸沈 噺 件戴. Of course, 
the function 堅 噺 訣岫潔怠岻 varies as a function of 懸. But, as in figure 4, it is always a periodic 
function. Drawing a horizontal line at the level of the desired output value on the y-axis 
gives a graphical solution of the point 1) in the inverse function algorithm. The set of 
searched-for nodes corresponds to all the coordinates on the x-axis every time the horizontal 
line crosses the function 堅 噺 訣岫潔怠岻. In the case of the example shown in figure 4, one can see 
that a specified output value (r) is observed only a few times (maybe 3 or 4 times at 
maximum), but depending on the shape of the function v it could be much more. 
 

 

Fig. 5. Example of function 堅 噺 訣岫潔怠岻 with p=11 giving 2048 nodes  in the graph of neural 
activity. The basis function is 懸沈 噺 件戴. The red vector indicates the vector 兼態 while the black 
one indicates the vector 兼戴. 
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Once all the nodes have been selected according to a desired output value, one can search 
the connected nodes at the next time step. Equation 6 enables us to calculate these connected 
nodes at the next time step. All the nodes of the subset selected for time t+1 which are not 
associated with the next desired output value at time t+1 are deleted. In addition, all the 
nodes from the subset for time t which are after this no longer linked with any other node of 
the subset t+1 are also deleted. It is possible to continue with the same principle of deleting 
independent nodes which are not linked with any other node of a following subset. The 
algorithm finishes when it obtains only one possible pathway on the graph, which should 
represent the searched-for input command. Obviously this algorithm gives the exact inverse 
function. If there could be some imprecision on the desired output value, this method 
should not change except that nodes associated with close values should also be selected 
and not only nodes with the exact desired value. 
Partial inverse function 
In some cases of motor control, it may be better to only ask for the final desired position and 

let the system determine by itself all the intermediate steps. On the graph it is easy to 

determine all the intermediate values. It is particularly simple to determine all the 

intermediate values with the help of the graph. Indeed, the initial state as well as the final 

state should be defined by nodes on the graph and the path between those nodes is an 

already well known problem because it is equivalent to an algorithm for finding the shortest 

path on a graph, about which it is unnecessary to give more details. 

2.6 Complexity 

Since so far we have only investigated the capacity of a single TempUnit with a single input, 

we will next investigate the capacities of other TempUnit network architectures. We will see 

in the following that the signal generator abilities of a specified TempUnit network depends 

directly on its architecture. Each type of TempUnit network architecture corresponds to a 

particular kind of graph with very precise characteristics. The complexity of the neural 

network can be calculated based on the complexity of the emergent graph because the graph 

represents exactly the way the TempUnit network behaves. This gives a means of 

determining in a very precise fashion the kind of neural network architecture needed for a 

given type of generated temporal function characteristics. 

One TempUnit with many inputs 
Taking account all the Sk binary inputs of the TempUnit, equations 1 and 2 become: 

(9) 

Figure 6 gives in a schematic fashion the architecture of equation 9.  
 

 

Fig. 6. Schema of one TempUnit with several binary inputs. 
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All the inputs can be summed equally to create a new global u vector and a new global x 
vector that contain all the summed input. This architecture is still biologically compatible; in 
particular, the resulting potential is much larger for near coincident arrival of spikes 
(Abeles, 1991; Abeles et al 1995). The evolution of the output r is then equivalent as what has 
been written in equation 4 but encoded with more than 1 bit of information. In this case 
every decision node can be connected with more than two other nodes. The global number 

of nodes in the graph is: (Sk + 1)p 

 

Fig. 7. Because all the inputs are equivalent, the degree of the graph is equal at Sk + 1. In this 
example is represented a node at time 建 with its previous and following connected nodes at 
times t – 1 and t + 1 respectively. In the case of one TempUnit with two different binary 
inputs, the graph becomes of vertex degree 3. 

Many TempUnits with one input 
In this case inputs are not equivalent because every input connects to different TempUnit. In 

a network of N TempUnits, there are 2N vertices going from and to every node and the 

graph contains 2Np nodes. Equation 10 shows the calculation of the output in this TempUnit 
architecture. 

 

Fig. 8. Example of a node with its connected nodes at time t – 1 and at time t + 1  for a 
network of N = 2 TempUnits. In this case the graph of the global neural activity is of vertex 

degree 22 = 4. 

(10)

We have seen in this section that the evolution of the graph of neural activity depends 
directly on the TempUnit network architecture. The complexity of the graph could be 
defined by the number of elementary vertices that it contains, in other word, the number of 
nodes that multiply the vertex degree of the graph. 
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3. Conclusion 

We have seen in this chapter the central role played by the graph of neural activity helping 
to understand the behavior of the TempUnit model. The graph gives the possibility of 
calculating the inverse function as well; it is also because of the graph that we can better 
understand the relationship between the TempUnit network architecture and its signal 
generator abilities. The graph of neural activity represents very clearly the behavior of the 
entire TempUnit network. The graph is not really implemented, only the TempUnit model is 
as defined on equation 1 or 9. Additionally, the graph of neural activity can be seen as the 
“software” while the TempUnit network would be the “hardware”. In any case, a great 
advantage of the graph is that all the already-known algorithms in graph theory can then be 
applied to TempUnits. 
A first use of the graph has been to solve the inverse function problem. Relationship 
between the nodes give us a mean to avoid any ambiguity produced by this surjective 
function.  
In the control of task context, the existence of Central Pattern Generators (CPG) in the brain 
has been suggested based on work showing complex movements in deafferented animals 
(Brown, 1911; Taub, 1976; Bossom, 1974, Bizzi et al, 1992). Even if couples of “motor 
command”/“specific movement” are hardly credible, suggestions of motor schemes 
(Turvey, 1977) able to generate sets of specific kinds of movements (Pailhous & Bonnard, 
1989) are more appealing. At the same time other data show that the motor activity depends 
also on sensory feedback (Adamovich et al, 1997). It would seem that instead of having two 
opposite theories, one more predictive using only CPGs and another completely reactive 
using mainly reflexes triggered by sensory feedback, a compromise could be found. Indeed, 
in considering the neural activity graphs of TempUnit networks one can see that TempUnit 
can work as a feedforward function generator. The entire graph could represent a complete 
set of a kind of movement while a path in the graph could constitute a particular execution 
of this movement. Furthermore, at every time step TempUnit is at a decision corner and the 
new direction depends on the inputs. We can imagine a sensory input that can then 
influence the TempUnit behavior to be able to adapt the movement command as a function 
of the sensory parameters. The TempUnit activity cannot escape from the path defined on 
the graph; hence these kinds of networks are naturally shaped to follow constrained rules 
like syntax. As well, since it is impossible to reach any arbitrary node from a given specific 
node, these kinds of networks are well suited for speech generation or motor control where 
it should not be possible to ask the system to reach any arbitrary position of the limb from 
another defined position.  
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