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1. Introduction 

In a manufacturing system, whether it is a flow shop or job shop, often one of its facilities 
constrains the production flow and determines the production rate. It is the one that causes 
the bottleneck of the whole production environment. The bottleneck facility is seen as an 
input bay, where the orders get accumulated [Drobouchevitch, & Strusevich, 2000, 
Drobouchevitch, & Strusevich, 2001]. So, the scheduling of bottleneck facility problems is 
exceedingly important for several reasons, probably the most relevant of which is that good 
solutions to this problems provide a support to mange and model the behavior of more 
complex systems such as flexible manufacturing systems [Baker, 1995]. It is therefore an 
important problem from the application point of view. Scheduling bottleneck facility is the 
assignment of jobs to be processed on a bottleneck machine over time. The single machine 
problem addresses the bottleneck situation in scheduling literature. This chapter addresses 
the problem characteristics, objectives, solution strategies and methodologies, and few 
hybrid search heuristics for the bottleneck scheduling problems. 

2. Bottleneck Scheduling Problem  

2.1. Problem Characteristics 

The bottleneck facility scheduling problem considered in this chapter is characterized by the 
following conditions: 

• a set of n independent jobs is available for processing at time zero and the job 
descriptors are known in advance 

• a bottleneck facility is continuously available and is never kept idle  

• the set up times for the jobs are independent of job sequence and can be included in 
processing times 

• jobs are processed to completion without preemption
The various features of bottleneck machine are, 
Jobs  
Jobs are the activities that need to be scheduled on the bottleneck facility, where , only one 
job can be processed at a time. 

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria
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Processing Time  
The processing time represents the period of time a job is actively assigned to the bottleneck 
facility. Usually, the assigned time is fixed and varies with each job. 
Preemption and Non-preemption 
Non-preemption disallows jobs from being interrupted by another job after processing has 
started. Most of the bottleneck scheduling problem considers non-preemption while there 
has been little research done with job preemption. 
Deadlines / Due Dates 
All jobs to be scheduled may have the same due dates and all the jobs must be processed 
before this date. But, in most real industry problems that has to deal with customer orders 
and product shipments, each job may possess different due dates [Tsiushuang et al., 1997]. 
The completion of a job after its due date is allowed, but a penalty is incurred. When the due 
date must absolutely be met, it is referred to as a deadline. 
Weight
The weight of job is basically a priority factor. It denotes the importance of job relative to the 
other jobs in the system. For example, a weight may represent the actual cost of keeping the 
job in the system.  

2.2. Objectives 

With the well defined characteristics of scheduling problem, the motive of automated 
scheduling has been to significantly improve production line utilization and cost reduction. 
This may be achieved by imposing any of the following objective functions : 

• Minimizing completion time, flow time and make span 

• Minimizing the lateness 

• Minimizing earliness and tardiness 

• Minimizing weighted measures 

• Multi-criteria objective 
However, the current trends indicate that the minimization of total weighted tardiness 
objective is of much importance because of the following reasons. This is a crucial form of 
decision-making in manufacturing as well as in service industries. The buyer - vendor 
relationship plays an important role in business. Usually, buyers desire a reliable time 
delivery for meeting their schedules, and so the primary objective becomes to reduce the 
amount by which the individual completion times exceed the promised times, i.e. due dates. 
For example, when a company has to meet the shipping date on which it has committed its 
products to the customers and the production time depends to a great extend on one 
resource, as is often the case, it is faced with the bottleneck facility total weighted tardiness 
problems. Thus the problem of how jobs' due dates can be met such that the cost of jobs 
being late, as measured by the weighted tardiness, is minimized. The ability to cope 
efficiently with this kind of problems will boost the company's competitiveness.  

2.3 Problem Definition 

A set of jobs (indexed 1,2,3, . . j . .  n) is to be processed without interruption on a bottleneck 
facility that can process one job at a time. All jobs become available for processing at time 
zero. Jth job has an integer processing time pj, a due date dj, and a positive weight wj. A 
weighted tardiness penalty is incurred for each time unit of tardiness Tj if job j is completed 
after its due date dj. The tardiness value Tj is zero when the job is completed before the due 
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date and other wise is (Cj – dj) where Cj is the completion time of the job [Bahram Alidaee & 
Ramakrishnan, 1996]. The problem can be formally stated to find a sequence  that 
minimizes  

 Z( ) = 

=

n

j

jjTw
1

 (1) 

2.4. Complexity of the problem 

While scheduling n jobs in a bottleneck facility, there is a one-to-one correspondence 
between a sequence of these n jobs and a permutation of the job indices. The total number of 
different solutions to the scheduling bottleneck facility problem is n!. Bottleneck machine 
scheduling problems are proved as NP- hard [Lawler, 1977; Du & Leung, 1990]. That is, the 
time the best possible algorithm will need to solve the problem increases in the worst case 
exponentially with the size of the problem.    

3. Solution Methodologies  

The task in bottleneck scheduling problems is to find a permutation of jobs that meets the 
problem’s objective best. Some of the scheduling algorithms viz. enumerative and branch 
and bound techniques, Langarangian method, construction heuristics, heuristic search 
algorithms etc. reported in the literature to solve the problem are presented below, 

3.1. Enumerative and Branch and Bound Techniques 

A straightforward strategy is to solve the bottleneck facility scheduling problems by 
enumerating all possible solutions and then pick the best one. Yet, this may take 
considerable time as there are n! no. of different sequences available for n jobs. Fortunately 
there exist more complex methods like branch – and - bound algorithms that allow 
discarding parts of the search space in which the optimal solution cannot be found.  
Lawler and Wood (1966) proposed a branch – and - bound technique which is a 
backtracking type algorithm that searches through the space of partial solutions. Potts and 
Van Wassenhove (1985) addressed implicit enumerative algorithms for the total weighted 
tardiness problem and observed that the state-of-the-art branch and bound algorithm yields 
optimality, but they require considerable computer resources both in terms of computation 
time and memory requirements. Abdul-Razaq et al., (1990) performed a computational 
comparison of several state-of-the-art exact algorithms for the bottleneck facility total 
weighted tardiness problems. Szwarc and Mukhopadhyay (1997) and Della Croce et al. 
(1998) presented branch and bound procedures for total tardiness problem.  

3.2. Langrangian relaxation method 

Another popular solution technique is integer-programming problems based Lagrangian 
relaxation method. Here the integer constraint which is the main problem is to be removed 
or relaxed. Shapiro (1979) made a survey about Lagrangian relaxation, which has been used 
in discrete optimization for many decades. Potts and Van Wassenhove (1982) combined 
Lawlers’ decomposition theorem with the approach of Schrage and Baker, 1978, to 
implement an efficient algorithm to solve instances up to 100 jobs. 
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3.3. Construction heuristics 

Often solutions for problems are needed very fast, as the problem is an element of a 
dynamic real world setting. This requirement can generally not be met by exact algorithms 
like branch and bound algorithm and Lagrangian relaxation method, especially when the 
problem is NP hard. Besides, not everyone is interested in the optimal solution. In many 
cases, it is preferable to find a sub-optimal, but good solution in a short time which can be 
obtained by constructive algorithms. Most of the researchers have reported that the above 
enumerative and Lagranginan algorithms are computationally expensive for larger problem 
size and tend for other techniques viz. construction heuristics and heuristic search 
algorithms. Constructive algorithms generate solutions from scratch by adding solution 
components to an initially empty solution until it is complete. A common approach is to 
generate a solution in a greedy manner, where a dispatching rule decides heuristically 
which job should be added next to the sequence of jobs that makes up the partial solution. 
Dispatching rules have been applied consistently to scheduling problems. They are 
procedures designed to provide good solutions to complex problems in real-time. The term 
dispatching rule, scheduling rule, sequencing rule or heuristic are often used 
synonymously. 
Panwalker and Iskander (1977) named construction heuristics as scheduling rules and made 
a survey about different scheduling rules. Blackstone et al. (1982) called as dispatching rules 
and discussed the state of art of various dispatching rules in the manufacturing operations. 
Haupt (1989) termed the construction heuristics as priority rules and provides a survey of 
this type of priority rule based scheduling. Montazer and Van Wassenhove (1990) 
extensively studied and analysed these scheduling rule using simulation techniques for a 
flexible manufacturing system. 
A distinction in dispatching rules can be made as static and dynamic rules. Static rules are 
just a function of the a priori known job data and dynamic dispatching rules, on the other 
hand, depend on the partial solution constructed so far. An example of a static rule is 
Earliest Due Date (EDD) and an example of a dynamic rule is Modified Due Date (MDD). A
possibility to get still better performing dispatching policies is to combine simple rules like 
EDD or MDD. After having pilot investigations on the different dispatching rules, a 
Backward heuristic dispatching rule is suggested for bottleneck facility total weighted 
tardines problems which is described as below [Maheswaran, 2004] : 

3.3.1. Backward Heuristics (BH). 

BH is a dynamic dispatching rule. It is a greedy heuristic procedure, in which the sequential 
job assignment starts from the last position and proceed backward towards the first 
position. The assignments are complete when the first position is assigned a job. The process 
consists of the following steps: 
Step 1: Note the position in the sequence in which the next job is to be assigned. The 

sequence is developed starting from position n and continuing backward to 
position 1. So, the initial value of the position counter is n.

Step 2:     Calculate T, which is the sum of the processing times for all unscheduled jobs. 
Step 3:  Calculate the penalty for each unscheduled job i as (T – di) X wi. If di>T, the penalty 

is zero, because only tardiness penalties are considered. 
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Step 4: The next job to be scheduled in the designated position is the one having the 
minimum penalty from step 3. In the case of tie, choose the job with the largest 
processing time. 

Step 5:  Reduce the position counter by 1. 
Repeat steps 1 through 5 until all jobs are scheduled.  
Numerical Example: 
The backward heuristics is explained by a numerical example by considering a four jobs 
problem in which the processing time, due date and weight of the four jobs are given below, 

Job no. Processing time pi Due Date di Weight wi

1 37 49 1 

2 27 36 5 

3 1 1 1 

4 28 37 5 

For backward heuristics, the sequence is developed from the fourth position and at this time 
T = 93 and penalty for job 1 is  44, job 2 is 285, job 3 is 93 and job 4 is 280. The job 1  is having 
the minimum penalty and scheduled at the fourth position of the sequence. 
For the third position, T = 56 and penalty for the job 2 is 100, job 3 is 55 and job 4 is 140. 
Now, job 3 is having minimum penalty and scheduled at the third position of the sequence. 
For, the second position, T = 55 and the penalty of job 2 is 95 and job 4 is 90 and so job 4 is 
scheduled ant second position and job 2 is scheduled at first position of the sequence. 
The resultant sequence generated from the backward phase is 2 – 4 – 3 – 1 with a total 
weighted tardiness value of 189. 

3.4. Heuristic Search Algorithms 

Heuristic search algorithms are often developed and used to solve many difficult NP-hard 
type computational problems in science and engineering. Since uninformed search by 
enumeration methods seems computational prohibitive for large search spaces, heuristic 
search receives increasing attention [Morton & Pentico, 1993]. Heuristics can derive near 
optimal solutions in considerably less time than the exact algorithms. Heuristics often seek 
to exploit special structures in a problem to generate good solutions quickly. However, there 
is no guarantee that heuristics will find an optimal solution.  
Heuristics are obtained by 

• using a certain amount of repeated trials, 

• employing one or more agents viz. neurons, particles, chromosomes, ants, and so on, 

• operating with a mechanism of competition and cooperation, 

• embedding procedures of self modification of the heuristic parameters or of the 
problem representation.

Heuristic search algorithms utilize the strengths of individual heuristics and offer a guided 
way for using various heuristics in solving a difficult computational problem. According to 
Osman (1996), a heuristic search “is an iterative generation process which guides a subordinate 
heuristic by combining intelligently different concepts for exploring and exploiting the search 
spaces…” [Osman, 1996, Osman & Kelly, 1996]. Heuristic search algorithms have shown 
promise for solving “…complex combinatorial problems for which optimization methods have failed 
to be effective and efficient.”
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A wide range of different heuristic search techniques have been proposed. They have some 
basic component parts in common and are: 

• A representation of partial and complete solutions is required.  

• Operators, which either extend partial solutions or modify complete solutions are 
needed.

• An objective function, which either estimates the costs of partial solutions or determines 
the costs of complete solutions is needed.  

• The most crucial component of heuristic search techniques is the control structure that 
guides the search.  

• Finally, a condition for terminating the iterative search process is required.  
Common heuristic methods include: 

• Tabu search, [Glover 1989; 1990; Glover et al., 1993; 1995], 

• simulated annealing [Kirkpatrick et al., 1983],  

• greedy random adaptive search procedures (GRASP) [Deshpande & Triantaphyllou, 
1998; Feo & Resende, 1995], 

• iterated local search [Helena et al., 2001],  

• genetic algorithms [Goldberg, 1989],  and  

• ant colony optimization [Den Besten et al., 2000].  
Instead of searching the problem space exhaustively, Reeves (1993) informs that modern 
heuristic techniques concentrate on guiding the search towards promising regions of the 
search space. Prominent heuristic search techniques are, among others, simulated annealing, 
Tabu search and evolutionary algorithms. The first two of them have been developed and 
tested extensively in combinatorial optimization. To the contrary, evolutionary algorithms 
have their origin in continuous optimization. Nevertheless, the components of evolutionary 
algorithms have their counterparts to other heuristic search techniques. A solution is called 
an individual which is modified by operators like crossover and mutation. The objective 
function corresponds to the fitness evaluation. The control structure has its counterpart in 
the selection scheme of evolutionary algorithms.In evolutionary algorithms, the search is 
loosely guided by a multi-set of solutions called a population, which is maintained in 
parallel. After a number of iterations (generations) the search is terminated by means of 
some criterion.  

3.4.1. Classification of Heuristic Search Algorithms 

Depending upon the characteristics to differentiate between search algorithms, several 
classifications are possible and each of them being the results of a specific view point. The 
most important methods of classification are: 

• Nature inspired vs Non nature inspired 

• Population based vs Single point search 

• Dynamic vs Static objective function 

• One vs Various neighborhood structure    

• Memory Usage vs Memory less method 
Nature inspired vs Non nature inspired 
Perhaps, the most intuitive way of classifying heuristic search algorithms is based on the 
origin of the algorithms. There are nature inspired algorithms like evolutionary algorithms 
and ant algorithms, and non nature inspired algorithms like Tabu search and iterated local 
search / improvement algorithms. This classification is not meaningful for the following 
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two reasons. First, many hybrid algorithms do not fit in either class or in a sense that it fit 
both at the same time. Second, sometimes it is difficult to clearly tell the genesis of an 
algorithm. 
Population based vs Single point search 
Another characteristic which can be used for the classifications is the way of performing the 
search. Does the algorithm work on a population or on a single solution at a time? 
Algorithms working on single solution are called as trajectory methods and encompass local 
search based heuristics. They all share the property of describing a trajectory in the search 
space during the search process. Population based methods on the contrary perform search 
process which describe the evolution of a set of points in the solution space. 
Dynamic vs Static objective function 
Search algorithms can also be classified according to the way they make use of the objective 
function. While some algorithms keep the objective function given in the problem 
representation “as it is” and some others like guided local search will modify during the 
search. The idea behind this search is to escape from the local optima by modifying the 
search landscape. Accordingly, during the search the objective function is altered by trying 
to incorporate information collected during the search process. 
One vs Various neighborhood structure    
Most search algorithms work on single neighborhood structure. In other words, the fitness 
landscape, which is searched doesn’t change in the course of the algorithm. Other 
algorithms use a set of neighborhood structures which gives the possibility to diversify the 
search and tackle the problem jumping between different landscapes 
Memory Usage vs Memory less method 
A very important feature to classify the heuristic search algorithms is whether they use 
memory of search history or not. Memories less algorithms perform a Markov process, as 
the information they need is only the current state of the search process. There are several 
different ways of making use of memory. Usually it will be differentiated between short 
term and long term memory structures. The first usually keeps track of recently 
performed moves, visited solutions or, in general, decisions taken. The second is usually 
the accumulation of synthetic parameters and indexes about the search. The use of 
memory is nowadays recognized as one of the fundamental elements of the powerful 
heuristics. 

4. Hybrid Algorithms Developed 

The main objective of this work is to formulate different hybrid search heuristics which are 
designed to solve the problems of higher sizes within reasonable time. In this work, three 
different heuristic search algorithms are formulated and used to solve the bottleneck 
scheduling problems with objective of minimizing the total weighted tardiness.  
They are: 

• Heuristic Improvement algorithm [Maheswaran & Ponnambalam, 2003] 

• Iterated Local Improvement Evolutionary Algorithm [Maheswaran & Ponnambalam, 
2005]

• Self Improving Mutation Evolutionary Algorithms [Maheswaran et al., 2005] 
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4.1. Heuristic Improvement algorithm (HIA)

Heuristic Improvement algorithm is devised in such a way to improve an initial sequence 
generated by construction heuristics. Generally, construction heuristics can be used to get 
the solution to the scheduling problems in a faster way. Construction heuristics generate 
solutions from scratch by adding solution components to an initially empty solution until it 
is complete. But, the results of these heuristics are not accurate. A common approach is to 
generate a solution in a greedy manner, where a dispatching rule decides heuristically 
which job should be added next to the sequence of jobs that makes up the partial solution. 
After pilot  anlaysis, it is observed that the dynamic backward dispatching rules based on 
heuristics is performing well. It is proposed to apply a greedy heuristic improvement 
algorithm, which will operate on the sequence developed by backward heuristic as initial 
sequence for the improvement.  

4.1.1. Procedural Steps of Heuristic Improvement Algorithm 

The proposed heuristic improvement algorithm adopts the forward heuristic method 
addressed by Sule (1997) operating on some initial sequence. The procedure is out lined 
below:
Step 1: Initialize the sequence with backward heuristics and set its total weighted tardiness 

value as the objective value. The sequence obtained from backward heuristic is 
assumed to be the initial sequence and this is the best sequence at this stage with 
the total weighted tardiness as the objective value. 

Step 2: Let k define the lag between two jobs in the sequence that are exchanged. For 
example, jobs occupying positions 1 and 3 have a lag k = 2.

Step 3: Perform the forward pass on the job sequence found in the backward phase that is 
the best sequence at this stage. The forward pass progresses from the job position 1 
towards the job position n.
Step 3.1:  Set k = n – 1 
Step 3.2:  Set exchange position j = k + 1 
Step 3.3: Determine the savings by exchanging two jobs in the best sequence with a 

lag of k. The job scheduled in position j is exchanged with the job 
scheduled in a position (j-k). If (j-k) is zero or negative then go to step 3. 6. 
Calculate the penalty after exchange and compare it to the best sequence 
penalty.

Step 3.4:If there is either positive or zero savings in step 3.3, then go to step 3.5; 
otherwise the exchange is rejected. Increase the value of j by one. If j is 
equal to or less than n, then go to step 3.3. If j >n, then go to step 3.6. 

Step 3.5: If the total penalty has decreased, the exchange is acceptable. Perform the 
exchange. The new sequence is now the best sequence; Go to step 3.1. 
Even if the savings is zero, make the exchange and go to step 3.1, unless 
the set of the jobs associated in this exchange has been checked and 
exchanged in an earlier application of the forward phase. In that case, no 
exchange is made at this time. Increase the value of j by one. If j < n, then
go to step 3.3. If j = n, then go to step 3.6. 

Step 3.6: Decrease value of k by one. If k > 0, then go to step 2. If k = 0, then go to 
step 4. 

Step 4:  The resulting sequence is the best sequence generated by this procedure. 
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Numerical Example : 
The four jobs problem given in section 3.3.1 is further improved by the forward phase. The 
sequence generated by backward phase 2 – 4 – 3 – 1 with a total weighted tardiness value of 
189 is consider as the best sequence at this stage. Set Lag k = n – 1 which yields k = 3.
Exchange jobs in the position between j & (j+k). So, in the present sequence exchange job 2 
and job 1 and the new sequence is 1 – 4 – 3 – 2 which  yields a total weighted tardiness value 
of 420 and there is no savings and the exchange is not accepted. 
There is no more exchange possible for the lag k = 3 and reduce k by one which yields k = 3. 
Exchange job 2 and job 3, which yields the sequence 3 – 4 – 2– 1 with value 144. As there is 
savings and accept the change and this is the best sequence now. 
Once again set the lag k = 3, and repeat the procedure for the new sequence and finally the 
optimum sequence will be 3 – 2 – 4 – 1 with a total weigted tardiness of 139. 
The forward phase algorithm is described by means of a flowchart as shown in the figure 1. 

Figure 1. Heuristic Improvement Algorithm 
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4.2. Iterated Local Improvement Evolutionary Algorithm (ILIEA)

According to the survey of Thomas Baeck et al. (1991), on the Evolution Strategies and its 
community has always placed more emphasis on mutation than crossover. The role of local 
search in the context of evolutionary algorithms and the wider field of evolutionary 
computing has been much discussed. In its most extreme form, this view casts mutation and 
other local operators as mere adjuncts to recombination, playing auxiliary (if important) 
roles such as keeping the gene pool well stocked and helping to tune final solutions. 
Radcliffe and Surry. (1994) investigated that a greater role for mutation, hill-climbing and 
local refinements are needed for evolutionary algorithms. Ackley (1987) recommends genetic
hill climbing, in which crossover plays a rather less dominant role.  
Iterated local improvement evolutionary algorithm is designed similar to an iterated local 
improvement algorithm with evolutionary based perturbation tool. Iterated local 
improvement algorithm is a simple but effective procedure to explore multiple local 
minima, which can be implemented in any type of local search algorithm. It is to perform 
multiple runs with the algorithm and each using a different starting solution. A promising 
but relatively unexplored idea is to restart near a local optimum, rather than from a 
randomly generated solution. Under this approach, the next starting solution is obtained 
from the current local optimum where the current local optimum is usually either the best 
local optimum found so far from the history, or the most recently generated local optimum 
by applying a pre-specified type of random move to it which is referred as kick or 
perturbation.

Figure 2. Iterated Local Improvement Evolutionary Algorithm 
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Iterated Local Improvement Evolutionary Algorithm (ILIEA) is hybrid algorithm having 
POP = 2. The complexity of the algorithm is governed by the number of iterations used for 
termination criterion. The complete process of iterated local improvement evolutionary 
algorithm with an example is given in the figure 2. It consists of the following modules: 

• Initial parents generation 

• Population size POP = 2

• Crossover operation (Evolutionary perturbation technique) 

• Crossover probability (Pc) = 1 

• Mutation operation (Self improvement technique) 

• Mutation probability (Pm) = 1 

• New parents generation 

4.2.1. Initial Parents Generation 

A sequence of the bottleneck facility scheduling problem is mapped into a chromosome 
with the alleles assuming different and non repeating integer values in the [1,n] interval. 
Any sequence can be mapped into this permutation representation. This approach can be 
found in most genetic algorithm articles dealing with sequencing problems [Franca et al., 
2001]. The total weighted tardiness of a sequence is assumed to be the fitness function for 
ILIEA.
In this algorithm the population size is assumed to be two and the sequence developed by 
the backward phase acts as one parent and sequence generated taking events in a random 
order acts as the other parent.  

4.2.2. Crossover Operation (Evolutionary Perturbation Technique) 

Perturbation is a pre-specified type of random move applied to a solution. For a current 
solution s*, a change or perturbation is applied to an intermediate state s’. Then the Local 
Improvement is applied on s’ and a new solution s*’ is reached. If s*’ passes an acceptance 
test, it becomes the next base solution for the search otherwise it returns to s*. The overall 
procedure is shown in figure 3. 

Figure 3. Procedures for Perturbation 
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The crossover operation adopted in this work uses an evolutionary perturbation technique, 
which involves the following processes: 

• Iterated local search (ILS)

• Perturbation tool 

• Perturbation strength 

• Acceptance criterion 
Iterated Local Search: The underlying idea of ILS is that of building a random walk in S*,
the space of local optima defined by the output of a given local search. Four basic 
ingredients are needed to derive an ILS:

• a procedure to GenerateInitialSolution, which returns some initial solution, 

• a local search procedure for LocalSearch,

• a scheme of how to perturb a solution, implemented by a procedure Perturbation, and

• an AcceptanceCriterion, which decides from which solution the search is continued. 
The particular walk in S* followed by the ILS can also depend on the search history, which is 
indicated by history in Perturbation and AcceptanceCriterion. 
The effectiveness of the walk in S* depend on the definition of the four component 
procedures of ILS: The effectiveness of the local search is of major importance, because it 
strongly influences the final solution quality of ILS and its overall computation time. The 
perturbations should allow the ILS to effectively escape local optima but at the same time 
avoid the disadvantages of random restart. The acceptance criterion, together with the 
perturbation, strongly influence the type of walk in S* and can be used to control the balance 
between intensification and diversification of the search. The initial solution will be 
important in the initial part of the search. The configuration problem in ILS is to find a best 
possible choice for the four components such that best overall performance is achieved. The 
algorithm outline of iterated local search is given in the figure 4. 

Outline of Iterated Local Search 
s0 = GenerateInitialSolution 
s* = LocalSearch (s0)

REPEAT
s’ = Perturbation (s*, history) 
s*’ = LocalSearch (s’) 
s* = AcceptanceCriterion (s*, s*’, history) 
until
termination criterion met 

Figure 4. Iterated Local Search  

Perturbation Tool :Though many researchers followed different types of perturbation tools, 
an evolutionary operator perturbation tool is used in this work. Here, an ordered crossover 
operator (OX) is used as perturbation tool. The operation of the OX is given as follows: The 
operator takes the initial sequence s* from the base heuristics and another sequence s** is
generated randomly. The resultant sequence s’ will take, a fragment of the sequence from s*
and the selection of the fragment is made uniformly at random. In the second phase, the 
empty positions of s’ are sequentially filled according s**. The accepted s* for the next 
iteration will replace with worst of the previous s* and s**.
As an example, the sequence s’ inherits the elements between the two crossover points, 
inclusive, from s* in the same order and position as they appeared. The length of the 
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crossover is in the range between a random number generated in the range of [1, n-1] job 
position as lower limit (LL) and a random number generated in the range of [LL, n] as the 
upper limit (UL). The remaining elements are inherited from the alternate sequence s** in 
the order in which they appear, beginning with the first position following the second 
crossover point and skipping over all elements already present in s’.
An example for the perturbation tool is given in figure 5. The elements  , , ,  and  are 
inherited from s*  in the same order and position in which they occur. Then, starting from 
the first position after the second crossover point, s’ inherits from s**. In this example, 
position 8 the next position, s’[8] = , which is already present in the offspring, so s** is 
searched  until an element is found which is not already present in s’.  Since ,  and  are 
already present in s’, the search continues from the beginning of the string and s’ [8] = s** [2] 
= , s’ [9] = s** [3] = , s’ [10] = s** [5] = , and so on until the new sequence is generated 
[Starkweather. T. et al., 1991].  

Parent 1 (s*)  :  - - - - - - - - -
Parent 2 (s**):   -  – - -  -  -  -  -  –
Cross over points:  LL = [3] and UL = [7] 
Offspring (s’) :  – - - - - - -  – -

Figure 5. Ordered Crossover (OX)

Perturbation Strength : For some problems, appropriate perturbation strength is very small 
and seems to be rather independent of the instance size. The strength of a perturbation is 
referred as the number of solution components directly affected by a perturbation. The OX
operator will change most of the solution components in the sequence according to the 
generated LL & UL values. 
Acceptance Criteria : The perturbation mechanism together with the local improvement 
defines the possible transitions between a current solution s* to a “neighboring” solution s*’.
The acceptance criteria determines whether s*’ is accepted or not as the new current 
solution. A natural choice for the acceptance criterion is to accept only better solutions 
which are a very strong intensification for search. This is termed as BETTER criterion. 
Diversification of the search is extremely favored if every s*’ is accepted as the new solution. 
This is termed as random walk (RW) criterion which is represented as 

 RW(s*, s*’, history) : = s*’ (2) 

Since, the operator OX completely changes most of the solution components, the acceptance 
criterion is chosen as RW.
The sequence obtained after perturbation is further improved in the mutation operation 
which is self improving. 

4.2.3. Mutation Operation (Self Improvement Technique) 

The mutation operation adopted in this research uses a self improvement technique, which 
consists of the following parts: 

• Local search 

• Neighborhood structure 
Local Search : Local search methods move iteratively through the solution set S. Based on 
the current and may be on the previous visited solutions, a new solution is chosen. The 
choice of the new solution is restricted to solutions that are somehow close to the current 
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solution i.e. in the 'neighborhood' of the current solution. Different local search methods 
may be formulated depending on the method of choosing solutions from the neighborhood 
of the current solution and the way in which the stopping criteria are defined [Helena, 1995]. 
A neighborhood search method requires a representation of solutions to be chosen, and an 
initial solution to be constructed by some heuristic rule or created randomly. A neighbor is 
generated by some suitable mechanism, and an acceptance rule is used to decide whether it 
should replace the current solution or not. The acceptance rule in a neighborhood search 
method usually requires the comparison of objective function values for the current solution 
and its neighbor.  
Neighborhoods are usually defined by first choosing a simple type of transition to obtain a 
new solution from a given one, and then defining the neighborhood as the set of all 
solutions that can be obtained from a given solution by performing one transition. 
Generally, a local search method is based on the following two routines: 

• Given an instance, construct an initial solution. 

• Given an instance and any solution, determine if there is a neighboring solution of 
lower cost, and if so, return one such solution. If no such solution exists, then the input 
solution is returned and it is indicated that it is a local optimal solution. 

The basic structure of a local search is presented in figure 6 

Procedure Local Search (Search Space S, Neighborhood N, Z( );

begin

0 : = Initial sequence ( );
i : = 0; 

while (¬termination criteria ( i, i )) do

m : =  Selectmove ( i, N,, Z( i));
if Z1( ) > Z ( )
then i+1 = i  m; 
 else i+1 = i ;

  i = i+ 1 
 end 
end;

Figure 6. Local Search 

Neighborhood Structure : Before applying local search methods to any problem a 
neighborhood structure is to be defined.  A systematic way of defining neighborhoods is 
needed; otherwise, it is not possible to store the neighborhood. The neighborhoods define a 
frame for the possibilities of walking through the solution space; they have a crucial 
influence on the behavior of local search. If neighborhoods are small, the walk is very 
restricted and, thus, it may be hard to reach good solutions. On the other hand, if 
neighborhoods are large, it may be time consuming to decide in which direction (i.e. to 
which neighbor) the search shall continue. However, not only the size but the more the 
quality of the solutions in a neighborhood is of interest. If a neighborhood contains 
promising solutions, it does not matter if the size of the neighborhood is small and, on the 
other hand, large neighborhoods with only solutions of poor quality are not very helpful. 
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Three common neighborhood schemes are used for scheduling problems and are given 
below:

• Adjacent neighborhood interchange in which a job may be swapped with jobs directly 
to its left or right in the schedule. 

• Swap in which any two jobs in the schedule can be swapped. 

• Insert in which a job is taken from its current position and placed in another position in 
the schedule. 

In this work, four mechanisms are used for finding the neighborhood solutions to solve the 
bottleneck facility scheduling problems are investigated. They are: 

• Adjacent neighborhood interchange  

• Randomized neighborhood structure 

• Randomized adjacent interchange ( ai),

• Randomized sliding mutation ( sl) and  

• Randomized pair wise interchange ( pw)
Adjacent neighborhood interchange  
The process of the adjacent neighborhood interchange mechanism is shown in figure 7.  For any 
solution s, neighbourhood of s, N(s), includes (n-1) different alternative neighbouring 
solutions obtained by interchanging a job with its right job in the sequence. 

Figure 7. Adjacent Neighborhood Interchange 

Randomized Adjacent Interchange ( ai)
This is a randomized version of adjacent interchange neighborhood structure. This operator 
will generate a random number (R) in the range [1, n] and just interchanges the job present 
in the position R with the next job in the sequence (R+1) and represented as: 

ai ( ij ) = ji   (3) 

Job-2

Job-1

Job-n

Job-(n-1)

Job-3
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Randomized Sliding Mutation ( sl)
This is a randomized version of inert neighborhood structure. This operator may be also 
termed as randomized extraction and backward shift insertion operator. Sliding mutation 
refers to “moving a job from the jth place and placing it before the ith position”. Two values 
are generated randomly (R1 and R2) in the range [1,n] in such a way that R1 < R2 and applied 
to jobs present in the positions in between R1 and R2. The job in position R2 is placed before 
the job in position R1 and all jobs in between R1 and R2 are pushed one position and 
represented as: 

sl ( i j ) = ji   (4) 

Randomized Pair wise Interchange ( pw)
This operator may be also termed as random swap operator and similar to swap 
neighborhood structure. Random swap refers to “the swapping according to the randomly 
generated values”. Two values are generated randomly (R1 and R2) in the range [1,n] and 
applied to jobs present in the positions R1 and R2 and the jobs are swapped according to the 
random values generated and represented as: 

pw ( i j ) = j i   (5) 

The improvement technique will be stopped with a maximum number of trials which is 
assumed to be a function related to number of jobs (n).
The local search with different neighborhood structures with a termination criteria n*n*n
number of iterations, so that the complexity of the algorithm is in the order of O (n3), applied 
on the initial sequence obtained by backward phase heuristics.  
The potentials of three randomized neighborhood structure are investigated by applying on 
the sequences generated by the EDD, MDD and BH heuristics as initial sequences. These 
local search is applied for a termination criteria n*n*n number of iterations so that the 
complexity of the algorithm is in the order of O (n3). It is observed that the local search 
algorithm with adjacent neighborhood interchange is applied on the sequence generated by 
backward heuristics is not able to improve further and it is decided to use the randomized 
neighborhood structure. For large sizes of n, pw structure can be applied as self improving 
technique in this proposed iterated local improvement evolutionary algorithm with a 
maximum number of trials for local improvement, which can be assumed as a function of 
size of the problem. 

4.2.4. New Parent Generation 

In this proposed algorithm, the locally improved offspring obtained after self improvement 
technique is used as a parent for the next generation. Even though, the improved offspring 
value is less than the previous parents, it must be considered for the next generation. The 
best parent of the previous generation will act as the other parent and the evolution process 
is continued for the predetermined number of generation. 

4.3. Self Improving Mutation Evolutionary Algorithms (SIMEA)

Evolutionary algorithms are generally used to solve problems of higher search spaces. The 
search space in bottleneck facility scheduling problems is quite large (n!). Evolutionary 
Algorithms (EA) is the term used to describe search methods based on the mechanics of 
natural selection and evolution. Evolutionary Algorithms are often presented as general 



Hybrid Search Heuristics to Schedule Bottleneck Facility in Manufacturing Systems 183

purpose search methods. The evolutionary process can be simulated on a computer in a 
number of ways and two self improving mutation based evolutionary algorithms are 
designed in this work to improve the results obtained from iterated local improvement 
algorithm. Self Improving Mutation Evolutionary Algorithms (SIMEA) are population based 
evolutionary algorithms in which each individual represents a sequence and the population 
evolves through tournament selection, ordered crossover and self improving mutation. The 
selection of initial population and termination criteria plays a vital role in the quality of the 
solution and complexity of the algorithm. The process of self improving mutation 
evolutionary algorithm is explained as below, 
Self Improving Mutation Evolutionary Algorithm (SIMEA) is a hybrid algorithm having 
population size POP = n, Crossover probability (Pc) = 1 and Mutation probability (Pm) = 1. 
The complexity of the algorithm is governed by different parameters like size of the 
population (POP) used for evolution, maximum trials for self improving mutation (M) and 
number of generation needed for termination. The complete process of self improving 
mutation evolutionary algorithm with an example is given in the figure 8. It consists of the 
following parts: 

• Sequence representation 

• Initial population 

• Selection Operator 

• Crossover operator  

• Self improving mutation operator 

• Termination criterion  
The proposed self improving mutation evolutionary algorithm is shown in the figure 8. 

Figure 8. Self Improving Mutation Evolutionary Algorithm 
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4.3.1. Sequence Representation for SIMEA 

The solution representation for SIMEA is similar to the ILIEA. The sequence is mapped into 
a chromosome with the alleles assuming different and non repeating integer values in the [1, 
n] interval. Any sequence can be mapped into this permutation representation. The objective 
function namely the total weighted tardiness of a sequence is considered as the fitness 
function of SIMEA. 

4.3.2. Initial Parents 

For the SIMEA, the size of the initial population is assumed to be the number of jobs. The 
individuals in the population are generated by means of a spread heuristics which 
ensures a better range of possible values of the chromosomes in the initial population. The 
individuals are generated in such a way that job 1 is fixed at the nth position for the nth

chromosome. 

4.3.3. Selection Operator 

In this algorithm, it is proposed to use tournament selection with two different criteria on 
number of individuals selected for evolution (POP). In one version of SIMEA, all individuals 
in the population are selected for evolution (SIMEA I). Another version SIMEA applies a log 
arithmetic reduction heuristic, which allows only elog

10
n individuals are selected for evolution 

(SIMEA II).

4.3.4. Crossover Operator 

On the selected individuals, the ordered crossover (OX) is implemented. The OX explained 
in the section 4.2.2 is used to generate offspring. Since, the number of individuals selected 
for evolution is more than two; more number of offspring will be generated.  

4.3.5. Self Improving Mutation   

The off springs obtained from the crossover are improved further by means of the self 
improving operator explained in section 4.2.3. Here, it is assumed to have the termination 
criterion for the improvement as n/2.

4.3.6. Termination Criterion 

The termination criterion of the algorithm is based on the number of predetermined number 
of generations. To have determined complexity, it is assumed to have n2 number of 
generations as termination criteria for both SIMEA I & SIMEA II.

5. Performance Evaluation 

The set of bottleneck facility total weighted tardiness problem instances available in the 
Operation Research Library maintained by Beasley are considered. The problem instances 
are generated as follows: 
For each job i (i=1,...,n), an integer processing time pi was generated from the uniform 
distribution [1,100] and integer processing weight wi was generated from the uniform 
distribution [1,10]. Instance classes of varying hardness were generated by using different 
uniform distributions for generating the due dates. For a given relative range of due dates 
RDD (RDD=0.2, 0.4, 0.6, 0.8, 1.0) and a given average tardiness factor TF (TF=0.2, 0.4, 0.6, 
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0.8, 1.0), an integer due date di for each job i was randomly generated from the uniform 

distribution [P x (1-TF-RDD/2), P x (1-TF+RDD/2)], where

=

=

n

i

ipP
1

.

Here, there are 25 different combinations for (RDD, TF) pairs and five replicates are taken 
for each (RDD, TF) combinations yielding 125 different test instances for each value of n.
In the OR library, there are three files wt40, wt50, and wt100 containing the instances of size 
40, 50, and 100 respectively. Each file contains the data for 125 instances, listed one after the 
other. The n processing times are listed first, followed by the n weights, and finally n due 
dates, for each of the 125 instances in turn. 
For example in wt40 the first 40 integers in the file are the processing times for the 40 jobs in 
the first instance. The next 40 integers are the first instance’s weights. The next 40 integers 
are the first instance's due dates. The next 40 integers are the second instance's processing 
times, etc. 

5.1. Optimal and Best Known Solution Values for SMTWTP

Optimal values of solutions are available for 124 instances out of 125 problems for 40 jobs 
problem and the unsolved 40 jobs problem is number 19. The values for the unsolved 
problems given in the files wtopt40 is the best known to Crauwels, et. al., 1998.  
Optimal values of solutions are available for 115 instances out of 125 problems the 50 jobs 
problem instances and the unsolved 50 jobs problems are problem no. 11, 12,  14, 19, 36, 
44, 66, 87, 88 and 111. The values for the unsolved problems given in the files wtopt50 are 
the best known to Crauwels, Potts & Van Wassenhove. The values of the solutions not 
known to optimality have not been improved upon since and appear quite likely to be 
optimal. 
The best solution values known to Crauwels, Potts & Van Wassenhove (1998) for the 100 
jobs problems are given in file wtbest100a. These solution values were used as the best 
known by both Crauwels et al. and Congram et al, 1990. Therefore using the best solution 
values known to Crauwels et al. allows results from future heuristics to be compared 
directly with the tables given. 
The local search heuristic iterated dynasearch has in some cases found better solutions to the 
100 job problems than those known by Crauwels, Potts & Van Wassenhove. The best known 
solutions to date are given in the file wtbest100b. 
All the 125 problem instances for the different sizes n = 40, n = 50 and n = 100 are solved by 
the three hybrid algorithms and compared with the best known results.  

5.2. Performance Analysis of Heuristic Improvement Algorithm 

Greedy forward heuristic is applied on BH sequence to improve the solution. This is only a 
heuristic improvement operating on  the sequence generated by the BH as initial sequence. 
The average total weighted tardiness values calculated by the heuristic improvement for n = 
40 is 38809.91, for n = 50 is 54509.62. But this heuristic improvement algorithm is not giving 
good results for higher size n = 100. The results obtained are compared with the 
optimum/best known results available in OR library. The average total weighted tardiness 
for the different combinations of (RDD, TF) are calculated and the percentage of deviation 
from best known values are given in table 1 for n = 40 and for n = 50.
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n = 40  n = 50 

Average weighted 
tardiness

Average weighted 
tardiness

S.No RDD T.F. 

Best Known HIA 

% of
deviation 

Best Known HIA 

% of
deviation

1. 0.2 0.2 1151.8 1252 8.699 2184.4 2335.6 6.922 

2. 0.2 0.4 9221.2 9897.8 7.337 13343.4 14007 4.973 

3. 0.2 0.6 21464.8 22612.4 5.346 43196.8 44285.6 2.521 

4. 0.2 0.8 73120.2 76097.8 4.072 87714.4 91441.6 4.249 

5. 0.2 1.0 112514 114099 1.409 189113 190486.6 0.726 

6. 0.4 0.2 66.4 89.4 34.639 176.4 265 50.227 

7. 0.4 0.4 4815.8 5459 13.356 6452.4 6999 8.471 

8. 0.4 0.6 20039.8 21438.2 6.978 32574.6 35494.2 8.963 

9. 0.4 0.8 69790.8 74849 7.248 89835.2 93276.8 3.831 

10. 0.4 1.0 91736.8 92656.2 1.002 166049.6 168238.2 1.318 

11. 0.6 0.2 0 34.8 ----- 0 39.2 ----- 

12. 0.6 0.4 3273.6 3611.2 10.313 3426.6 4324.8 26.213 

13. 0.6 0.6 18541.2 19754.8 6.545 23277.6 26031.8 11.832 

14. 0.6 0.8 71892.4 73419.8 2.124 81545.4 84014.2 3.028 

15. 0.6 1.0 90276 91539.6 1.400 130365 133429.2 2.351 

16. 0.8 0.2 0 0 0.000 0 0 0.000 

17. 0.8 0.4 609.4 1071.4 75.812 2191.2 2782 26.962 

18. 0.8 0.6 14593.8 16380.8 12.245 25873.8 29013.6 12.135 

19. 0.8 0.8 49719.8 51182.6 2.942 63134.6 65413.8 3.610 

20. 0.8 1.0 121667.6 123609 1.600 153155.6 155049.4 1.234 

21. 1.0 0.2 0 0 0.000 0 0 0.000 

22. 1.0 0.4 774 960.2 24.057 1839.4 2074.6 12.787 

23. 1.0 0.6 22629.2 24172.8 6.821 20864.8 23921.4 14.650 

24. 1.0 0.8 51664 53565.4 3.680 76158 77863.4 2.239 

25. 1.0 1.0 91482.4 92494.6 1.106 109855.4 111953.4 1.910 

Table 1. (RDD, TF) factor wise comparison - HIA

Experience with this method showed that in most instances the best sequence is obtained 
either immediately after the application of the backward phase or with a very few additional 
iterations of the forward phase. This seemed to be promising but not for large number of 
jobs.

5.3. Performance Analysis of ILIEA

The iterated local improvement algorithm is coded in C++ on a personal computer with 1.3 
GHz Pentium IV CPU and 128 MB main memory and running on Micro soft Windows 
operating system 2000 (5 RELEASE version) with Borland C/C++ compiler (version 3.1). 
They are tested on 125 bench mark instances of total weighted tardiness problems of each 
sizes n = 40, n = 50 and n = 100.   
Here, there are 25 different combinations for (RDD, TF) pairs and five replicates are taken 
for each (RDD, TF) combinations yielding 125 different test instances for each value of n.
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The average total weighted tardiness values of five replicates of each (RDD, TF)
combinations for the size n = 40, n = 50, n = 100 are considered and compared with the best 
known values available in the file wtopt40, wtopt50, wtopt100 respectively. 
The (RDD, TF) factor wise comparison of results of iterated local improvement evolutionary 
algorithm as given in the table 2. 

n = 40  n = 50  n = 100  

Average
weighted
tardiness

Average
weighted
tardiness

Average
weighted
tardinessS.NoRDD T.F.

Best 
known
value

ILIEA

% of 
deviation Best 

known
value

ILIEA

% of 
deviation Best 

known
value

ILIEA

% of 
deviation 

1. 0.2 0.2 1151.8 1190.6 3.370 2184.4 2214.2 1.362 5343.8 6180.4 15.656 

2. 0.2 0.4 9221.2 9221.2 0.000 13343.4 13523.2 1.347 52570 53164.6 1.131 

3. 0.2 0.6 21464.8 21464.8 0.000 43196.8 43216.8 0.004 185027.8185835.2 0.004 

4. 0.2 0.8 73120.2 73120.2 0.000 87714.4 87749.4 0.004 433824.6436382.6 0.006 

5. 0.2 1.0 112514 112514 0.000 189113 189950.8 0.004 665021.4666331.8 0.002 

6. 0.4 0.2 66.4 66.4 0.000 176.4 176.4 0.000 256.6 256.6 0.000 

7. 0.4 0.4 4815.8 4833.2 0.360 6452.4 7102.2 10.070 24792.8 27262.8 9.963 

8. 0.4 0.6 20039.8 20070 0.001 32574.6 32588.6 0.000 132402.4137293.2 3.694 

9. 0.4 0.8 69790.8 69999 0.003 89835.2 90302.8 0.005 374993.8379095.6 1.093 

10. 0.4 1.0 91736.8 91887.2 0.002 166049.6 166274 0.001 691626.8703858.2 1.768 

11. 0.6 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

12. 0.6 0.4 3273.6 3303.4 0.009 3426.6 3604.6 0.052 12955 14756 13.903 

13. 0.6 0.6 18541.2 18583 0.002 23277.6 24065.2 0.034 85544.2 91407.6 6.854 

14. 0.6 0.8 71892.4 72006.8 0.002 81545.4 81756.4 0.003 315179.2330526.8 4.869 

15. 0.6 1.0 90276 90796.6 0.006 130365 130731 0.003 607101.8611426.4 0.007 

16. 0.8 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

17. 0.8 0.4 609.4 633.8 4.00 2191.2 2291.8 4.591 656.6 695.4 5.909 

18. 0.8 0.6 14593.8 14672 0.005 25873.8 26188.8 1.217 67259.2 71899.8 6.900 

19. 0.8 0.8 49719.8 50817.2 2.207 63134.6 63179.8 0.001 295368.4297195.6 0.006 

20. 0.8 1.0 121667.6121667.6 0.000 153155.6153227.6 0.000 576902 578342.4 0.002 

21. 1.0 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

22. 1.0 0.4 774 780.4 0.008 1839.4 1839.4 0.000 285 338.4 18.736 

23. 1.0 0.6 22629.2 22839.6 0.009 20864.8 21067.6 0.010 132623 141838.2 6.948 

24. 1.0 0.8 51664 51664 0.000 76158 76166.2 0.000 300435 303187.6 0.009 

25. 1.0 1.0 91482.4 91502.8 0.000 109855.4109908.6 0.000 486114.2487220.8 0.002 

Table 2. (RDD, TF) factor wise comparison - ILIEA

From the table 2, it is observed that the average percentage of deviation is 0.399% from the 
best known values for size n = 40; 0.748% for size n = 50; 3.898% for size n = 100.

5.4. Performance Analysis of SIMEA I 

The SIMEA I algorithm has been implemented in the C++ language on a personal computer 
with 1.3 GHz Pentium IV CPU and 128 MB main memory. The  
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Sself Improving Evolutionary algorithm was running on FreeBSD operating system (4.3 
RELEASE version) with the GNU C/C++ compiler (version 2.95.3) which is easier for CPU 
calculations. SIMEA I is having the following parameters POP = n, M = n/2 and no. of 
iterations for termination is n*n. The algorithm is tested on 125 bench mark instances of total 
weighted tardiness problems of each sizes n = 40, n = 50 and n = 100.   
The (RDD, TF) factor wise comparison of results of Self Improving Evolutionary algorithm 
algorithm version I is given in the table 3. 

n = 40  n = 50  n = 100  

Average
weighted
tardiness

Average
weighted
tardiness

Average
weighted
tardinessS.NoRDD T.F.

Best 
known
value

SIMEA I

% of 
deviation Best 

known
value

SIMEA I

% of 
deviation Best 

known
value

SIMEA I

% of 
deviation 

1. 0.2 0.2 1151.8 1170.4 1.615 2184.4 2224.8 1.849 5343.8 5372 0.528 

2. 0.2 0.4 9221.2 9315 1.017 13343.4 13538.2 1.460 52570 52801.2 0.440 

3. 0.2 0.6 21464.8 21575.6 0.516 43196.8 43458.8 0.607 185027.8185742.8 0.386 

4. 0.2 0.8 73120.2 73223.8 0.142 87714.4 87981.2 0.304 433824.6434668.6 0.195 

5. 0.2 1.0 112514 112539.6 0.023 189113 189139 0.014 665021.4 665064 0.006 

6. 0.4 0.2 66.4 66.4 0.000 176.4 195.8 10.998 256.6 280.4 9.275 

7. 0.4 0.4 4815.8 4892.8 1.599 6452.4 6599.4 2.278 24792.8 25229.2 1.760 

8. 0.4 0.6 20039.8 20180 0.670 32574.6 32968.2 1.208 132402.4 133846 1.090 

9. 0.4 0.8 69790.8 70047.2 0.367 89835.2 90117 0.314 374993.8376054.2 0.283 

10. 0.4 1.0 91736.8 91806 0.075 166049.6166105.4 0.034 691626.8 691788 0.023 

11. 0.6 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

12. 0.6 0.4 3273.6 3420 4.472 3426.6 3518.8 2.691 12955 13543.2 4.540 

13. 0.6 0.6 18541.2 19224.6 3.686 23277.6 23824.4 2.349 85544.2 86340.4 0.931 

14. 0.6 0.8 71892.4 71968.2 0.105 81545.4 81861 0.387 315179.2316436.6 0.399 

15. 0.6 1.0 90276 90349 0.081 130365 130433.6 0.053 607101.8607239.6 0.023 

16. 0.8 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

17. 0.8 0.4 609.4 717.6 17.755 2191.2 2255.2 2.921 656.6 685.8 4.447 

18. 0.8 0.6 14593.8 14845 1.721 25873.8 26231 1.381 67259.2 68757 2.227 

19. 0.8 0.8 49719.8 49861 0.284 63134.6 63435.6 0.477 295368.4296705.4 0.453 

20. 0.8 1.0 121667.6121714.4 0.038 153155.6 153222 0.043 576902 577189 0.050 

21. 1.0 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

22. 1.0 0.4 774 784 1.292 1839.4 1935.2 5.208 285 295 3.509 

23. 1.0 0.6 22629.2 22975 1.528 20864.8 21290.2 2.039 132623 134451 1.369 

24. 1.0 0.8 51664 51926.8 0.508 76158 76405.6 0.325 300435 301911.8 0.489 

25. 1.0 1.0 91482.4 100839.4 10.228 109855.4110345.6 0.446 486114.2486581.6 0.096 

Table 3. (RDD, TF) factor wise comparison – SIMEA I

From the table 3, it is observed that the average percentage of deviation is 1.91% from the 
best known values for size n = 40; 1.49% for size n = 50; 1.3% for size n = 100.
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5.5. Performance Comparision of SIMEA II 

The SIMEA II algorithm has also been implemented in the C++ language on a personal 
computer with 1.3 GHz Pentium IV CPU and 128 MB main memory. SIMEA II is having the 
following parameters POP = elog

10
n, M = n/2 and no. of iterations for termination is n*n. The 

algorithm is tested on 125 bench mark instances of total weighted tardiness problems of 
each sizes n = 40, n = 50 and n = 100.   
The (RDD, TF) factor wise comparison for the average total weighted tardiness SIMEA II
with reduction heuristics and the percentage of deviation from the best known values are 
given in the table 4.

n = 40  n = 50  n = 100  

Average
weighted
tardiness

Average
weighted
tardiness

Average
weighted
tardinessS.No RDD T.F.

Best 
known
value

SIMEA 
II

% of 
deviation Best 

known
value

SIMEA 
II

% of 
deviation Best 

known
value

SIMEA 
II

% of 
deviation

1. 0.2 0.2 1151.8 1170 1.580 2184.4 2211.8 1.254 5343.8 5371.4 0.516 

2. 0.2 0.4 9221.2 9369.4 1.607 13343.4 13363.8 0.153 52570 52797 0.432 

3. 0.2 0.6 21464.8 21598 0.621 43196.8 43540.6 0.796 185027.8185655.2 0.339 

4. 0.2 0.8 73120.2 73824.4 0.963 87714.4 88120.8 0.463 433824.6 434416 0.136 

5. 0.2 1.0 112514 112769 0.227 189113 189373.2 0.138 665021.4 665842 0.123 

6. 0.4 0.2 66.4 120.8 81.928 176.4 212 20.181 256.6 313.2 22.058 

7. 0.4 0.4 4815.8 4905.4 1.861 6452.4 6712.6 4.033 24792.8 25412.8 2.501 

8. 0.4 0.6 20039.8 20345.6 1.526 32574.6 32913 1.039 132402.4134384.2 1.497 

9. 0.4 0.8 69790.8 70228 0.626 89835.2 91501 1.854 374993.8378026.8 0.809 

10. 0.4 1.0 91736.8 92310.6 0.625 166049.6166540.8 0.296 691626.8 693124 0.216 

11. 0.6 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

12. 0.6 0.4 3273.6 3575.4 9.219 3426.6 3745 9.292 12955 13465.2 3.938 

13. 0.6 0.6 18541.2 18714.4 0.934 23277.6 24133.6 3.677 85544.2 87208.4 1.945 

14. 0.6 0.8 71892.4 72350.2 0.637 81545.4 82350 0.987 315179.2316216.4 0.329 

15. 0.6 1.0 90276 90897 0.688 130365 130864 0.383 607101.8608054.2 0.157 

16. 0.8 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

17. 0.8 0.4 609.4 837 37.348 2191.2 2439 11.309 656.6 1065.2 62.230 

18. 0.8 0.6 14593.8 15030.4 2.992 25873.8 26446.8 2.215 67259.2 69316.8 3.059 

19. 0.8 0.8 49719.8 50249.2 1.065 63134.6 63622.4 0.773 295368.4 296488 0.379 

20. 0.8 1.0 121667.6 121976 0.253 153155.6 153291 0.088 576902 577365.6 0.080 

21. 1.0 0.2 0 0 0.000 0 0 0.000 0 0 0.000 

22. 1.0 0.4 774 1111.6 43.618 1839.4 1973 7.263 285 310.4 8.912 

23. 1.0 0.6 22629.2 23411.2 3.456 20864.8 22067.6 5.765 132623 135687 2.301 

24. 1.0 0.8 51664 52064.6 0.775 76158 77737.6 2.074 300435 301742.4 0.433 

25. 1.0 1.0 91482.4 92003.4 0.570 109855.4110337.6 0.439 486114.2487448.4 0.274 

Table 4. (RDD, TF) factor wise comparison -  SIMEA II

From the table 4, it is observed that the average percentage of deviation is 7.724% from the 
best known values for size n = 40; 2.978% for size n = 50 and  4.506% for size n = 100.
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5.6. Performance Comparison of Algorithms 

The average total weighted tardiness of all 125 problem instances obtained by different 
search algorithms are calculated for the different sizes n = 40, n = 50 & n = 100 and 
compared with the best known values and given in table 5. 

S.No n
Best 
known
values

Backward 
Heuristics 

HIA ILIEA 
SIMEA 
I

SIMEA
II

1 40 37641.8 52602.07 38809.91 37745.35 38137.67 37954.46 

2 50 52893.1 74157.74 54509.62 53086.02 53083.44 53339.87 

3 100 217852.1 314076.6 
Code Not 
Structured

220978.9 218439.3 218788.4 

Table 5. Comparison of Average Total weighted tardiness values 

The percentage of deviation of the average total weighted tardiness obtained by the 
different algorithms are calculated and given in figure 9.
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Figure 9. Performance Comparison 

From the figures, it is experienced that the performance of heuristic improvement algorithm 
is poor for the higher sizes of n. This algorithm is giving results within less computational 
time and it is not able to solve the problems of size n = 100 effectively and so not included in 
the figure 9. 
The iterated local improvement algorithm is giving results closer to the best known values 
for n = 40 than other algorithms. But, when size of the problem is increased the percentage 
of deviation is also increasing. 
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But self improving mutation evolutionary algorithms perform well for higher sizes of 
problems. It is observed SIMEA II is producing similar results with lesser computational 
time than SIMEA I.

5.7. Percent Improvement  

Since all the three algorithms have been developed from the backward heuristic sequence, 
the percent improvement of the different heuristic search algorithms are calculated by the 
formula,

 Percent improvement = x100
Z

ZZ

phase)(backward

)(algorithmphase)(backward −

%  (6) 

The average percent improvement of the various heuristic search algorithms from backward 
phase heuristic for different sizes n = 40, n = 50 & n = 100 are given in the table 6 and 
comparison of percent improvement is shown in figure 10. 

S.No n HIA ILIEA SIMEA I SIMEA II

1. 40 26.22 28.24 27.50 27.85 

2. 50 26.49 28.41 28.41 28.07 

3. 100 NA 29.64 30.45 30.33 

Table 6. Average Percent Improvement from Backward Heuristics 
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Figure 10. Comparison of Percent Improvement  

The observations on percent improvement reveals that SIMEA I & SIMEA II provide higher 
improvements than other two heuristic algorithm  namely, HIA & ILIEA. Besides this, HIA is 
not structured to solve problems of higher size (i.e. n = 100). 

6. Conclusion 

Scheduling function is embedded in the domain of production planning control and it plays 
an important role in the manufacturing process. The bottleneck scheduling problems can 
arise in different practical situations in the manufacturing system. The objective function of 
scheduling problem may be minimization of make span, lateness, weighted measures etc. In 
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weighted performance measure cases, the priority indexes may be given to different jobs 
according to the importance. Total weighted tardiness problems are proved to be NP hard
type problems. Enumerative methods are time consuming to solve problems of higher sizes 
and construction heuristics are giving inaccurate results. In practice, there is a need to get 
near optimal solutions within reasonable time. Heuristic search algorithms are used to get 
near optimal solution. In this work, an attempt is made to hybridize trajectory and 
population methods for solving the bottleneck facility total weighted tardiness problems. 
The three heuristic search algorithms are developed and used to solve the different 
benchmark instances. 
Heuristic improvement algorithm is a trajectory method operating on a single sequence 
developed by some construction heuristics as initial sequence. The forward heuristic is 
working by a heuristic procedure with interchange method. It is observed that the process of 
this improvement algorithm is tedious and is not able to solve problems of higher sizes 
The ILIEA algorithm uses only a single pair of parents; one sequence obtained from a greedy 
backward phase heuristic and the other by random generation act as the initial parents. The 
performance of this algorithm, with and without crossover operation, is compared. The 
average percentage of deviation is ranging from 27.54% to 38.28% for the iterated local 
improvement algorithm without crossover and the ranging from 0.28% to 16.84% for the 
iterated local improvement evolutionary algorithm with crossover.  
SIMEA I algorithm is the extended form of the iterated local improvement evolutionary 
algorithm with size of the population equal to number of jobs. Further, a log arithmetic 
reduction rule is applied in the parent selection to develop another version SIMEA II and tested 
with benchmark instances of SMTWTP. The performance of these two versions is compared 
and it is observed SIMEA II is producing similar results with lesser computational time.  
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